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Department of Mathematical Sciences,

Central Connecticut State University,

1615 Stanley Street, New Britain, CT 06050, USA

E-mail: castanedan@ccsu.edu

Ivan S. Gotchev

Department of Mathematical Sciences,

Central Connecticut State University,

1615 Stanley Street, New Britain, CT 06050, USA

E-mail: gotchevi@ccsu.edu

Abstract

We discuss the existence of vertex disjoint path coverings with prescribed ends for the n-dimensional

hypercube with or without deleted vertices. Depending on the type of the set of deleted vertices and

desired properties of the path coverings we establish the minimal integer m such that for every n ≥ m

such path coverings exist. Using some of these results, for k ≤ 4, we prove Locke’s conjecture that

a hypercube with k deleted vertices of each parity is Hamiltonian if n ≥ k + 2. Some of our lemmas

substantially generalize known results of I. Havel and T. Dvořák. At the end of the paper we formulate

some conjectures supported by our results.

1 Introduction

The n−dimensional binary hypercubeQn is the graph whose vertex set V(Qn) consists of all binary sequences
of length n and whose edge set E(Qn) consists of all pairs of binary sequences that differ in exactly one
position. In recent years some attention has been given to the problem of finding Hamiltonian cycles or
maximal cycles in the n−dimensional binary hypercube Qn with faulty vertices or with faulty edges.

In [17] Parkhomenko illustrates some techniques of constructing cycles without faulty edges or vertices
in low dimensional hypercubes. His methods rely on a classification of Hamiltonian cycles for hypercubes of
dimension 4 or less.

Caha and Koubek [8] and Dvořák [9] have addressed the problem of prescribing a set of edges P through
which a Hamiltonian cycle in Qn must pass. The best theorem in this direction known to us is the following:

Theorem 1.1 (Dvořák [9]). Let P be a set of edges in Qn such that each connected component of the
subgraph generated by P is a simple path. If the cardinality of P is less than or equal to 2n− 3, then there
exists a Hamiltonian cycle in Qn that passes through each edge in P .

Dvořák’s proof uses two lemmas about covering the vertices ofQn by vertex disjoint paths with prescribed
ends. The first one, called Havel’s lemma, states that given any two vertices of opposite parity in Qn, with
n ≥ 1, there exists a Hamiltonian path with these two vertices as endpoints [12, Proposition 2.3]. Dvořák
generalizes this lemma as follows:
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Lemma 1.2 (Dvořák [9]). Let n ≥ 2, a1, a2 be two distinct vertices of the same parity, and b1, b2 be two
distinct vertices of the opposite parity in the hypercube Qn. Then there exist two vertex-disjoint paths, one
joining a1 to b1 and the other joining a2 to b2, such that each vertex of Qn is contained in one of these paths.

One of the main ingredients in the proof of Dvořák’s theorem is the existence of a covering of the vertices
of Qn by vertex disjoint paths with prescribed end vertices. In this article we address the existence of
such path coverings with prescribed end vertices for the hypercube with or without deleted vertices. More
specifically, we investigate what is the minimal dimension m of the hypercube Qm such that for every n ≥ m
and every set F of M ≥ 0 deleted vertices from Qn such that the absolute value of the difference of the
numbers of the deleted vertices of the two parities is C, there exists a path covering of Qn−F with N paths
whose end vertices are with different parity and O paths whose end vertices are of the same parity, where
all of the end vertices of these paths belong to an arbitrary set of non-deleted vertices. The exact meaning
of these words can be found in Section 2 where more precise definitions are given including the definition of
the symbol [M,C,N,O] that represents the number m mentioned above.

The main results of this paper are contained in the last 4 sections. Section 3 deals with special cases
where the numbers M , C, N , and O are small and in many of those cases we use pictorial proofs. In Section
4 we use words to represent paths in the proofs and we study cases of larger numbers of M , C, N , or O.
In particular, in that section, we generalize Dvořák’s lemma (see Lemma 4.7). Section 5 contains general
results that allow us to establish connections between different values of [M,C,N,O]. These three sections
also contain, for k ≤ 4, a proof of Locke’s conjecture that a hypercube with k deleted vertices of each parity
is Hamiltonian if n ≥ k + 2. In Section 6 we state some conjectures supported by our results and we give
some concluding remarks. Appendix A contains a proof of a claim for n = 4 that we found difficult to verify
by inspection. In a table in Appendix B we summarize many of the results contained in this paper.

2 Some definitions

To simplify the explanations that follow we introduce the following terminology and conventions. A path
covering of a graph is a set of vertex disjoint paths that cover all the vertices of a given graph. k−path
covering is a path covering by exactly k paths. Sometimes we call the end vertices of a path ends or
terminals. A vertex of Qn is called even (odd) if it has an even (odd) number of 1′s. A transformation that
changes the values of a fixed entry for all the vertices of Qn induces an automorphism of the hypercube that
sends even vertices to odd vertices and vice versa. Therefore, any statement about Qn in terms of even and
odd vertices has an equivalent dual statement obtained when the references to even and odd vertices are
interchanged. For convenience, we call the vertices of one parity red and the vertices of the opposite parity
green without specifying which are even and which are odd.

A fault F in Qn is a set of deleted vertices. The mass M of a fault F is the total number of vertices in
the fault. The charge C of a fault is the absolute value of the difference between the number of red vertices
and the number of green vertices. We say that a fault is neutral if its charge is zero. When the endpoints
of a path are of the same parity we say that the path is charged ; otherwise the path is neutral. Regarding
a pair of vertices we say that the pair is charged if the two elements in the pair are of the same parity and
that the pair is neutral if the two elements are of opposite parity. If the two elements of a charged pair of
vertices are red (green) we say that the pair is red (green).

Let M be any nonnegative even number and let AM be the set of positive integers m with the property
that if n ≥ m then Qn − F is Hamiltonian for every neutral fault F of mass M in Qn. The set AM is
nonempty (see [16]). We denote by [M ] the smallest integer in this set. It is clear that [0] = 2 since Qn is
Hamiltonian if n ≥ 2, and [2k] ≥ k + 2 since if k vertices adjacent to a given vertex are removed from Qk+1

then the resulting graph is not Hamiltonian. In Problem 10892 of The American Mathematical Monthly [15]
S. Locke conjectures that [2k] = k + 2 for every nonnegative integer k. A proof of [2] = 3 is contained in
[16] and a proof of [4] = 4 was known to S. Locke (personal communication). To the best of our knowledge
Locke’s conjecture in its full generality remains unsolved. In Lemmas 3.8, 4.5, and 5.12, we prove that
[2k] = k + 2 for k = 2, 3, 4.

Let r(F) be the number of red vertices and g(F) be the number of green vertices in a fault F of Qn.
Let also E be a set of disjoint pairs of vertices of Qn, r(E) be the number of red pairs in E , and g(E) be the
number of green pairs in E . We say that the set of pairs E is in balance with the fault F if all the vertices in
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the elements of E are from Qn − F and r(F) − g(F) = g(E) − r(E). Since Qn is a bipartite graph with the
set of even vertices and the set of odd vertices as partite sets, a necessary condition for a set E of pairs of
vertices to be the set of endpoints of a path covering of Qn −F is that E to be in balance with F .

Definition 2.1. Let M,C,N,O be nonnegative integers and F be a fault of mass M and charge C in Qn.
We say that one can freely prescribe ends for a path covering of Qn−F with N neutral paths and O charged
paths if

(i) there exists at least one set E of disjoint pairs of vertices that is in balance with F and contains exactly
N neutral pairs and O charged pairs; and

(ii) for every set E of disjoint pairs of vertices that is in balance with F and contains exactly N neutral
pairs and O charged pairs there exists a path covering of Qn − F such that the set of pairs of end
vertices of the paths in the covering coincides with E .

It is easy to see that if in Qn there exists a fault F of mass M and charge C, and a set of pairs
of vertices E that is in balance with F and contains exactly N neutral pairs and O charged pairs, then
2n ≥ M + C + 2N + 2O.

Definition 2.2. Let AM,C,N,O be the set of nonnegative integers m such that

(i) m ≥ log2 [M + C + 2N + 2O]; and

(ii) for every n ≥ m and for every fault F of mass M and charge C in Qn one can freely prescribe ends
for a path covering of Qn −F with N neutral paths and O charged paths.

We let [M,C,N,O] denote the smallest element in AM,C,N,O if this set is nonempty.

For example, Havel’s lemma quoted above is the statement [0, 0, 1, 0] = 1 and Dvořák’s lemma is the
statement [0, 0, 2, 0] = 2.

3 Some cases of small faults or small sets of prescribed end ver-

tices

In the statements below, since only a few vertices are deleted from Qn+1 and we are looking for path
coverings with just a few paths, it is convenient to illustrate the proofs by using diagrams. In these diagrams
the hypercube Qn+1 is viewed as two copies of the n−dimensional hypercube which we call top plate and
bottom plate and we denote by Qtop

n+1 and Qbot
n+1, respectively. The edges connecting the two plates are called

bridges. We mark on the diagrams only the vertices that are relevant for the proof. To distinguish their
colors (parity) we mark the red vertices with stars and leave the green ones unmarked. The prescribed ends
of each path are represented by the same geometric figure (triangle, square, etc.) and for different paths we
use different figures. The deleted vertices are represented by big circles with a star inside if they are red
or a minus inside if they are green. For the proof of a given lemma we usually produce connections on the
plates that are guaranteed by previous lemmas or by an induction hypothesis and then we use bridges to
connect paths from the top plate to paths from the bottom plate. Sometimes the paths from a plate are cut
at certain places and the cut points are connected to the other plate by bridges. In such cases we say that we
perform surgery. The vertices at which we do cuts are represented by tiny circles. The variables r, r1, r2, . . .
are reserved to represent red vertices and the variables g, g1, g2, . . . are reserved to represent green vertices.

The following lemma that qualifies Qn as a hyper-Hamilton laceable graph was proved by Lewinter and
Widulski [14, Corollary 4].

Lemma 3.1. ([1, 1, 0, 1] = 2) Let n ≥ 2 and d be any vertex in Qn. Then one can freely prescribe ends for
a charged Hamiltonian path of Qn − {d}.

Corollary 3.2 below is a refinement of Havel’s lemma and follows directly from [0, 0, 2, 0] = 2 and
[1, 1, 0, 1] = 2. It also appears as Corollary 3.4 in [9] and therefore is given here without proof.
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Corollary 3.2. Let n ≥ 2, r and g be a red and a green vertex in Qn, and e be an edge different from {r, g}.
Then there exists a Hamiltonian path of Qn that connects r to g and passes through e.

The following lemma is a solution to the first part of Problem 10892 proposed by S. Locke in The
American Mathematical Monthly [15]. For the solution published in The Monthly see [16]. We present a
different proof.

Lemma 3.3. ([2] = 3) If n ≥ 3 then Qn −F is Hamiltonian for any neutral fault F of mass 2.

Proof. Produce two plates that separate the deleted vertices r and g and assume that the deleted red vertex
r is on the top plate. Find two bridges with green vertices on the top plate that do not contain the deleted
vertices. Use [1, 1, 0, 1] = 2 to produce a Hamiltonian path of Qtop

n − {r} that connects the top vertices of
the bridges. Use [1, 1, 0, 1] = 2 to produce a Hamiltonian path of Qbot

n −{g} that connects the lower vertices
of the bridges. The paths produced on the plates connected by the bridges form the desired Hamiltonian
cycle in Qn −F .

Lemma 3.4. Let n ≥ 2, r be a red vertex and g1, g2 be two green vertices in Qn. Then there are at least
n− 1 Hamiltonian paths of Qn − {r} that connect g1 to g2, all starting with different edges.

Proof. The proof is by induction. The statement is obvious for n = 2. When n = 3 there are only two cases
to consider: r belongs to the same two dimensional subcube that contains g1 and g2 and r does not belong
to it. In each one of these cases it is routine to construct the required two paths.

Now let n ≥ 4. Produce two plates to separate the two green vertices.

Case 1. r and g1 are on the top plate and g2 is on the bottom plate.
Let g be any green vertex on the top plate different from g1 and r1 be the vertex of Qbot

n that is adjacent
to g. By the induction hypothesis there are at least n− 2 Hamiltonian paths of Qtop

n − {r} that connect g1
to g all starting with different edges from g1. Extend each of these paths to produce a Hamiltonian path
of Qn − {r} that connects g1 to g2 by adding the bridge {g, r1} and then a Hamiltonian path of Qbot

n that
connects r1 to g2. The latter path exists since [0, 0, 1, 0] = 2. Finally, let r2 be the vertex of Qbot

n that is
adjacent to g1. We produce a Hamiltonian path of Qn−{r} that connects g1 to g2 and starts with the bridge
{g1, r2} as follows. Produce a Hamiltonian cycle of Qtop

n − {g1, r}. Such cycle exists since [2] = 3. Cut this
Hamiltonian cycle at two consecutive vertices whose adjacent vertices on Qbot

n are a green vertex g3 6= g2
and a red vertex r3 6= r2. Such consecutive vertices exist since the length of the cycle is at least six. Produce
a 2−path covering of Qbot

n with one path connecting r2 to g3 and the other connecting r3 to g2. Such path
covering exists because [0, 0, 2, 0] = 2. We obtain the desired Hamiltonian path of Qn −{r} by adding to the
pieces so far produced the bridge {g1, r2}.

Case 2. r and g2 are on the top plate and g1 is on the bottom plate.
We can assume that r and g1 are not adjacent; otherwise, we could separate r, g1, and g2 as in Case

1. Let r1 be the neighbor of g1 on the top plate, g3 6= g2 be any green vertex on the top plate, r2 be the
neighbor of g3 on the bottom plate, and g4 6= g1 be adjacent to r2 on the bottom plate. According to the
induction hypothesis there exist n− 2 Hamiltonian paths in Qbot

n −{r2} that connect g1 to g4 that all begin
with different edges. Similarly, there exist n− 2 Hamiltonian paths in Qtop

n −{r} that connect g2 to g3 that
all begin with different edges. Let γ be one of these paths. Each Hamiltonian path on the bottom plate
could be connected by means of the edge {g4, r2} and the bridge {r2, g3} to γ. In that way, we produce n−2
Hamiltonian paths of Qn − {r} connecting g1 to g2 and all beginning with different edges.

