Skip to main content
Log in

An Extension of the Chvátal–Erdős Theorem: Counting the Number of Maximum Independent Sets

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Chvátal and Erdős proved a well-known result that the graph \(G\) with connectivity \(\kappa (G)\) not less than its independence number \(\alpha (G)\) [\(\alpha (G)+1\), \(\alpha (G)-1\), respectively] is Hamiltonian (traceable, Hamiltonian-connected, respectively). In this paper, we strengthen the Chvátal–Erdős theorem to the following: Let \(G\) be a simple 2-connected graph of order large enough such that \(\alpha (G)\le \kappa (G)+1\) [\(\alpha (G)\le \kappa (G)+2\), \(\alpha (G)\le \kappa (G),\) respectively] and such that the number of maximum independent sets of cardinality \(\kappa (G)+1\) [\(\kappa (G)+2\), \(\kappa (G)\), respectively] is at most \(n-2\kappa (G)\) [\(n-2\kappa (G)-1\), \(n-2\kappa (G)+1\), respectively]. Then \(G\) is either Hamiltonian (traceable, Hamiltonian-connected, respectively) or a subgraph of \(K_{k}+((kK_1)\cup K_{n-2k})\) [\(K_{k}+((k+1)K_1\cup K_{n-2k-1})\), \(K_{k}+((k-1)K_1\cup K_{n-2k+1})\), respectively].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ahmed, T.: A survey on the Chvátal–Erdős theorem. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.90.9100&rep=rep1&type=pdf

  2. Ainouche, A.: A common generalization of Chvátal–Erdős and Fraisse’s sufficient conditions for Hamiltonian graphs. Discret. Math. 142, 21–26 (1995)

    Article  MathSciNet  Google Scholar 

  3. Chen, G., Hu, Z., Wu, Y.: Circumferences of \(k\)-connected graphs involving independence numbers. J. Graph Theory 68, 55–76 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chvátal, V., Erdős, P.: A note on Hamiltonian circuits. Discret. Math. 2, 111–113 (1972)

    Article  MATH  Google Scholar 

  5. Enomoto, H., Kaneko, A., Saito, A., Wei, B.: Long cycles in triangle-free graphs with prescribed independence number and connectivity. J. Comb. Theory Ser. B 91, 43–55 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fouquet, J.L., Jolivet, J.L.: Probl\(\acute{e}\)me 438. In: Probl\(\acute{e}\)mes Combinatoires et Th\(\acute{e}\)orie des Graphes. Univ. Orsay, Orsay (1976)

  7. Fujita, S., Halperin, A., Mangant, C.: Long path lemma concerning connectivity and independence number. Elecron. J. Comb. 18(1), P149 (2011)

    Google Scholar 

  8. Han, L., Lai, H.-J., Xiong, L., Yan, H.: The Chvátal–Erdős condition for supereulerian graphs and the Hamiltonian index. Discret. Math. 310, 2082–2090 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. van den Heuvel, J.: Extentions and consequences of Chvátal–Erdős theorem. Graphs Comb. 12, 231–237 (1996)

    Article  MATH  Google Scholar 

  10. Jackson, B., Oradaz, O.: Chvátal–Erdős conditions for paths and cycles in graphs and digraphs, a survey. Discret. Math. 84, 241–254 (1990)

    Article  MATH  Google Scholar 

  11. Neumann-Lara, V., Rivera-Campo, E.: Spanning trees with bounded degrees. Combinatorica 11, 55–61 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. O, S., West, D.B, Wu, H.: Longest cycles in \(k\)-connected graphs with given independence number. J. Comb. Theory Ser. B 101, 480–485 (2011)

    Google Scholar 

  13. Saito, A.: Chvátal–Erdős theorem—old theorem with new aspects. Lect. Notes Comput. Sci. 2535, 191–200 (2008)

    Google Scholar 

  14. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Upper Saddle River (2001)

    Google Scholar 

Download references

Acknowledgments

The authors are indebted to the anonymous referee for suggesting [7] to make a better bound on the order in Theorem 7 than the original one and the other constructive comments. This research is supported by Nature Science Funds of China and by Specialized Research Fund for the Doctoral Program of Higher Education (No. 20131101110048). The second author (Yinkui Li) is supported by the Project 2014xjz03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liming Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Li, Y., Ma, H. et al. An Extension of the Chvátal–Erdős Theorem: Counting the Number of Maximum Independent Sets. Graphs and Combinatorics 31, 885–896 (2015). https://doi.org/10.1007/s00373-014-1416-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-014-1416-2

Keywords

Navigation