Now, to produce the (n− 1)-th Hamiltonian path of Qn − {r} that connects g1 to g2 and begins with a
different edge we proceed as follows. Produce a Hamiltonian path of Qtop

n that connects r1 to g2. Cut this
path just before and right after r and produce two bridges. Let their ends on the bottom plate be r3 and
r4. Then there exists a Hamiltonian path for Qbot

n − {g1} that connects r3 to r4 ([1, 1, 0, 1] = 2). Then the
desired Hamiltonian path of Qn−{r} that connects g1 to g2 is obtained by connecting the paths constructed
on the plates by means of the bridges after removing the edges incident to r from the path on the top plate
and attaching the edge {g1, r1} to the resulting path.

Let a be a vertex in Qn. There is a unique vertex ā in Qn at distance n from a. The coordinates of ā are
the negation of the corresponding coordinates of a.
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Let {r, g} be a pair of a red and a green vertex in Q3. We define the set of pairs of vertices B{r,g} in
the following way: if r = ḡ then {r′, g′} ∈ B{r,g} if and only if {r′, g′} 6= {r, g} and r′ = ḡ′; if r 6= ḡ then
B{r,g} = {{r̄, ḡ}}.

Lemma 3.5. Let r, g be a red and a green vertex in Q3, and let r1, g1 be a red and a green vertex in
Q3 − {r, g}. Then

(1) If {r1, g1} 6∈ B{r,g} then there exists a Hamiltonian path of Q3 − {r, g} that connects r1 to g1.

(2) If {r1, g1} ∈ B{r,g} then there does not exist a Hamiltonian path of Q3 − {r, g} that connects r1 to g1.

(3) If {r1, g1} ∈ B{r,g} then there exist two distinct 2−path coverings of Q3 −{r, g}, with four distinct end
points, with one path starting at r1, the other starting at g1, and both paths of length two.

(4) There exist two distinct 3−path coverings of Q3 − {r, g} with paths of length one.

Proof. By inspection.

Lemma 3.6. ([2, 0, 1, 0] = 4) Let n ≥ 2 and r, r1, g, g1 be two red and two green vertices in Qn. If n = 2 or
n ≥ 4 then there exists a Hamiltonian path for Qn−{r1, g1} connecting r to g. If n = 3 the same conclusion
follows provided {r, g} 6∈ B{r1,g1}.

Proof. The statement is obvious for n = 2 and for n = 3 the claim is contained in Lemma 3.5(1). Also,
Lemma 3.5(2) shows that [2, 0, 1, 0] ≥ 4.

Now, let n ≥ 4. Produce two plates to separate r from r1 and assume that r1 is on the top plate. Then
g and g1 can be distributed in four different ways:

(1) both are on the top plate;

(2) g is on the top plate and g1 is on the bottom plate;

(3) g1 is on the top plate and g is on the bottom plate; and

(4) both are on the bottom plate.

The following diagrams show how to handle these cases.

✓
✓
✓
✓

✓
✓
✓
✓

✓
✓
✓
✓

✓
✓
✓
✓

⊙⋆

△⋆

△

⊖ ◦⋆

◦

(1) Use [1, 1, 0, 1] = 2 to produce a path covering of the top plate connecting the green
terminal g to the deleted green vertex g1 avoiding the deleted red vertex r1. Cut this
path just before the deleted green vertex and produce a bridge from the cut vertex.
Use [0, 0, 1, 0] = 1 to produce a Hamiltonian path of the bottom plate that connects
the lower vertex of the bridge to the red terminal r.

✓
✓
✓
✓

✓
✓
✓
✓

✓
✓
✓
✓

✓
✓
✓
✓

⊙⋆

△⋆

△

⊖

◦

◦⋆

(2) Find a bridge with green vertex on the top different from g and red vertex on the
bottom different from r. Use [1, 1, 0, 1] = 2 to connect the green terminal to the bridge
avoiding the red deleted vertex. Use [1, 1, 0, 1] = 2 to produce a Hamiltonian path
of the bottom plate that connects the lower vertex of the bridge to the red terminal
avoiding the deleted green vertex.
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✔
✔
✔
✔
✔

✔
✔
✔
✔
✔

✔
✔
✔
✔
✔

✔
✔
✔
✔
✔

⊙⋆

△⋆

△

⊖

◦⋆

◦

◦

◦⋆

(3) Find a bridge with green vertex on the top different from g1 and red vertex on the
bottom different from r. Use [1, 1, 0, 1] = 2 and Lemma 3.4 to connect the upper vertex
of the bridge to the deleted green vertex avoiding the deleted red vertex and making
sure that the vertex immediately next to the deleted green vertex along the path is
not adjacent to the green terminal on the bottom plate. Cut the path just before the
deleted green vertex and produce a bridge from the cut vertex. Use [0, 0, 2, 0] = 2 to
produce a 2−path covering of the bottom plate that connects the lower vertices of the
bridges to the appropriate terminals.

✔
✔
✔
✔
✔

✔
✔
✔
✔
✔

✔
✔
✔
✔
✔

✔
✔
✔
✔
✔

⊙⋆

△⋆

△

⊖

◦⋆

◦

◦

◦⋆

(4) Find a bridge with a red vertex on the bottom plate different from r. Use
[1, 1, 0, 1] = 2 to connect the red terminal on the bottom plate to the lower vertex
of the bridge avoiding the green deleted vertex. This path must pass through the
green terminal. Cut the path just before the green terminal and produce another
bridge at the cut vertex. On the top plate use [1, 1, 0, 1] = 2 to connect the upper
vertices of the bridges avoiding the red deleted vertex.

Corollary 3.7. Let n ≥ 4 and F be any neutral fault of mass 2 in Qn. Then for any edge e in Qn−F there
exists a Hamiltonian cycle of Qn −F that contains e.

Lemma 3.8. ([4] = 4) Let n ≥ 4 and F be any neutral fault of mass 4 in Qn. Then Qn−F is Hamiltonian.
The claim is not true for n = 3.

Proof. Since [2k] ≥ k + 2 for each integer k ≥ 0, we have [4] ≥ 4.
Let n ≥ 4, r1, r2 be the two red, and g1, g2 be the two green vertices in F . Split Qn into two plates with

r1 on the top plate and r2 on the bottom plate. There are two essentially different cases that depend on the
distribution of the green deleted vertices between the plates.

Case 1. The two deleted green vertices are on the top plate.
Use [1, 1, 0, 1] = 2 to produce a path on the top plate that connects the two deleted green vertices and

visits all the vertices of the top plate except the deleted red vertex. From the vertices immediately next to
the deleted green vertices along the constructed path, produce bridges to connect to the bottom plate. Use
[1, 1, 0, 1] = 2 to connect the lower vertices of these bridges by a path on the bottom plate that visits all
the vertices of the bottom plate except the deleted red vertex. To produce the desired Hamiltonian cycle in
Qn−F remove from the path constructed on the top plate the edges connecting to the deleted green vertices
and attach to the resulting path, by means of the bridges, the path constructed on the bottom plate.

Case 2. g1 is on the top plate and g2 is on the bottom plate.
We produce a Hamiltonian cycle of Qtop

n − {r1, g1} using [2] = 3. Along this cycle find two consecutive
vertices r3, g3 with adjacent vertices on the bottom plate g4 and r4, respectively, with g4 6= g2 and r4 6= r2,
and such that g4 is adjacent to r2. This last requirement is important for n = 4 but irrelevant for higher
dimensions. It guarantees that {r4, g4} 6∈ B{r2,g2} when the bottom plate is isomorphic to Q3. (To see that

such vertices r3 and g3 exist just take g4 to be a neighbor of r2 in Qbot
n − {g2} which is not a neighbor of

r1 (since n ≥ 4 such a neighbor exists). Then denote by r3 the neighbor of g4 in Qtop
n . Clearly r3 will be

different from r1 and will belong to the Hamiltonian cycle on the top. Now take g3 to be a neighbor of r3
in that cycle which is not a neighbor of r2.) Then using [2, 0, 1, 0] = 4 we can produce a Hamiltonian path
of Qbot

n − {r2, g2} that connects r4 to g4. The desired Hamiltonian cycle of Qn −F is formed by connecting
the path on the bottom plate to the cycle on the top plate by mean of the bridges {r3, g4}, {r4, g3} and, of
course, removing the edge {r3, g3}.

For the sake of brevity, from now on, we adopt the following conventions for the proofs using diagrams.
The paths drawn on each plate are assumed to form path coverings of that plate so we indicate in the
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diagram just what vertices are connected by these paths. From the diagram it will be clear which vertices
are avoided by the path covering. A sentence such as “we find a bridge with green at the top” means that
we select a green vertex on the top plate such that neither it nor its adjacent vertex on the bottom plate
is a terminal or a deleted vertex, and we produce the bridge between these two vertices. A sentence such
as “we choose two adjacent bridges along this path to do surgery” means that 1) we select two consecutive
vertices along the mentioned path such that neither them nor their adjacent vertices on the other plate are
terminals or deleted vertices; 2) we produce bridges from the selected vertices to the other plate; and 3) we
remove the edge that connects the selected vertices. At the end of each construction, when we produce the
final path covering, all the edges of the original path covering that were connected to deleted vertices, if such
edges exist, must be cut out. The desired path covering is formed by the paths that connect figures of the
same color and shape to each other. These paths should be clear to the reader from the diagrams.

The following lemma was independently obtained by Caha and Koubek [?, Corollary 10]. However their
proof is too involved. We provide here a simpler and direct proof.

Lemma 3.9. ([0, 0, 0, 2] = 4) Let n ≥ 3 and r, r1, g, g1 be two red and two green vertices in Qn. If n ≥ 4
then there exists a 2−path covering of Qn with one path connecting r to r1 and the other connecting g to g1.
If n = 3 the same conclusion holds provided that r and r1 are contained in a two dimensional subcube α of
Q3 and exactly one of the vertices g or g1 is contained in α.

Proof. The claim is straightforward for n = 3. Also, one can directly verify that if r and r1 are contained in
a two dimensional subcube α of Q3 and none or both of the vertices g and g1 are contained in α then there
does not exist a 2−path covering of Q3 with one path connecting r to r1 and the other connecting g to g1.
Therefore [0, 0, 0, 2] ≥ 4.

Let n ≥ 4. Split Qn into two plates that separate the two red terminals. We can assume that r ∈ Qtop
n

and r1 ∈ Qbot
n . There are two essentially different cases that depend on the distribution of the green terminals

between the plates: (1) the two green terminals are on the top plate; and (2) g is on the top plate and g1 is
on the bottom plate. These cases can be handled as explained in the following diagrams.

✓
✓
✓
✓

✓
✓
✓
✓

✓
✓
✓
✓

✓
✓
✓
✓

△

�⋆

△�⋆

◦

(1) Use [1, 1, 0, 1] = 2 to find a Hamiltonian path of Qtop
n − {r} that connects g to g1.

Connect the top red terminal r to the bottom plate by a bridge. Use [0, 0, 1, 0] = 1
to find a Hamiltonian path of the bottom plate that connects the lower vertex of the
bridge to the red terminal r1 on the bottom plate.

✓
✓
✓
✓

✓
✓
✓
✓

✓
✓
✓
✓

✓
✓
✓
✓

△

△⋆

△

△⋆

◦

◦⋆

◦⋆

◦

(2) Use [0, 0, 1, 0] = 1 to produce a Hamiltonian path of the top plate that connects
the two terminals. While traversing the path starting from the green terminal, find an
edge whose first vertex is green and such that the adjacent vertices on the bottom are
not terminals. Produce bridges from the vertices of this edge. Use [0, 0, 2, 0] = 2 to
produce a 2−path covering of the bottom plate that connects the lower vertices of the
bridges to the appropriate terminals.

The following lemma is a refinement of Lemma 3.9. It shows that one can choose which one of the two
pairs of terminals to be connected by the longer path.

Lemma 3.10. Let n ≥ 3, r, r1 be two distinct red vertices and g, g1 be two distinct green vertices in Qn. If
n = 3 we also require that if r and r1 are contained in a two dimensional subcube α of Q3, then exactly one
of the vertices g or g1 is contained in α. Then there exists a 2−path covering of Qn with the first path of
length at least 2n−1 connecting r to r1 and the second path connecting g to g1.

Proof. If n = 3 then our claim can be verified directly.
For n ≥ 4 we produce two plates as in the proof of Lemma 3.9 and consider the same two cases. The

proof of case (1) does not need to be modified. For case (2) we assume without loss of generality that r, g
are on the top plate and r1, g1 are on the bottom plate. There are three subcases to consider.



8 N. Castañeda and I. S. Gotchev

Subcase 2(a). g is not adjacent to r1.

Let r2 be any red vertex on the top plate that is adjacent to vertex g2 of the bottom plate different from
g1. Use [1, 1, 0, 1] = 2 to produce a Hamiltonian path of Qtop

n −{g} that connects r to r2. Let r3 be the vertex
of the bottom plate that is adjacent to g. Use [0, 0, 2, 0] = 2 to produce a 2−path covering of the bottom
plate that connects r3 to g1 and g2 to r1. The desired 2−path covering of Qn is obtained by connecting the
path produced on the plates by means of the bridges {r2, g2} and {g, r3}.

Subcase 2(b). r is not adjacent to g1.

Let r2 be the vertex of the top plate that is adjacent to g1. Let g2 be any green vertex on the top plate
different from g and adjacent to a vertex r3 6= r1 of the bottom plate. Use [0, 0, 2, 0] = 2 to produce a
2−path covering of Qtop

n that connects g to r2 and r to g2. Use [1, 1, 0, 1] = 2 to produce a Hamiltonian path
of Qbot

n − {g1} that connects r3 to r1. The desired 2−path covering of Qn is obtained by attaching to the
paths constructed on the plates the bridges {r2, g1} and {g2, r3}.

Subcase 2(c). r is adjacent to g1 and r1 is adjacent to g.

The care in choice of vertices below is important for dimension n = 4 but can be relaxed for n ≥ 5.

Let r2 be any vertex of the bottom plate that is adjacent to g1, different from r1, and let g2 be the vertex
on the top plate that is adjacent to r2. On the top plate we can find a vertex r3 whose adjacent vertex g3
on the bottom plate satisfies the following conditions: 1) g3 is adjacent to r2; 2) g3 6= g1; and, in the case
n = 4, we also require 3) the two-dimensional subcube that contains r and r3 contains exactly one of the
vertices g or g2. Conditions 1) and 2) guarantee the existence of a Hamiltonian path of Qbot

n − {r2, g1} that
connects g3 to r1. Condition 3) guarantees the existence of a 2−path covering of Qtop

n that connects g to g2
and r to r3. The desired 2−path covering of Qn is obtained by attaching to the paths constructed on the
plates the bridges {r2, g2}, {g3, r3} and the edge {r2, g1}.

Lemma 3.11. ([1, 1, 1, 1] = 4) Let n ≥ 4, r be a deleted red vertex in Qn, and r1, g, g1, g2 be one red and
three distinct green vertices in Qn − {r}. Then there exists a 2−path covering of Qn − {r} with one path
connecting r1 to g and the other connecting g1 to g2. The claim is not true for n = 3.

Proof. The following counterexample shows that [1, 1, 1, 1] > 3: n = 3, r = (1, 0, 1), r1 = (1, 1, 0), g =
(1, 1, 1), g1 = (0, 1, 0), g2 = (0, 0, 1).

Now let n ≥ 4. Produce two plates to separate the two green terminals g1 and g2 of the charged path
and assume that the deleted red r and g1 are on the top plate. The terminals of the neutral path r1 and g
could be distributed in four possible ways:

(1) both are on the top plate;

(2) the red is on the top plate and the green is on bottom plate;

(3) the green is on the top plate and the red is on the bottom plate;

(4) both are on the bottom plate.

The four cases can be approached as explained in the following diagrams.

✓
✓
✓
✓

✓
✓
✓
✓

✓
✓
✓
✓

✓
✓
✓
✓

△

△

⊙⋆

� �⋆

◦

◦⋆

(1) Use [0, 0, 2, 0] = 2 to produce a 2−path covering of the top plate that connects the
two terminals of the neutral path to each other, and the green terminal of the charged
path to the deleted red. Cut the last path just before the deleted red and produce a
bridge. Use [0, 0, 1, 0] = 1 to find a Hamiltonian path for the bottom plate connecting
the lower vertex of the bridge to the green terminal on the bottom plate.
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✓
✓
✓
✓

✓
✓
✓
✓

✓
✓
✓
✓

✓
✓
✓
✓

△

△

◦

◦⋆

⊙⋆

�

�⋆

◦

◦⋆

(2) Find a bridge with green on the top. Use [0, 0, 2, 0] = 2 to produce a 2−path
covering of the top plate that connects the red terminal of the neutral path to the
upper vertex of the bridge and the green terminal of the charged path to the deleted
red vertex. Cut the second path just before the deleted red vertex and produce a
second bridge there. Use [0, 0, 2, 0] = 2 to produce a 2−path covering of the bottom
plate that connects the lower vertices of the bridges to the appropriate terminals.

✓
✓
✓
✓

✓
✓
✓
✓

✓
✓
✓
✓

✓
✓
✓
✓

△

△

◦⋆

◦

⊙⋆

�⋆

�

◦

◦⋆

(3) Use [1, 1, 0, 1] = 2 to produce a Hamiltonian path of Qtop
n − {r} that connects g

to g1. Traversing this path from g to g1 find two consecutive vertices that are not
neighbors to the green and red terminals on the bottom plate and such that the first
vertex is green. Such pair of consecutive vertices exist since the length of the path is
at least six, hence there are at least three such pairs on the top and only two vertices
to avoid on the bottom. Produce bridges from these vertices. Use [0, 0, 2, 0] = 2 to
produce a 2−path covering of the bottom plate that connects the lower vertices of the
bridges to the appropriate terminals.

✓
✓
✓
✓

✓
✓
✓
✓

✓
✓
✓
✓

✓
✓
✓
✓

△

△

⊙⋆

�⋆ �

◦

◦⋆

(4) Find a bridge with green on the top. Use [1, 1, 0, 1] = 2 to find a Hamiltonian
path of the top plate connecting the green terminal of the charged path to the bridge
avoiding the deleted red vertex. Use [0, 0, 2, 0] = 2 to find a 2−path covering of the
bottom plate connecting the lower vertex of the bridge to the green terminal of the
charged path and the two terminals of the neutral path.

Lemma 3.12. Let n ≥ 4, r1 and r2 be two distinct red vertices in Qn and g be a green vertex that is deleted
from Qn. Assume further that e = {a, b} is any edge in Qn − {g}. Then there exists a Hamiltonian path in
Qn − {g} that connects r1 to r2 and passes through the edge e. In the case when {a, b}∩ {r1, r2} = ∅ we can
find an oriented Hamiltonian path in Qn−{g} connecting r1 to r2 such that the path visits the vertex a first.

Proof. If the prescribed edge e is not incident to any of the prescribed end vertices r1, r2, use [1, 1, 1, 1] = 4 to
connect r1 to a and r2 to b. The desired (oriented) Hamiltonian path in Qn −{g} is obtained by connecting
these two paths to each other through the edge e.

Let the prescribed edge be incident to one of the prescribed end vertices. We can assume without loss of
generality that a = r1. Then use [2, 0, 1, 0] = 4 to produce a Hamiltonian path in Qn −{r1, g} that connects
r2 to b. Then attach the edge e to this path to obtain the desired Hamiltonian path in Qn − {g}.

Lemma 3.13. ([3, 1, 0, 1] = 4) Let n ≥ 4 and g, r and r1 be one green and two distinct red vertices in Qn.
Let also g1 and g2 be two distinct green terminals in Qn − {g, r, r1}. Then there exists a Hamiltonian path
for Qn − {g, r, r1} connecting g1 to g2. The claim is not true for n = 3.

Proof. The following counterexample shows that [3, 1, 0, 1] > 3: n = 3, r = (1, 0, 1), r1 = (1, 1, 0), g =
(1, 1, 1), g1 = (0, 1, 0), g2 = (0, 0, 1).

Now, let n ≥ 4. There exist two plates that separate the deleted red vertices r and r1 and we assume
that the top plate is the one that contains the deleted green vertex g. We consider the three essentially
different cases that depend on the distribution of the green terminals g1 and g2 on the plates.

Case 1. The two green terminals are on the top plate.
Use [1, 1, 0, 1] = 2 to produce a path that visits all the vertices of the top plate except the red deleted

vertex and starts at one green terminal and ends at the deleted green vertex. This path must pass through
the second green terminal. Cut this path at the vertex immediately preceding the second green terminal and
at the vertex immediately preceding the deleted green vertex along the path. From the cut vertices produce
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two bridges. The lower vertices of these bridges are green. Connect them by a path on the bottom plate
that visits all the vertices except the deleted red vertex. This finishes the construction of the desired path
for this case.

Case 2. One green terminal is on the top plate and the other one is on the bottom plate.
Use [1, 1, 0, 1] = 2 to produce a path on the top plate that visits all the vertices except the deleted red

vertex and that starts at the green terminal and ends at the deleted green vertex. By Lemma 3.4 this path
can be chosen in such a way that the vertex just before the deleted green is not adjacent to the green terminal
on the bottom. Cut the path just before the deleted green and produce a bridge from the cut vertex. Use
[1, 1, 0, 1] = 2 to produce a path on the bottom plate that connects the lower vertex of the bridge to the
green terminal and that visits all the vertices of the bottom plate except the red deleted vertex.

Case 3. The two green terminals are on the bottom plate.
Use [2] = 3 to produce a cycle on the top plate that visits all the vertices except the deleted ones.
If n = 4, use [1, 1, 0, 1] = 2 to produce a path on the bottom plate that visits all the vertices except the

deleted red vertex and has the two green terminals as end vertices. At least one non-terminal vertex u of
this path is adjacent to a vertex v in the cycle on the top plate. Since the degree of each of these vertices
relative to its plate is three, one of the neighbors of u in the bottom path must be adjacent to one of the
neighbors of v in the cycle produced on the top plate. In other words, there exist two parallel bridges such
that the edges connecting their ends on the bottom and on the top plate belong to the path on the bottom
plate and to the cycle on the top plate, respectively. Use these bridges to do surgery to connect the bottom
path to the cycle on the top plate by means of the bridges. This finishes the construction of the desired path
for this case when n = 4.

If n ≥ 5 then the plates are of dimension greater than three. Thus, there exist two consecutive vertices
along the cycle constructed on the top plate such that their adjacent vertices on the bottom plate are neither
deleted vertices nor terminal vertices. Select two such vertices and cut the cycle there and produce bridges
to the bottom plate. Then use Lemma 3.12 to produce a path on the bottom plate that 1) starts at one
green terminal and ends at the other green terminal; 2) visits all the vertices of the bottom plate except the
deleted red vertex; and 3) passes through the edge incident to the lower vertices of the two bridges. Finally,
do surgery to connect the path on the bottom plate to the cycle on the top plate through the bridges. The
result is the desired path. This finishes the construction of the desired path for this case when n ≥ 5.

Lemma 3.14. Let n ≥ 4 and g and r be a green and a red vertex in Qn. Let also g1 and g2 be two distinct
green vertices in Qn − {g, r}. Then there exists a Hamiltonian cycle for Qn − {g, r} such that the shortest
distance between g1 and g2 along that cycle is at least four.

Proof. Split Qn into two plates such that g1 is on the top plate and g2 is on the bottom plate. There are
two cases to consider.

Case 1. r and g are on the top plate.
Use [2] = 3 to find a Hamiltonian cycle for Qtop

n −{r, g}. Choose an edge (g3, r3) from this cycle such that
g1 6= g3 and r3 is not adjacent to g2. Cut the cycle at that edge and connect the resulting path with bridges
to the bottom plate. Use [0, 0, 1, 0] = 1 to find a Hamiltonian path for the bottom plate that connects the
bottom vertices of the two bridges. The resulting Hamiltonian cycle of Qn−{g, r} has the required property.

Case 2. r is on the top plate, g is on the bottom plate.
Find two bridges with green vertices on the top plate that avoid g1. Use [1, 1, 0, 1] = 2 to find Hamiltonian

paths for Qtop
n −{r} and Qbot

n −{g}, respectively, that connect the end vertices of the bridges. The resulting
Hamiltonian cycle of Qn − {g, r} has the required property.

4 Larger faults and sets of prescribed ends

In this section we identify the hypercube Qn with the group Zn
2 . We view Qn as a Cayley graph with the

standard system of generators S = {e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1)}. An oriented
edge in Qn is represented by (a, x), where a is the starting vertex and x is an element from the system of
generators S. A path is represented by (a, ω), where a is the initial vertex and ω is a word with letters from
S. If ω = x1, x2, . . . , xk then the path (a, ω) is the path a, ax1, ax1x2, . . . , ax1x2 · · ·xn. The algebraic content
of a word ω is the element of Zn

2 that is obtained by multiplying all the letters of ω. A path (a, ω) is simple
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if no subword of ω is algebraically equivalent to the identity (0, 0, . . . , 0). A path (a, ω) is a cycle if ω is
algebraically equivalent to the identity but no proper subword of ω is algebraically equivalent to the identity.

We shall use the following notation: ωR means the reverse word of ω; ω′ denotes the word obtained after
the last letter is deleted from ω; ω∗ is the word obtained after the first letter is deleted from ω; ϕ(ω) is the
first letter of ω, and λ(ω) is the last letter of ω. The letter v shall be reserved for steps connecting two plates.
The letters x, y, ... shall be reserved to represent steps along the plates.

The following lemma can be proved by inspection.

Lemma 4.1. Let r, r1, r2 be three distinct red vertices and g, g1, g2 be three distinct green vertices in Q3.
Then there exist two oriented paths γ1, γ2 such that

(i) γ1 is Hamiltonian in Q3 − {g} and connects r1 to r2;

(ii) γ2 is Hamiltonian in Q3 − {r} and connects g1 to g2; and

(iii) γ1 and γ2 share an edge that is traversed in the same direction in both paths.

The following lemma is a generalization of Lemma 4.1.

Lemma 4.2. Let n ≥ 4 and r1, r2, g1, g2, g3, g4 be two distinct red and four distinct green vertices in Qn

such that r1, g1, g2 ∈ Qtop
n and r2, g3, g4 ∈ Qbot

n . Then there exist two oriented paths γ1, γ2 such that

(i) γ1 is Hamiltonian in Qtop
n − {r1} and connects g1 to g2;

(ii) γ2 is Hamiltonian in Qbot
n − {r2} and connects g3 to g4; and

(iii) there exist an edge (a, ax) ∈ γ1 such that (av, avx) ∈ γ2 and both edges are traversed in the same
direction in both paths.

Proof. The proof is by induction. If n = 4 then the claim is contained in Lemma 4.1. If n > 4 then choose
an edge (a, ax) ∈ Qtop

n such that none of the given vertices r1, r2, g1, g2, g3, g4 is incident to (a, ax) or
(av, avx) and apply Lemma 3.12 to construct γ1 and γ2 in the desired way.

Lemma 4.3. ([2, 2, 0, 2] = 4) Let n ≥ 4, F = {r1, r2} be a fault with two distinct red vertices and g1, g2,
g3, g4 be four distinct green vertices in Qn. Then there exists a 2−path covering of Qn − F with one path
connecting g1 to g2 and the other connecting g3 to g4. The claim is not true for n = 3.

Proof. The following counterexample shows that [2, 2, 0, 2] > 3: n = 3, r1 = (1, 1, 0), r2 = (1, 0, 1), g1 =
(0, 1, 0), g2 = (0, 0, 1), g3 = (1, 0, 0), g4 = (1, 1, 1).

Now let n ≥ 4. Split the hypercube in such a way that r1 is on the top plate and r2 is on the bottom
plate. Then consider four cases that depend on the distribution of the green terminals on the plates.

Case 1. All green terminals g1, g2, g3, g4 are on the top plate.
Use [1, 1, 0, 1] = 2 to find a Hamiltonian path (g1, ω) of Q

top
n − {r1} that connects g1 to g2. Let ω = ξηθ

with g1ξ = g3, g3η = g4, and g4θ = g2, where g3, g4 are renumbered, if necessary.
Use [1, 1, 0, 1] = 2 to find a Hamiltonian path (g1ξ

′v, µ) of Qbot
n − {r2} that connects g1ξ

′v to g1ξηϕ(θ)v.
Then the desired 2−path covering of Qn −F is (g1, ξ

′vµvθ∗), (g3, η).
Case 2. g1, g2, g3 are on the top and g4 is on the bottom plate.
Use [1, 1, 0, 1] = 2 to find a Hamiltonian path (g1, ω) of Q

top
n − {r1} that connects g1 to g3. Let ω = ξη,

where g1ξ = g2 and g2η = g3.
Subcase 2(a). g2ϕ(η)v 6= g4.
On the bottom plate use again [1, 1, 0, 1] = 2 to find a Hamiltonian path (g2ϕ(η)v, µ) of Qbot

n −{r2} that
connects g2ϕ(η)v to g4. Then the desired 2−path covering of Qn −F is (g1, ξ), (g3, (η

R)′vµ).
Subcase 2(b). g2ϕ(η)v = g4.
Either g1 or g2 is not adjacent to r2. Without loss of generality assume that it is g1. If n ≥ 5, use

[2, 0, 1, 0] = 4 to find a Hamiltonian path (g1v, µ) of Qbot
n − {r2, g4} that connects g1v to g1ϕ(ξ)v. Then the

desired 2−path covering of Qn −F is (g1, vµvξ
∗), (g3, (η

R)′v).
The same argument works for n = 4 whenever {g1v, g1ϕ(ξ)v} 6∈ B{g4,r2} (Lemma 3.6). If {g1v, g1ϕ(ξ)v} ∈

B{g4,r2} then the distance from g1ϕ(ξ)v to r2 is three and therefore g1ϕ(ξ
∗)v 6= r2 and {g1ϕ(ξ)v, g1ϕ(ξ∗)v} 6∈
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B{g4,r2}. Then use Lemma 3.6 to find a Hamiltonian path (g1ϕ(ξ)v, µ) of Qbot
n −{r2, g4} that connects g1ϕ(ξ)v

to g1ϕ(ξ
∗)v. The desired 2−path covering of Qn −F is (g1, ϕ(ξ)vµvξ

∗∗), (g3, (η
R)′v).

Case 3. g1, g2 are on the top and g3, g4 are on the bottom plate.
Use [1, 1, 0, 1] = 2 to find a Hamiltonian path (g1, ω) of Qtop

n − {r1} that connects g1 to g2 and use again
[1, 1, 0, 1] = 2 to find a Hamiltonian path (g3, µ) of Qbot

n − {r2} that connects g3 to g4. Then the desired
2−path covering of Qn −F is (g1, ω), (g3, µ).

Case 4. g1, g3 are on the top and g2, g4 are on the bottom plate.
According to Lemma 4.2 there exist an oriented Hamiltonian path γ1 = (g1, ξxη) ofQtop

n −{r1} connecting
g1 to g3 and an oriented Hamiltonian path γ2 = (g2, µxθ) of Qbot

n − {r2} connecting g2 to g4 such that
g1ξv = g2µ. The desired 2−path covering is (g1, ξvµ

R), (g3, η
Rvθ).

In some proofs it is useful to be able to find Hamiltonian paths that pass through each element of a given
set of vertices in such a way that the distance between two consecutive elements of that set along the path
is at least 4. The following lemma gives a situation when that can be done. It will be used in the proofs of
Lemma 4.5 and Lemma 5.12.

Lemma 4.4. Let n ≥ 3, L = {g1, g2, . . . , gn−1} be a set of green vertices and r be a red vertex in Qn. Then
there exists a Hamiltonian path in Qn − {r} that connects g1 to gn−1 in such a way that the distance along
the path between any two vertices in L is at least 4.

Proof. The proof is by induction. The statement is obvious for n = 3. Let n ≥ 3 and L = {g1, g2, . . . , gn−1, gn}
be a set of n green vertices and r be any red vertex in Qn+1. Produce plates in a way that g1 ∈ Qtop

n+1 and

gn ∈ Qbot
n+1. We can assume that r ∈ Qtop

n+1 by renumbering g1 and gn, if necessary.

If g1 is the only element of L in Qtop
n+1 then use [1, 1, 0, 1] = 2 to produce a Hamiltonian path (g1, ξ) of

Qtop
n+1 − {r} that connects g1 to g2xv, where x is any letter different from v and such that g2xv 6= g1. By

the induction hypothesis there is a Hamiltonian path (g2, η) of Qbot
n+1 − {g2x} that connects g2 to gn and

such that the distance between any two different elements of L along this path is at least 4. The desired
Hamiltonian path of Qn+1 − {r} for this case is (g1, ξvxη).

If in addition to g1 there is another element gi ∈ L ∩ Qtop
n+1 (the total number of such elements cannot

be more than n− 2) then use the induction hypothesis to produce a Hamiltonian path (g1, ξ) of Qtop
n − {r}

that connects g1 to gi and such that the distance between any two elements of L along this path is at least
4. On the bottom plate there are at most n − 2 elements of L. Therefore, there exists a letter x such that
givx is not in L. By the induction hypothesis there is a Hamiltonian path (givx, η) of Qbot

n+1 − {giv} that
connects givx to gn and such that the distance between any two elements from L along the path is at least
4. The desired Hamiltonian path of Qn+1 − {r} for this case is (g1, ξvxη).

Lemma 4.5. ([6] = 5) Let n ≥ 5 and F be any neutral fault of mass 6 in Qn. Then Qn−F is Hamiltonian.
The claim is not true if n = 3 or n = 4.

Proof. Since [2k] ≥ k + 2 for each integer k ≥ 0, we have [6] ≥ 5.
Let n ≥ 5 and F = {r1, r2, r3, g1, g2, g3} be such that the first three vertices are red and the last three

vertices are green. Produce two plates in such a way that r1 and r2 are on the top plate and r3 is on
the bottom plate. Then consider the four essentially different cases that depend on the distribution of the
deleted green vertices on the plates.

Case 1. The three deleted green vertices are on the top plate.
Use [4] = 4 to find a Hamiltonian cycle (g3, ξ) of Qtop

n − {r1, r2, g1, g2}. Then use [1, 1, 0, 1] = 2 to find a
Hamiltonian path (g3ϕ(ξ)v, η) of Qbot

n −{r3} that connects g3ϕ(ξ)v to g3ξ
′v. The desired Hamiltonian cycle

of Qn −F for this case is (g3ϕ(ξ), vηv(ξ
R)′∗).

Case 2. g1 and g2 are on the top plate and g3 is on the bottom plate.
Use [4] = 4 to produce a Hamiltonian cycle on Qtop

n −{r1, r2, g1, g2}. Let a, b be two consecutive vertices
along this cycle whose respective adjacent vertices on the bottom plate c, d are not deleted vertices. Use
[2, 0, 1, 0] = 4 to connect c to d by a Hamiltonian path of Qbot

n − {r3, g3}. The desired Hamiltonian cycle of
Qn−F for this case is obtained by removing the edge {a, b} from the cycle constructed on the top plate and
attaching to the resulting path by means of the bridges {a, c}, {b, d} the path constructed on the bottom
plate.
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Case 3. g1 is on the top plate and g2 and g3 are on the bottom plate.
Let g4, g5 be any two green non-deleted vertices on the top plate such that their respective adjacent

vertices r4, r5 on the bottom plate are also non-deleted. Use [3, 1, 0, 1] = 4 to produce a Hamiltonian path of
Qtop

n −{r1, r2, g1} that connects g4 to g5. In the same way produce a Hamiltonian path of Qbot
n −{r3, g2, g3}

that connects r4 to r5. The desired Hamiltonian cycle of Qn −F for this case is obtained by attaching the
resulting paths to each other by means of the bridges {g4, r4}, {g5, r5}.

Case 4. The three green deleted vertices are on the bottom.
Use Lemma 4.4 to find a Hamiltonian path (g1, ξ) of Qbot

n − {r3} that connects g1 to g3 and such that
ξ = ηθ, with g1η = g2, and both η and θ have length at least four. Then use [2, 2, 0, 2] = 4 to produce a 2−path
covering of Qtop

n − {r1, r2} with paths (g1ϕ(η)v, µ), (g1η
′v, ν) connecting g1ϕ(η)v to g2ϕ(θ)v and g1η

′v to
g2θ

′v, respectively. The desired Hamiltonian cycle of Qn−F for this case is (g1ϕ(η), vµvθ
′∗vνRv(ηR)′∗).

Lemma 4.6. ([4, 0, 1, 0] = 5) Let n ≥ 5, r, r1, r2 be three distinct red vertices and g, g1, g2 be three distinct
green vertices in Qn. Then there exists a Hamiltonian path of Qn − {r1, r2, g1, g2} that connects r to g. The
claim is not true if n = 3 or n = 4.

Proof. Let r = (0, 1, 0, 0), r1 = (1, 0, 0, 0), r2 = (1, 1, 1, 0) and g = (1, 0, 0, 1), g1 = (1, 1, 1, 1), g2 = (0, 0, 1, 1)
be vertices in Q4. Then one can verify directly that a Hamiltonian path of Q4 −{r1, r2, g1, g2} connecting r
to g does not exist.

Let n ≥ 5. Choose two plates that separate the deleted red vertices and consider the six essentially
different cases depending on the distribution of the green deleted vertices and the terminals on the plates.
We can assume that r1 is the deleted red vertex on the top plate and r2 is the deleted red vertex on the
bottom plate.

Case A. The two deleted green vertices are on the top plate.
Subcase A1. The two terminals are on the top plate.
Use [2, 0, 1, 0] = 4 to produce a Hamiltonian path (r, ξ) of Qtop

n − {r1, g1} that connects r to g and let
ξ = µη, with rµ = g2. Use [1, 1, 0, 1] = 2 to produce a Hamiltonian path (rµ′v, θ) of Qbot

n −{r2} that connects
rµ′v to rµϕ(η)v. The desired Hamiltonian path of Qn − {r1, r2, g1, g2} for this case is (r, µ′vθvη∗).

Subcase A2. g is on the top plate and r is on the bottom plate.
Let r3 be a red vertex on the top plate at a distance at least three away from g2. Use [2, 0, 1, 0] = 4

to produce a Hamiltonian path (g, ξ) of Qtop
n − {r1, g1} that connects g to r3. Let ξ = µη, with gµ = g2

and η of length at least three. Use [1, 1, 1, 1] = 4 to produce a 2−path covering of Qbot
n − {r2} with paths

(gµ′v, θ), (r, ν) connecting gµ′v to gµϕ(η)v and r to r3v, respectively. The desired Hamiltonian path of
Qn − {r1, r2, g1, g2} for this case is (g, µ′vθvη∗vνR).

Subcase A3. r is on the top plate and g is on the bottom plate.
Let r3 be a red vertex on the top plate which is not adjacent to g. Use [3, 1, 0, 1] = 4 to produce a

Hamiltonian path (r, ξ) ofQtop
n −{r1, g1, g2} that connects r to r3. Use [1, 1, 0, 1] = 2 to produce a Hamiltonian

path (r3v, µ) of Qbot
n − {r2} connecting r3v to g. Then the desired Hamiltonian path of Qn − {r1, r2, g1, g2}

for this case is (r, ξvµ).
Subcase A4. r and g are both on the bottom plate.
Let r3 and r4 be two red vertices on the top plate such that r3v and r4v are different from g. Use

[3, 1, 0, 1] = 4 to produce a Hamiltonian path (r3, ξ) of Qtop
n − {r1, g1, g2} that connects r3 to r4. Use

[1, 1, 1, 1] = 4 to produce a 2−path covering of Qbot
n −{r2} with paths (r, η) and (r4v, µ) connecting r to r3v

and r4v to g, respectively. The desired Hamiltonian path of Qn − {r1, r2, g1, g2} for this case is (r, ηvξvµ).
Case B. Each plate contains one deleted green vertex. We can assume that g1 is on the top plate and g2

is on the bottom plate.
Subcase B1. The two terminals are on the top plate.
Use [2, 0, 1, 0] = 4 to produce a Hamiltonian path (r, ξ) of Qtop

n − {r1, g1} that connects r to g. Since
n − 1 ≥ 4 there exist words µ and η and a letter x such that ξ = µxη with neither rµv nor rµxv being
a deleted vertex. Use again [2, 0, 1, 0] = 4 to produce a Hamiltonian path (rµv, ζ) of Qbot

n − {r2, g2} that
connects rµv to rµxv. The desired Hamiltonian path of Qn − {r1, r2, g1, g2} for this case is (r, µvζvη).

Subcase B2. g is on the top plate and r is on the bottom plate.
Let r3 be any red vertex on the top plate such that r3v 6= g2. Use [2, 0, 1, 0] = 4 to produce a Hamiltonian

path (g, ξ) of Qtop
n − {r1, g1} connecting g to r3. Use again [2, 0, 1, 0] = 4 to produce a Hamiltonian path
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(r3v, η) of Qbot
n −{r2, g2} connecting r3v to r. The desired Hamiltonian path in Qn −{r1, r2, g1, g2} for this

case is (g, ξvη).

Lemma 4.7. ([0, 0, 3, 0] = 5) Let n ≥ 5, r1, r2, r3 be three distinct red vertices and g1, g2, g3 be three distinct
green vertices in Qn. Then there exists a 3−path covering of Qn with paths γi connecting ri to gi for i = 1, 2, 3.
The claim is not true if n = 3 or n = 4.

Proof. Let r1 = (0, 0, 0, 0), r2 = (0, 1, 0, 1), r3 = (0, 1, 1, 0), g1 = (0, 1, 1, 1), g2 = (0, 0, 1, 0), and g3 =
(0, 0, 0, 1) be vertices in Q4. Then it is not difficult to verify that a 3−path covering of Q4 with paths γi
connecting ri to gi for i = 1, 2, 3 does not exist (see also [10, Fig.1]).

Let n ≥ 5. Choose two plates to split the deleted red vertices such that r1 and r2 are on Qtop
n and r3 is

on Qbot
n . There are five substantially different cases depending on the distribution of the green terminals on

the plates.

Case 1. The three green terminals are on the top plate.
Use [0, 0, 2, 0] = 2 to produce a path covering (r1, ξ), (r2, η) of Qtop

n that connects r1 to g1 and r2 to g2.
Without loss of generality we may assume that g3 lies on the path between r2 and g2. Let η = µθ, where
r2µ = g3.

If g3v 6= r3 then use [0, 0, 0, 2] = 4 to produce a path covering (r2µ
′v, ν), (g3v, ζ) of Qbot

n that connects
r2µ

′v to g2(θ
R)′v and g3v to r3. The desired 3−path covering for this case is (r1, ξ), (r2, µ

′vνvθ∗), (r3, ζ
Rv).

If g3v = r3 then use [1, 1, 0, 1] = 2 to produce a Hamiltonian path (r2µ
′v, ν) of Qbot

n −{r3} that connects
r2µ

′v to g2(θ
R)′v. The desired 3−path covering for this case is (r1, ξ), (r2, µ

′vνvθ∗), (r3, r3v).
Case 2. Two green terminals are on the top plate and one is on the bottom plate.

If the green terminal on the bottom plate is g3 then use [0, 0, 2, 0] = 2 to produce a 2−path covering
of Qtop

n connecting r1 to g1 and r2 to g2 and use [0, 0, 1, 0] = 1 to produce a Hamiltonian path of Qbot
n

connecting r3 to g3.
Now, assume that g1 and g3 are on the top plate and g2 is on the bottom plate.

If r2v 6= g2 and g3v 6= r3 then use [2, 0, 1, 0] = 4 to find a Hamiltonian path (r1, ξ) of Qtop
n − {r2, g3}

connecting r1 to g1 and use [0, 0, 0, 2] = 4 to produce a 2−path covering (r2v, η), (r3, ζ) of Qbot
n that connects

r2v to g2 and r3 to g3v. The desired 3−path covering for this case is (r1, ξ), (r2, vη), (r3, ζv).
Let r2v 6= g2 and g3v = r3 (the case r2v = g2 and g3v 6= r3 is symmetrical). Use [2, 0, 1, 0] = 4 to

find a Hamiltonian path (r1, ξ) of Qtop
n − {r2, g3} connecting r1 to g1 and use [1, 1, 0, 1] = 2 to produce a

Hamiltonian path (r2v, η) of Qbot
n − {r3} that connects r2v to g2. The desired 3−path covering for this case

is (r1, ξ), (r2, vη), (r3, v).
Finally, let r2v = g2 and g3v = r3. Use [2, 0, 1, 0] = 4 to find a Hamiltonian path (r1, ξ) of Qtop

n −{r2, g3}
connecting r1 to g1. Clearly, the length of the path (r1, ξ) is more than 1. Use [2, 0, 1, 0] = 4 to find a
Hamiltonian path (r1v, η) of Q

bot
n −{r3, g2} connecting r1v to r1ϕ(ξ)v. The desired 3−path covering for this

case is (r1, vηvξ
∗), (r2, v), (r3, v).

Case 3. g3 is on the top plate and the other two green terminals are on the bottom plate.
If r3v = g3 then use [1, 1, 0, 1] = 2 to find a Hamiltonian path (r1, ξ) of Qtop

n − {g3} that connects r1 to
r2. Let ξ = µxη, with neither r1µv nor r1µxv being a prescribed end. On the bottom plate use [1, 1, 1, 1] = 4
to produce a 2−path covering (r1µv, θ), (r1µxv, ζ) of Qbot

n − {r3} connecting r1µv to g1 and r1µxv to g2,
respectively. The desired 3−path covering for this case is (r1, µvθ), (r2, η

Rvζ), (r3, v).
If r3v 6= g3 use Corollary 3.10 to produce a 2−path covering (g3, ξ) and (r1, η) of the top plate with the

first path connecting g3 to r3v and the second path of length at least 8 connecting r1 to r2. Let η = µxθ, with
neither r1µv nor r1µxv being a prescribed end. Use [1, 1, 1, 1] = 4 to produce a 2−path covering (r1µv, ν),
(r1µxv, ζ) of Qbot

n − {r3} connecting r1µv to g1 and r1µxv to g2, respectively. The desired 3−path covering
of Qn for this case is (r1, µvν), (r2, θ

Rvζ), (r3, vξ
R).

Case 4. Either g1 or g2 is on the top plate and the other two green terminals are on the bottom plate.
Without loss of generality we can assume that g1 is the green terminal on the top plate. Let g4 be any

green vertex on the top plate such that g4v is not a terminal vertex. Use [0, 0, 2, 0] = 2 to find a 2−path
covering (r1, ξ), (r2, η) of Qtop

n that connects r1 to g1 and r2 to g4, and a 2−path covering (r3, µ), (r2ηv, ν)
of Qbot

n that connects r3 to g3 and r2ηv to g2. The desired 3−path covering for this case is (r1, ξ), (r2, ηvν),
(r3, ν).

Case 5. All the green terminals are on the bottom plate.
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Let r4 = g1x be any vertex on the bottom plate adjacent to g1 and different from r3. Use [2, 0, 1, 0] = 4
to produce a Hamiltonian path (g2, ξ) of Qbot

n − {g1, r4} that connects g2 to r3. Let ξ = µη, with g2µ = g3.
Use [0, 0, 2, 0] = 2 to produce a 2−path covering (r4v, θ), (g2µ

′v, ζ) of Qtop
n connecting r4v to r1 and g2µ

′v
to r2, respectively. The desired 3−path covering of Qn for this case is (g1, xvθ), (g2, µ

′vζ), (g3, η).

5 Some general results

Let G be a graph and v be a vertex in G. We denote by N (v) the set of vertices adjacent to v in G. If A is a
subset of the set of vertices of G then the set N (A) =

⋃

v∈A N (v) is called the set of neighbors of A.
As usual, if X is a set, |X | denotes the cardinality of X.

Proposition 5.1. Let A ⊂ N (r) for some vertex r in Qn. Then |N (A)| = 1 + n|A| − |A|(|A|+1)
2 .

Proof. Obviously r ∈ N (A). Any pair of elements g1, g2 ∈ A has exactly two neighbors in common one of
which is the root r, and the other is different for different pairs. It follows that

|N (A)| = 1 + (n− 1) + (n− 2) + · · ·+ (n− |A|).

The following lemma is a particular case of an isoperimetric inequality for the hypercube. See [1, Theorem
7.3] for a more general statement and a discussion of several proofs available in the literature. Here we just
state and prove what we need in the sequel.

Lemma 5.2. Let k and n be positive integers such that 1 ≤ k ≤ n and let A be a set of green vertices in Qn

of cardinality k. Then

|N (A)| ≥ 1 + (n− 1) + · · ·+ (n− k) = 1 + kn−
k(k + 1)

2
,

with equality if and only if A ⊂ N (r) for some red vertex r.

Proof. The statement is obvious for all pairs k, n with 1 ≤ k ≤ 2 and k ≤ n. Let N be a positive integer
greater than 2 such that the statement is true for all pairs k, n with 1 ≤ k ≤ n and n < N. We shall prove
that the statement is also true for all pairs k,N with 1 ≤ k ≤ N.

We split QN into two plates such that 1 ≤ l = |A∩Qbot
N | ≤ m = |A∩Qtop

N | ≤ N − 1. Let Atop = A∩Qtop
N

and Abot = A ∩ Qbot
N . Each element of Atop has exactly one neighbor in Qbot

N . Therefore, by Proposition 5.1
and the induction hypothesis,

|N (Atop)| ≥ 1 + [(N − 1)− 1] + · · ·+ [(N − 1)−m] +m

= 1 + (N − 1) + · · ·+ (N −m),

with equality throughout if and only if there exists r ∈ Qtop
N such that Atop ⊂ N (r).

Similarly, let s be the number of elements of N (Abot) that are in the top plate but not in N (Atop). Then

|N (Abot) \ N (Atop)| ≥ −m+ 1+ [(N − 1)− 1] + · · ·+ [(N − 1)− l] + s

≥ [(N −m)− 1] + · · ·+ [(N −m)− l],

with equality throughout if and only if l = 1 and s = 0. It follows that |N (A)| ≥ 1 + N − 1 + · · · +N − k
with equality if and only if there exists a vertex r ∈ QN such that A ⊂ N (r).

Lemma 5.3. Let M,C,N,O be nonnegative integers with C,O, and M of the same parity, C ≤ M , O ≥ C,
and N ≥ 1. Let also k be a positive integer such that

kN + 1−

(

N + 1

2

)

>
M + C

2
+N +O. (1)

Then, k ∈ AM+1,C+1,N−1,O+1 implies k ∈ AM,C,N,O.
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Proof. Let k ∈ AM+1,C+1,N−1,O+1. This means that if n ≥ k then for every fault F of mass M + 1 and
charge C + 1 in Qn one can freely prescribe ends for a path covering of Qn − F with N − 1 neutral paths
and O+1 charged paths. Consider an arbitrary fault F of mass M and charge C in Qk, and a set E of pairs
of vertices that contains N neutral pairs and O charged pairs, and is in balance with F .

Without loss of generality we may assume that in F there are at least as many red vertices as there are
green vertices. It is easy to see that the number of the deleted green vertices is M−C

2 , and that the number

of paths with green terminals at both ends is O+C
2 . Thus, the quantity M+C

2 + N + O is the total number
of green vertices that are either deleted vertices or terminal vertices.

The number of red terminals in neutral pairs is obviously N. By Lemma 5.2 the number of green vertices
that are adjacent to at least one red terminal in a neutral pair is at least kN+1−

(

N+1
2

)

. Therefore, inequality
(1) guarantees the existence of a neutral pair (r, g) ∈ E and a green vertex g′ = rx that is neither a deleted
vertex nor a terminal vertex. The fault F ′ = F ∪ {r} has mass M + 1 and charge C + 1. The set of pairs of
vertices E ′ obtained from E by replacing the pair (r, g) with the pair (g′, g) is in balance with F ′ and contains
N − 1 neutral pairs and O + 1 charged pairs. Therefore, there exists an N + O−path covering of Qk − F
whose set of pairs of end vertices coincide with E ′. One of the paths in this covering is of the form (g, ξ) with
gξ = g′. If we replace this path with the path (g, ξx) that connects g to r we obtain an N +O−path covering
of Qk −F whose set of pairs of end vertices coincides with E . So, we proved that for every fault F of mass
M and charge C in Qk one can freely prescribe ends for a path covering of Qk−F with N neutral paths and
O charged paths. Finally, if n ≥ k then 1) nN +1−

(

N+1
2

)

> M+C
2 +N +O, and 2) n ∈ AM+1,C+1,N−1,O+1.

Therefore, the argument that we applied to k can be applied to n as well. This shows that if n ≥ k then for
every fault F of mass M and charge C in Qn one can freely prescribe ends for a path covering of Qn − F
with N neutral paths and O charged paths. Consequently k ∈ AM,C,N,O.

Lemma 5.4. Let M,C,N,O be nonnegative integers with C,O, and M of the same parity, C ≤ M , and
O > C. Let also k be a positive integer such that

k(O − C) + 1−

(

O − C + 1

2

)

>
M + C

2
+N +O. (2)

Then, k ∈ AM+1,C+1,N+1,O−1 implies k ∈ AM,C,N,O.

Proof. The proof is similar to the proof of Lemma 5.3. The only difference is that in (2), instead of N , we
use the number O − C that represents the number of red terminals in the charged paths.

Lemma 5.5. Let M,C,N,O be nonnegative integers with C,O, and M of the same parity, C ≤ M , O ≥ C,
and C ≥ 1. Let also k be a positive integer such that

k(O + C) + 1−

(

O + C + 1

2

)

>
M − C

2
+N +O. (3)

Then, k ∈ AM+1,C−1,N+1,O−1 implies k ∈ AM,C,N,O.

Proof. The proof is similar to the proof of Lemma 5.3. The difference is that in the left-hand side of (3),
instead of N , we use the number O+C that represents the number of green terminals in the charged paths
and the right-hand side part M−C

2 +N +O represents the number of red vertices that are either in F or are
terminals.

Lemma 5.6. [4, 2, 0, 2] = [3, 1, 1, 1] = 5 and [2, 0, 2, 0] = 4.

Proof. It follows from Lemma 5.3 that if 5 ∈ A4,2,0,2 then 5 is in A3,1,1,1 and in A2,0,2,0. Lemma A.1, proved
in Appendix A, states that we can freely prescribe two neutral pairs of terminals for a 2−path covering of
Q4 − F for any neutral fault of mass 2. Therefore, to prove the current lemma, it is sufficient to show that
5 ∈ A4,2,0,2, 4 6∈ A3,1,1,1 (and therefore, according to Lemma 5.3, 4 6∈ A4,2,0,2), and that 3 /∈ A2,0,2,0.

Here is a counterexample showing that 3 /∈ A2,0,2,0. Let n = 3, r1 = (1, 0, 0), g1 = (0, 1, 1), r2 = (0, 1, 0),
g2 = (1, 0, 1), and F = {(0, 0, 0), (1, 1, 1)}. Then, a 2−path covering of Q3 −F that connects r1 to g1 and r2
to g2 does not exist.

The following counterexample shows that 4 6∈ A3,1,1,1 (see also the discussion after Conjecture 6.4).
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Let n = 4, F = {(0, 0, 0, 0), (0, 1, 0, 1), (0, 1, 1, 1)}, r1 = (1, 1, 0, 0), g1 = (1, 0, 0, 0), g2 = (0, 0, 1, 0), and
g3 = (1, 1, 1, 0). Then, a 2−path covering of Q4 −F that connects r1 to g1 and g2 to g3 does not exist.

We now prove that 5 ∈ A4,2,0,2. Let n ≥ 5. We can assume that F = {r1, r2, r3, g} with r1, r2, r3 being
red and g being a green vertex. Let E = {(g1, g2), (g3, g4)} be the set of pairs of green end vertices. We are
looking for 2−path coverings of Qn −F with paths that connect g1 to g2 and g3 to g4. We split Qn into two
plates with two red vertices in the top plate, say r1 and r2, and r3 in the bottom plate. Then we consider
a group of cases when the green deleted vertex g is on the top plate and another group of cases when the
green deleted vertex is on the bottom plate. The cases within each group depend on the distribution of the
green terminals on the plates.

Case A. The green deleted vertex is on the top plate.
Subcase A1. All the green terminals are on the top plate.
Let (g1, ξ) be a Hamiltonian path on Qtop

n − {r1, r2, g} that connects g1 to g2. Such path exists since
[3, 1, 0, 1] = 4. Let ξ = ηθµ with g1η = g3 and g1ηθ = g4, where g3, g4 are renumbered, if necessary. Let
(g1ξ

′v, ζ) be a Hamiltonian path on Qbot
n − {r3} that connects g1ξ

′v to g2(µ
R)′v. Such path exists since

[1, 1, 0, 1] = 2. The desired 2−path covering of Qn −F for this case is (g1, ξ
′vζvµ∗), (g3, θ).

Subcase A2. g1, g2, g3 are on the top plate and g4 is on the bottom plate.
Let (g1, ξ) be a Hamiltonian path on Qtop

n − {r1, r2, g} that connects g1 to g3. Such path exists since
[3, 1, 0, 1] = 4. Let ξ = ηθ with g1η = g2. Let (g3(θ

R)′v, ζ) be a Hamiltonian path on Qbot
n − {r3} that

connects g3(θ
R)′v to g4. Such path exists since [1, 1, 0, 1] = 2. The desired 2−path covering of Qn − F for

this case is (g1, η), (g3, (θ
R)′vζ).

Subcase A3. g1, g2 are on the top plate and g3, g4 are on the bottom plate.
We simply connect g1 to g2 by a Hamiltonian path of Qtop

n − {r1, r2, g} and g3 to g4 by a Hamiltonian
path of Qbot

n − {r3}. That produces the desired 2−path covering of Qn −F for this case.
Subcase A4. g1, g3 are on the top plate and g2, g4 are on the bottom plate.
Let (g1, ξ) be a Hamiltonian path on Qtop

n − {r1, r2, g} that connects g1 to g3. Such path exists since
[3, 1, 0, 1] = 4. We can find words η, θ, and a letter x such that ξ = ηxθ, and neither g1ηv nor g1ηxv is a
deleted vertex or a terminal. Let (g1ηv, µ), (g1ηxv, ν) be a 2−path covering of Qbot

n − {r3} that connects
g1ηv to g2 and g1ηxv to g4. Such path covering exists since [1, 1, 1, 1] = 4. The desired 2−path covering of
Qn −F for this case is (g1, ηvµ), (g3, θ

Rvν).
Subcase A5. g1 is on the top plate and g2, g3, g4 are on the bottom plate.
Let r 6= r3 be a red vertex on the bottom plate such that rv 6= g1, g. Let (g2, η), (g3, θ) be a 2−path

covering of Qbot
n −{r3} that connects g2 to r and g3 to g4. Such path covering exists since [1, 1, 1, 1] = 4. Let

(g1, µ) be a Hamiltonian path of Qtop
n − {r1, r2, g} that connects g1 to rv. The desired 2−path covering of

Qn −F for this case is (g1, µvη
R), (g3, θ).

Subcase A6. All the green terminals are on the bottom plate.
First we assume that either g3 or g4 (or, equivalently, g1 or g2) is not adjacent to gv. Without loss

of generality we can assume that g3 is at distance at least three from gv and let x be a letter such that
g2xv 6= g. Let (g1, ξ) be a Hamiltonian path of Qbot

n − {r3, g2, g2x} that connects g1 to g4. Such path exists
since [3, 1, 0, 1] = 4. Then ξ = ηθ with g1η = g3. Observe that our assumption on g3 guarantees that
g1η

′v 6= g. Let (g1η
′v, ζ) be a Hamiltonian path on Qtop

n −{r1, r2, g} that connects g1η
′v to g2xv. Such path

exists since [3, 1, 0, 1] = 4. The desired 2−path covering of Qn −F for this case is (g1, η
′vζvx), (g3, θ).

Now let us assume that gv = r3 and all the vertices g1, g2, g3 and g4 are adjacent to gv. Then we
can use the same construction as in the previous case to find the desired 2−path covering. In this case the
requirement one of the green terminals to be at distance three from gv is not necessary since gv = r3.

Finally, let us assume that gv 6= r3 and g3 and g4 are adjacent to gv. This means that there exist letters
x, y such that g3x = g4y = gv. Let (g1, ξ) be a Hamiltonian cycle in Qbot

n − {r3, g3, g4, gv}. Such cycle exists
since [4] = 4. Then ξ = ηθ with g1η = g2. Let (g1η

′v, ζ) be a Hamiltonian path of Qtop
n − {r1, r2, g} that

connects g1η
′v to g1ξ

′v. Such path exists since [3, 1, 0, 1] = 4. The desired 2−path covering of Qn − F for
this case is (g1, η

′vζv(θ′)R), (g3, xy).
Case B. The green deleted vertex is on the bottom plate.
Subcase B1. All the green terminals are on the top plate.
Let (g1, ξ), (g3, η) be a 2−path covering of Qtop

n − {r1, r2} that connects g1 to g2 and g3 to g4. Such
path covering exists since [2, 2, 0, 2] = 4. Without loss of generality we can assume that the word ξ is not
shorter than the word η. Therefore, there exist words µ, ν and a letter x such that ξ = µxν with neither
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g1µv nor g1µxv being a deleted vertex. Let (g1µv, ζ) be a Hamiltonian path of Qbot
n − {r3, g} that connects

g1µv to g1µxv. Such path exists since [2, 0, 1, 0] = 4. The desired 2−path covering of Qn −F for this case is
(g1, µvζvν), (g3, η).

Subcase B2. g1, g2, g3 are on the top plate and g4 is on the bottom plate.

Let g5 be a green vertex on the top plate such that g5v is not a deleted vertex. Let (g1, ξ), (g3, η) be
a 2−path covering of Qtop

n − {r1, r2} that connects g1 to g2 and g3 to g5. Such path covering exists since
[2, 2, 0, 2] = 4. Let (g5v, ζ) be a Hamiltonian path of Qbot

n −{r3, g} that connects g5v to g4. Such path exists
since [2, 0, 1, 0] = 4. The desired 2−path covering of Qn −F for this case is (g1, ξ), (g3, ηvζ).

Subcase B3. g1, g2 are on the top plate and g3, g4 are on the bottom plate.

Since n ≥ 4 we can find words η, θ of length greater than three such that (g3, ηθ) is a Hamiltonian cycle of
Qbot

n −{r3, g} with g3η = g4 (Lemma 3.14). For at least one of the four pairs of green vertices (g3ϕ(η)v, g3η
′v),

(g3ϕ(η)v, g4ϕ(θ)v), (g3η
′v, g4θ

′v), (g4ϕ(θ)v, g4θ
′v) the two elements in the pair are not terminals on the top

plate.

Assume that neither g3ϕ(η)v nor g3η
′v is a terminal vertex. Let (g1, µ), (g2, ν) be a 2−path covering of

Qtop
n − {r1, r2} that connects g1 to g3ϕ(η)v and g2 to g3η

′v. Such path covering exists since [2, 2, 0, 2] = 4.
The desired 2−path covering of Qn −F for this case is (g1, µvη

′∗vνR), (g3, θ
R).

The case when neither g4ϕ(θ)v nor g4θ
′v is a terminal vertex is equivalent to the previous case.

Assume now that neither g3ϕ(η)v nor g4ϕ(θ)v is a terminal vertex. Let (g1, µ), (g4ϕ(θ)v, ν) be a 2−path
covering of Qtop

n − {r1, r2} that connects g1 to g2 and g4ϕ(θ)v to g3ϕ(η)v. Such path covering exists since
[2, 2, 0, 2] = 4. The desired 2−path covering of Qn −F for this case is (g1, µ), (g3, (θ

R)′vνvη∗).

The case when neither g3η
′v nor g4θ

′v is a terminal vertex is equivalent to the previous case.

Subcase B4. g1, g3 are on the top plate and g2, g4 are on the bottom plate.

Let x be a letter such that g2x 6= r3 and g2xv 6= g1, g3. Such letter exists since the dimension of the plates
is greater than or equal to 4. Let (g4, ξ) be a Hamiltonian cycle of Qbot

n − {r3, g, g2, g2x}. Such cycle exists
since [4] = 4. We can also assume that g4ξ

′v 6= g1 by replacing ξ with ξR, if necessary.

Assume that g4ξ
′v = g3. Let (g1, µ) be a Hamiltonian path of Qtop

n − {r1, r2, g3} that connects g1 to
g2xv. Such path exists since [3, 1, 0, 1] = 4. The desired 2−path covering of Qn −F for this case is (g1, µvx),
(g4, ξ

′v).

Finally, if g4ξ
′v 6= g3 we proceed as follows. Let (g1, µ), (g3, ν) be a 2−path covering of Qtop

n − {r1, r2}
that connects g1 to g2xv and g3 to g4ξ

′v. Such path covering exists since [2, 2, 0, 2] = 4. The desired 2−path
covering of Qn −F for this case is (g1, µvx), (g3, νv(ξ

′)R).

Subcase B5. g1 is on the top plate and g2, g3, g4 are on the bottom plate.

Let x be a letter different from v such that g2x 6= r3 and g2xv 6= g1. Let (g3, ξ) be a Hamiltonian cycle
of Qbot

n − {r3, g, g2, g2x} ([4] = 4). ξ = ηζ with g3η = g4. We can also assume, by renumbering the vertices
and/or reversing the cycle if necessary, that η has more than two letters and that g3η

′ 6= g1v.

If g3ϕ(η) is also different from g1v then let (g1, µ), (g3η
′v, ν) be a 2−path covering of Qtop

n − {r1, r2}
that connects g1 to g3ϕ(η)v, and g3η

′v to g2xv ([2, 2, 0, 2] = 4). The desired 2−path covering of Qn − F is
(g1, µv(η

∗)′vνvx), (g3, ζ
R).

If g3ϕ(η) = g1v then let (g3η
′v, µ) be a Hamiltonian path of Qtop

n − {r1, r2, g1} that connects g3η
′v to

g2xv ([3, 1, 0, 1] = 4). The desired 2−path covering of Qn −F is (g1, v(η
∗)′vµvx), (g3, ζ

R).

Subcase B6. All the green terminals are on the bottom plate.

Let (g1, ξ) be a Hamiltonian cycle of Qbot
n − {r3, g}. Such cycle exists for [2] = 3. Since the dimension of

the plates are greater than or equal to 4 we can also assume that the distance from g1 to g2 along the cycle
is at least 4 (Lemma 3.14). There are two essentially different distributions of the four green terminals along
the cycle. In the first case ξ = ηθζκ with g1η = g2, g2θ = g3, g3ζ = g4, where g3, g4 are to be renumbered, if
necessary. In the second case ξ = ηθζκ with g1η = g3, g3θ = g2, g2ζ = g4, where g3, g4 are to be renumbered,
if necessary.

In the first case we proceed as follows. Let (g1ϕ(η)v, µ), (g1η
′v, ν) be a 2−path covering of Qtop

n −{r1, r2}
that connects g1ϕ(η)v to g1(κ

R)′v and g1η
′v to g2θ

′v. Then the desired 2−path covering of Qn −F for this
case is (g1, (κ

R)′vµRvη′∗vνv(θ′)R), (g3, ζ).

In the second case we proceed as follows. Let (g1η
′v, µ), (g3θ

′v, ν) be a 2−path covering of Qtop
n −{r1, r2}

that connects g1η
′v to g2ζ

′v and g3θ
′v to g4κ

′v. Such path covering exists since [2, 2, 0, 2] = 4. The desired
2−path covering of Qn −F for this case is (g1, η

′vµv(ζ′)R), (g3, θ
′vνv(κ′)R).
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Lemma 5.7. [2, 0, 0, 2] = 5.

Proof. It follows from Lemma 5.4 that [2, 0, 0, 2] ≤ [3, 1, 1, 1] and since [3, 1, 1, 1] = 5 (Lemma 5.6) we have
[2, 0, 0, 2] ≤ 5. The following counterexample shows that [2, 0, 0, 2] ≥ 5.

Let r = (0, 1, 1, 0), r1 = (0, 0, 1, 1), r2 = (0, 1, 0, 1), g = (1, 1, 0, 1), g1 = (1, 0, 1, 1), g2 = (1, 1, 1, 0) be
vertices in Q4. Then it is not difficult to verify that a 2−path covering of Q4−{r, g} with path γ1 connecting
r1 to r2 and path γ2 connecting g1 to g2 does not exist.

Lemma 5.8. ([5, 1, 0, 1] = 5) Let n ≥ 5 and F = {r1, r2, r3, g1, g2} be a fault with three distinct red and two
distinct green vertices. If g3, g4 ∈ Qn − F are two distinct green vertices then there exists a Hamiltonian
path of Qn −F that connects g3 to g4. The claim is not true if n = 3 or n = 4.

Proof. It follows from Lemma 5.3 that if k ≥ 4 and k ∈ A5,1,0,1 then k is in A4,0,1,0 and since [4, 0, 1, 0] = 5
we have [5, 1, 0, 1] ≥ 5. We shall prove that [5, 1, 0, 1] = 5. Let n ≥ 5. Split Qn into two plates in a way that
two red vertices, say r1 and r2, are on the top plate and r3 is on the bottom plate. We shall consider all
essentially different cases depending on the distribution of the two green deleted vertices and the two green
terminals.

Case A. The two green deleted vertices are on the top plate.
Subcase A1. g3 and g4 are on the top plate.
Use [4] = 4 to find a Hamiltonian cycle (g3, ξ) of Qtop

n − {r1, r2, g1, g2}. Let ξ = ηθ, with g3η = g4. Use
[1, 1, 0, 1] = 2 to find a Hamiltonian path (g3η

′v, ζ) of Qbot
n − {r3} that connects g3η

′v to g3ξ
′v. The desired

Hamiltonian path of Qn −F for this case is (g3, η
′vζv(θ′)R).

Subcase A2. g3 is on the top plate and g4 is on the bottom plate.
Use [4] = 4 to find a Hamiltonian cycle (g3, ξ) of Qtop

n − {r1, r2, g1, g2}. Either g3ϕ(ξ) or g3ξ
′ is not

adjacent to g4. Assume, without loss of generality, that g3ξ
′ is not adjacent to g4. Use [1, 1, 0, 1] = 2 to

find a Hamiltonian path (g3ξ
′v, η) of Qbot

n − {r3} that connects g3ξ
′v to g4. The desired Hamiltonian path

of Qn −F for this case is (g3, ξ
′vη).

Subcase A3. g3 and g4 are on the bottom plate.
Use [4] = 4 to find a Hamiltonian cycle γ of Qtop

n − {r1, r2, g1, g2}. Let a, b be two consecutive vertices
along this cycle such that neither av nor bv is a deleted vertex or a terminal and let γ = (a, ξ), with aξ′ = b.
Use [1, 1, 1, 1] = 4 to find a 2−path covering (av, η), (bv, θ) of Qbot

n − {r3} that connects av to g3 and bv to
g4. The desired Hamiltonian path of Qn −F for this case is (g3, η

Rvξ′vθ).
Case B. g1 is on the top plate and g2 is on the bottom plate.
Subcase B1. g3 and g4 are on the top plate.
Use [3, 1, 0, 1] = 4 to find a Hamiltonian path (g1, ξ) of Qtop

n − {r1, r2, g1} that connects g3 to g4. Since
n ≥ 5 there exist words η, θ and a letter x such that ξ = ηxθ, and neither g3ηv nor g3ηxv is a deleted vertex.
Use [2, 0, 1, 0] = 4 to find a Hamiltonian path (g3ηv, ζ) of Qbot

n − {r3, g2} that connects g3ηv to g3ηxv. The
desired Hamiltonian path of Qn −F for this case is (g3, ηvζvθ).

Subcase B2. g3 is on the top plate and g4 is on the bottom plate.
Let g5 be a green vertex on the top plate such that neither g5 nor g5v is a deleted vertex or a terminal. Use

[3, 1, 0, 1] = 4 to find a Hamiltonian path (g3, ξ) of Qtop
n −{r1, r2, g1} that connects g3 to g5. Use [2, 0, 1, 0] = 4

to find a Hamiltonian path (g5v, η) of Qbot
n −{r3, g2} that connects g5v to g4. The desired Hamiltonian path

of Qn −F for this case is (g3, ξvη).
Subcase B3. g3 and g4 are on the bottom plate.
Let g5 and g6 be any two green vertices on the top plate different from g1 such that neither g5v nor g6v

is a deleted vertex (clearly they cannot be terminal vertices). Use [3, 1, 0, 1] = 4 to find a Hamiltonian path
(g5, ξ) of Q

top
n −{r1, r2, g1} that connects g5 to g6. Use [2, 0, 2, 0] = 4 to find a 2−path covering (g3, η), (g4, θ)

of Qbot
n − {r3, g2} that connects g3 to g5v and g4 to g6v. The desired Hamiltonian path of Qn − F for this

case is (g3, ηvξvθ
R).

Case C. The two green deleted vertices are on the bottom plate.
Subcase C1. g3 and g4 are on the top plate.
Let g5 and g6 be any two green vertices on the top plate different from g3 and g4 such that g5v 6= r3 and

g6v 6= r3. Use [2, 0, 2, 0] = 4 to find a 2−path covering (g3, ξ), (g4, η) of Qtop
n − {r1, r2} that connects g3 to

g5 and g4 to g6. Use [3, 1, 0, 1] = 4 to find a Hamiltonian path (g5v, ζ) of Qbot
n − {r3, g1, g2} that connects

g5v to g6v. The desired Hamiltonian path of Qn −F for this case is (g3, ξvζvη
R).
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Subcase C2. g3 is on the top plate and g4 is on the bottom plate.
Let r4 be a red vertex on the bottom plate such that neither r4 nor r4v is a deleted vertex or a terminal.

Use [4] = 4 to find a Hamiltonian cycle (g4, ξ) of Qbot
n − {r3, r4, g1, g2}. By replacing ξ with ξR, if necessary,

we can assume that g4ξ
′v 6= g3. Since the bottom plate is of dimension at least 4, there exists a letter y

such that g5 = r4y is neither a terminal nor a deleted vertex. Let ξ = ηθ with g4η = g5. Set g6 = g4η
′v

or g6 = g4ηϕ(θ)v, making sure that g6 6= g3. Use [2, 2, 0, 2] = 4 to find a 2−path covering (g3, µ), (g6, ν) of
Qtop

n − {r1, r2} that connects g3 to g4ξ
′v and g6 to r4v. The desired Hamiltonian path of Qn − F for this

case is (g4, η
′vνvyθ′vµR) if g6 = g4η

′v or (g4, ηyvν
Rvθ′∗vµR) if g6 = g4ηϕ(θ)v.

Subcase C3. g3 and g4 are on the bottom plate.
Let r4 and r5 be any two red vertices on the bottom plate that are not deleted vertices. Use [3, 1, 0, 1] = 4

to find a Hamiltonian path (r4, ξ) of Qbot
n −{r3, g1, g2} that connects r4 to r5 and let ξ = ηθµ, with r4η = g3

and r4ηθ = g4, where g3 and g4 should be renumbered, if necessary. If the length of η is at least three then
use [2, 2, 0, 2] = 4 to find a 2−path covering (r4η

′v, ν), (g3θ
′v, ζ) of Qtop

n −{r1, r2} that connects r4η
′v to r5v

and g3θ
′v to r4v. The desired Hamiltonian path of Qn −F for this case is (g3, θ

′vζvη′vνvµR).
The case when the length of µ is at least three is equivalent to the case when the length of η is at least

three.
If η and µ are both of length one then θ is of length greater than three. In this case use [2, 2, 0, 2] = 4 to

produce a 2−path covering (r4v, ν), (g3ϕ(θ)v, ζ) of Qtop
n −{r1, r2} that connects r4v to g3θ

′v and g3ϕ(θ)v to
r5v. The desired Hamiltonian path of Qn −F for this case is (g3, η

Rvνv(θ′∗)RvζvµR).

Lemma 5.9. ([3, 3, 0, 3] ≤ 6) Let n ≥ 6 and F = {r1, r2, r3} be a fault in Qn with three distinct red vertices.
If g1, g2, g3, g4, g5, g6 are six distinct green vertices in Qn−F then there exists a 3−path covering of Qn−F
that connects g1 to g2, g3 to g4, and g5 to g6.

Proof. Split Qn into two plates with two red vertices, say r1 and r2, on the top plate, and r3 on the bottom
plate. We consider several cases that depend on the distribution of the green terminals on the plates.

Case 1. All the green terminals are on the top plate.
Without loss of generality we can assume that g6v 6= r3. Let x be a letter such that g5x is not a deleted

vertex. Let (g1, ξ), (g3, η) be a 2−path covering of Qtop
n −{r1, r2, g5, g5x} that connects g1 to g2 and g3 to g4.

Such path covering exists since [4, 2, 0, 2] = 5. Without loss of generality we can assume that g6 lies on the
path from g3 to g4. Let η = θζ with g3θ = g6 and let (g5xv, µ), (g3θ

′v, ν) be a 2−path covering of Qbot
n −{r3}

that connects g5xv to g6v and g3θ
′v to g6ϕ(ζ)v. Such path covering exists since [1, 1, 1, 1] = 4. The desired

3−path covering of Qn −F for this case is (g1, ξ), (g3, θ
′vνvζ∗), (g5, xvµv).

Case 2. g1, g2, g3, g4, g5 are on the top plate and g6 is on the bottom plate.
Let x be a letter such that g5x is not a deleted vertex and g5xv 6= g6. Let (g1, ξ), (g3, η) be a 2−path

covering of Qtop
n − {r1, r2, g5, g5x} that connects g1 to g2 and g3 to g4. Such path covering exists since

[4, 2, 0, 2] = 5. Let (g5xv, µ) be a Hamiltonian path of Qbot
n −{r3} that connects g5xv to g6. Such path exists

since [1, 1, 0, 1] = 2. The desired 3−path covering of Qn −F for this case is (g1, ξ), (g3, η), (g5, xvµ).
Case 3. g1, g2, g3, g4, are on the top plate and g5, g6 are on the bottom plate.
Here we simply connect g1 to g2 and g3 to g4 by a 2−path covering of Qtop

n − {r1, r2} and g5 to g6 by a
Hamiltonian path of Qbot

n − {r3}. That produces the desired 3−path covering of Qn −F for this case.
Case 4. g1, g2, g3, g5 are on the top plate and g4, g6 are on the bottom plate.
Let x be a letter such that g3xv 6= g4, g6, and let g be any green vertex on the top plate such that

gv 6= r3. Let (g1, ξ), (g5, η) be a 2−path covering of Qtop
n − {r1, r2, g3, g3x} that connects g1 to g2 and g5 to

g. Such path covering exists since [4, 2, 0, 2] = 5. Let (g3xv, µ), (gv, ν) be a 2−path covering of Qbot
n − {r3}

that connects g3xv to g4 and gv to g6. Such path covering exists since [1, 1, 1, 1] = 4. The desired 3−path
covering of Qn −F for this case is (g1, ξ), (g3, xvµ), (g5, ηvν).

Case 5. g1, g2, g3, are on the top plate and g4, g5, g6 are on the bottom plate.
Let g be a green vertex on the top plate such that gv 6= r3. Let (g1, ξ), (g3, η) be a 2−path covering

of Qtop
n − {r1, r2} that connects g1 to g2 and g3 to g. Such path covering exists since [2, 2, 0, 2] = 4. Let

(gv, µ), (g5, ν) be a 2−path covering of Qbot
n − {r3} that connects gv to g4 and g5 to g6. Such path covering

exists since [1, 1, 1, 1] = 4. The desired 3−path covering of Qn −F for this case is (g1, ξ), (g3, ηvµ), (g5, ν).
Case 6. g1, g3, g5 are on the top plate and g2, g4, g6 are on the bottom plate.
Without loss of generality we can assume that g5v 6= r3. Since g1 and g3 together have at least eight

neighbors in Qtop
n (Lemma 5.2) and there are only two deleted red vertices on the top plate and three green
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terminals on the bottom plate, we can also assume, renumbering g1 and g3, if necessary, that there is a
letter x such that g3xv is not a terminal and g3x is not a deleted vertex. Finally, let y be a letter such that
g2y 6= r3 and g2yv is not a terminal. Let (g1, η) be a Hamiltonian path of Qtop

n − {r1, r2, g3, g3x, g5} that
connects g1 to g2yv. Such path exists since [5, 1, 0, 1] = 5. Let (g3xv, θ), (g5v, ζ) be a 2−path covering of
Qbot

n −{r3, g2, g2y} that connects g3xv to g4 and g5v to g6. Such path exists since [3, 1, 1, 1] = 5. The desired
3−path covering of Qn − {r1, r2, r3} for this case is (g1, ηvy), (g3, xvθ), (g5, vζ).

Case 7. g1, g2 are on the top plate and g3, g4, g5, g6 are on the bottom plate.
Let x, y be letters such that neither g5xv nor g6yv is a terminal vertex. Let (g1, ξ), (g5xv, η) be a

2−path covering of Qtop
n − {r1, r2} that connects g1 to g2 and g5xv to g6yv ([2, 2, 0, 2] = 4). Let (g3, µ) be a

Hamiltonian path of Qbot
n −{r3, g5, g5x, g6, g6y} that connects g3 to g4. Such path exists since [5, 1, 0, 1] = 5.

The desired 3−path covering of Qn − {r1, r2, r3} for this case is (g1, ξ), (g3, µ), (g5, xvηvy).
Case 8. g1, g3 are on the top plate and g2, g4, g5, g6 are on the bottom plate.
Let x be a letter such that g4x 6= r3 and g4xv is not a terminal, and let g be any green vertex on the

top plate such that gv 6= r3. Let (g1, ξ), (g3, η) be a 2−path covering of Qtop
n − {r1, r2} that connects g1

to g and g3 to g4xv ([2, 2, 0, 2] = 4). Let (gv, µ), (g5, ν) be a 2−path covering of Qbot
n − {r3, g4, g4x} that

connects gv to g2 and g5 to g6. Such path covering exists since [3, 1, 1, 1] = 5. The desired 3−path covering
of Qn − {r1, r2, r3} for this case is (g1, ξvµ), (g3, ηvx), (g5, ν).

Case 9. g1 is on the top plate and g2, g3, g4, g5, g6 are on the bottom plate.
Assume that there exists a letter x such that g2x = g1v 6= r3. Let (g3, ξ), (g5, η) be any 2−path covering

of Qbot
n −{r3, g2x} that connects g3 to g4 and g5 to g6. Such path covering exists since [2, 2, 0, 2] = 4. Without

loss of generality we can assume that g2 lies on the path connecting g3 to g4. Let ξ = µν with g3µ = g2 and
let (g3µ

′v, ζ) be a Hamiltonian path of Qtop
n − {r1, r2, g1} that connects g3µ

′v to g2ϕ(ν)v ([3, 1, 0, 1] = 4).
The desired 3−path covering of Qn − {r1, r2, r3} for this case is (g1, vx), (g3, µ

′vζvν∗), (g5, η).
If g1v = r3 or if the distance from g1 to g2 is greater than 2 we let x be any letter such that g2x 6= r3. Let

(g3, ξ), (g5, η) be any 2−path covering of Qbot
n − {r3, g2x} that connects g3 to g4 and g5 to g6 ([2, 2, 0, 2] =

4). Without loss of generality we can assume that g2 lies on the path connecting g3 to g4. Let ξ = µν
with g3µ = g2 and let (g1, θ), (g3µ

′v, ζ) be a 2−path covering of Qtop
n − {r1, r2} that connects g1 to g2xv

and g3µ
′v to g2ϕ(ν)v ([2, 2, 0, 2] = 4). The desired 3−path covering of Qn − {r1, r2, r3} for this case is

(g1, θvx), (g3, µ
′vζvν∗), (g5, η).

Case 10. All the green terminals are on the bottom plate.
Let x and y be any letters different from v. Let (g1, ξ) be a Hamiltonian path of Qbot

n −{r3, g5, g5x, g6, g6y}
that connects g1 to g2. Such path exists since [5, 1, 0, 1] = 5. We can assume that ξ = ηθζ with g3 =
g1η, g4 = g3θ, by renumbering g3 and g4, if necessary. Let (g5xv, µ), (g1, η

′v, ν) be a 2−path covering of
Qtop

n − {r1, r2} that connects g5xv to g6yv and g1η
′v to g4ϕ(ζ)v ([2, 2, 0, 2] = 4). The desired 3−path

covering of Qn − {r1, r2, r3} for this case is (g1, η
′vνvζ∗), (g3, θ), (g5, xvµvy).

The following corollary follows directly from Lemma 4.7, Lemma 5.9, and Lemma 5.3.

Corollary 5.10. 5 = [0, 0, 3, 0] ≤ [1, 1, 2, 1] ≤ [2, 2, 1, 2] ≤ 6.

Corollary 5.11. [0, 0, 1, 2] ≤ 6, 5 ≤ [1, 1, 0, 3] ≤ 6, and [5, 1, 1, 1] ≥ 5.1

Proof. The upper bounds of the first two inequalities follow directly from Corollary 5.10 and Lemma 5.4.
The last inequality follows from Lemma 5.5 and the fact that [4, 2, 0, 2] = 5 (Lemma 5.6). The following
counterexample shows that [1, 1, 0, 3] ≥ 5.

Let n = 4 and r = (0, 1, 1, 0). Let also r1 = (0, 0, 1, 1), r2 = (0, 1, 0, 1), g1 = (1, 0, 1, 1), g2 = (1, 1, 1, 0),
g3 = (1, 1, 0, 1), and g4 = (1, 0, 0, 0) be vertices in Q4 − {r}. Then one can directly verify that a 3−path
covering of Q4 − {r} with paths connecting r1 to r2, g1 to g2, and g3 to g4 does not exist.

Lemma 5.12. ([8] = 6) Let n ≥ 6 and F be any neutral fault of mass eight in Qn. Then Qn − F is
Hamiltonian.

Proof. Let n ≥ 6. We split Qn into two plates so that each plate has at least one red deleted vertex. There
are two general cases: Case A – there are two red deleted vertices on each plate and Case B – there are

1While this paper was under review the authors were able to prove that [0, 0, 1, 2] = 4 ([4]), [1, 1, 0, 3] = 5, [1, 1, 2, 1] = 5
([6]), [4, 0, 2, 0] = 5 and [7, 1, 0, 1] = 6 ([5]).
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three red deleted vertices on the top plate and one red deleted vertex on the bottom plate. Within each
general case there are subcases that depend on the distribution of the green deleted vertices on the plates.

Let the fault be F = {r1, r2, r3, r4, g1, g2, g3, g4} with the ri red and the gi green.

Case A. r1, r2 are on the top plate and r3, r4 are on the bottom plate.

Subcase A1. All the green deleted vertices are on the top plate.

Let (g1, ξ), (g2, η) be a 2−path covering of Qtop
n −{r1, r2} that connects g1 to g3 and g2 to g4. Such path

covering exists since [2, 2, 0, 2] = 4. Let (g1ξ
′v, µ), (g1ϕ(ξ)v, ν) be a 2−path covering of Qbot

n − {r3, r4} that
connects g1ξ

′v to g2η
′v and g1ϕ(ξ)v to g2ϕ(η)v. Such path covering exists since [2, 2, 0, 2] = 4. The desired

Hamiltonian cycle for this case is (g1ϕ(ξ), ξ
′∗vµv(η′∗)RvνRv).

Subcase A2. g1, g2, g3 are on the top plate and g4 is on the bottom plate.

Let r5, r6 be any two non-deleted red vertices on the top plate such that neither r5v nor r6v is a deleted
vertex. Let (r5, ξ) be a Hamiltonian path of Qtop

n −{r1, r2, g1, g2, g3} that connects r5 to r6. Such path exists
since [5, 1, 0, 1] = 5. Let (r6v, η) be a Hamiltonian path of Qbot

n − {r3, r4, g4} that connects r6v to r5v. Such
path exists since [3, 1, 0, 1] = 4. The desired Hamiltonian cycle for this case is (r5, ξvηv).

Subcase A3. g1, g2 are on the top plate and g3, g4 are on the bottom plate.

Let r, g be a red and a green non-deleted vertices on the top plate such that neither rv nor gv is a deleted
vertex. Let (r, ξ) be a Hamiltonian path of Qtop

n −{r1, r2, g1, g2} that connects r to g. Such path exists since
[4, 0, 1, 0] = 5. Let (gv, η) be a Hamiltonian path of Qbot

n − {r3, r4, g3, g4} that connects gv to rv. Such path
exists since The desired Hamiltonian cycle for this case is (r, ξvηv).

Case B. r1, r2, r3 are on the top plate and r4 is on the bottom plate.

Subcase B1. All the green deleted vertices are on the top plate.

Let (g1, ξ) be a Hamiltonian path for Qtop
n − {r1, r2, r3, g3, g4} that connects g1 to g2. Such path exists

since [5, 1, 0, 1] = 5. Let (g1ξ
′v, η) be a Hamiltonian path of Qbot

n −{r4} that connects g1ξ
′v to g1ϕ(ξ)v. Such

path exists since [1, 1, 0, 1] = 2. The desired Hamiltonian cycle for this case is (g1ϕ(ξ), ξ
′∗vηv).

Subcase B2. g1, g2, g3 are on the top plate and g4 is on the bottom plate.

Let γ be any Hamiltonian cycle of Qtop
n − {r1, r2, r3, g1, g2, g3}. Such cycle exists since [6] = 5. We can

find a vertex g on this cycle such that γ = (g, ξ) with neither gv nor gξ′v being a deleted vertex. Let (gξ′v, η)
be a Hamiltonian path of Qbot

n − {r4, g4} that connects gξ′v to gv. The desired Hamiltonian cycle for this
case is (g, ξ′vηv).

Subcase B3. g1 is on the top plate and g2, g3, g4 are on the bottom plate.

Let g5, g6, g7, g8 be any green non-deleted vertices on the top plate such that none of g5v, g6v, g7v, g8v
is a deleted vertex. Let (g5, ξ), (g7, η) be a 2−path covering of Qtop

n − {r1, r2, r3, g1} that connects g5 to g6
and g7 to g8. Such path covering exists since [4, 2, 0, 2] = 5. Let (g6v, µ), (g8, ν) be a 2−path covering of
Qbot

n −{r4, g2, g3, g4} that connects g6v to g7v and g8v to g5v. Such path covering exists since [4, 2, 0, 2] = 5.
The desired Hamiltonian cycle for this case is (g5, ξvµvηvνv).

Subcase B4. g1, g2 are on the top plate and g3, g4 are on the bottom plate.

This case is equivalent to Subcase A2.

Subcase B5. All the green deleted vertices are on the bottom plate.

This case can be avoided if n = 6. Indeed, if the four deleted red vertices are contained in a three
dimensional subcube of Q6 then we can split Q6 into two plates with 2 deleted red vertices on each plate.
If the four deleted red verctices are not contained in any three dimensional subcube of Q6 then there are at
least 4 coordinates that split the red vertices. At least one of these coordinates must split the green deleted
vertices as well, for otherwise the 4 green deleted vertices would have to be contained in a two dimensional
subcube which is impossible. Therefore, for this case we assume that n ≥ 7.

Let (g1, ξ) be a Hamiltonian path ofQbot
n −{r4} that connects g1 to g4. Such path exists since [1, 1, 0, 1] = 2.

It follows from Lemma 4.4, renumbering g2 and g3, if necessary, that ξ = ηθζ with g1η = g2, g2θ = g3,
g3ζ = g4 and the words η, θ, and ζ each of length at least 4. Let (g1ϕ(η)v, κ), (g3ϕ(ζ)v, µ), and (g2ϕ(θ)v, ν)
be a 3−path covering of Qtop

n − {r1, r2, r3} that connects g1ϕ(η)v to g1ξ
′v, g3ϕ(ζ)v to g2θ

′v, and g2ϕ(θ)v to
g1η

′v. The existence of such path covering follows from Lemma 5.9. The desired Hamiltonian cycle for this
case is (g1ϕ(η), vκv(ζ

′∗)Rvµv(θ′∗)Rvνv(η′∗)R.
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6 Concluding Remarks and Conjectures

We have found several values of [M,C,N,O] when the parameters involved are relatively small. Unfortu-
nately, as the parameters increase the number of cases to be considered in the proofs becomes extremely
large. We hope that further analysis and improvement of our proofs will lead to substantial simplifications.
Our results support the following conjectures:

Conjecture 6.1 (Locke [15]). Let k ≥ 0. Then [2k] = k + 2.

We have already discussed that [2k] ≥ k+2. And after this paper we know that the conjecture is true for
0 ≤ k ≤ 4. The proof of this conjecture for k ≥ 5, which depends on the proof of Conjecture 6.2, is contained
in [3].

Conjecture 6.2. Let k ≥ 1. Then [2k + 1, 1, 0, 1] = k + 3.

In this article we have proved that this conjecture is true for k = 1 and k = 2 and the proof for the case
k = 3 is contained in [5]. The proof of this conjecture for k ≥ 4, which depends on the proof of Conjecture
6.1, is contained in [7]. Here we can show that [2k+1, 1, 0, 1] ≥ k+3. Indeed, let r be any red vertex in Qk+2

and F be a fault of mass 2k+1 that contains any k+1 red vertices different from r and all the green vertices
adjacent to r except two vertices g1 and g2. Then, obviously, the only path in Qk+2 −F that connects g1 to
g2 and visits r is of length 3 and cannot be a Hamiltonian path of Qk+2 −F if k ≥ 1.

The following conjecture is a direct corollary of Conjecture 6.2.

Conjecture 6.3. Let k ≥ 1. Then [2k, 0, 1, 0] = k + 3.

In this article we have proved this conjecture for k = 1 and k = 2. Let us prove that [2k, 0, 1, 0] ≥ k + 3.
Let x1, x2, . . . , xk+2 be the standard generators of Zk+2

2 . We select any red vertex r in Qk+2 and set

F = {rx1, rx2, . . . , rxk, rxk+2x1, rxk+2x2, . . . , rxk+2xk}.

Then the only path that connects rxk+1 to rxk+1xk+2 and visits r is of length 3 and cannot be a Hamiltonian
path of Qk+2 −F if k ≥ 1.

Conjecture 6.4. Let k ≥ 0. Then [2k + 1, 1, 1, 1] = k + 4.

In this article we have proved this conjecture for k = 0, 1. Let us prove that [2k + 1, 1, 1, 1] ≥ k + 4.
Let {x1, x2, . . . , xk+3} be the standard generators of Zk+3

2 . We select any red vertex r in Qk+3 and set

F = {rx1, rx2, . . . , rxk, rxk+3x1, rxk+3x2, . . . , rxk+3xk+1}.

Then there does not exist a 2−path covering of Qk+3 −F that connects rxk+1 to rxk+2 and rxk+2xk+3 to
any green vertex g /∈ F for r and rxk+3 are blocked between all deleted and terminal vertices.

Even though our main focus in this article is the production of path coverings with prescribed ends for
the hypercube with or without deleted vertices, we occasionally have considered the more general problem
of prescribing ends and edges. The following conjecture is related to this problem.

Conjecture 6.5. Let k ≥ 0 and n ≥ k+4. Let also F be any fault in Qn with k+1 red vertices and k green
vertices, g1 and g2 be two green vertices in Qn − F , and e = {a, b} be any edge different from {g1, g2} and
not incident to any of the vertices of F . Then there exists a Hamiltonian path of Qn −F that connects g1 to
g2 and passes through the edge e.

In this article we have proved this conjecture for k = 0. To see that n ≥ k + 4, assume that n = k + 3,
and let r and F be selected as in the discussion of Conjecture 6.4. Let g1 = rxk+1, g2 = rxk+2, and
e = {g2, rxk+3xk+2}. Then the only path in Qn − F that connects g1 to g2, passes through e, and visits
rxk+3 is g2, rxk+3xk+2, rxk+3 , r, g1 which obviously is not a Hamiltonian path of Qk+3 −F .

Finally, we point out that in [2] we use results from this article to obtain the following generalization of
a theorem of Fu [11]:

Theorem 6.6 ([2]). Let f and n be integers with n ≥ 5 and 0 ≤ f ≤ 3n− 7. Then for any set of vertices F
of cardinality f in Qn there exists a cycle in Qn −F of length at least 2n − 2f.
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A 2−path coverings of Q4

When a neutral pair is deleted from Q4 one can still freely prescribe the ends for a 2−path covering of the
resulting graph. In spite the fact that the dimension is so low we find it difficult to verify this statement by
inspection. Therefore, we provide a proof below for the benefit of the reader.

Lemma A.1. Let F = {r, g} be a neutral fault in Q4, and r1, r2, g1, g2 be two red and two green vertices
in Q4 −F . Then there exists a 2−path covering of Q4 −F with one path connecting r1 to g1 and the other
connecting r2 to g2.
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Proof. The deleted vertices r and g have opposite parity and belong to Q4. Therefore we can split Q4 in
such way that both vertices belong to the same plate, say Qtop

4 . We consider all essentially different cases
that depend on the distribution of the vertices r1, r2, g1, g2 between the plates.

Case 1. r1, r2, g1, g2 ∈ Qtop
4 .

Subcase 1(a). Let {r1, g1}, {r2, g2} ∈ B{r,g}. Then there exists a one-letter word x such that (r1, x), (g1, x)

is a 2−path covering of Qtop
4 −{r, g, r2, g2}. Let (r1xv, µ), (r2v, ν) be a 2−path covering of Qbot

4 that connects
r1xv to g1xv, and r2v to g2v. Such path covering exists since [0, 0, 2, 0] = 2. The desired 2−path covering of
Q4 − {r, g} is (r1, xvµvx), (r2, vνv).

Subcase 1(b). If either {r1, g1} or {r2, g2} is not in B{r,g} we can assume without loss of generality that

{r1, g1} 6∈ B{r,g}. Then, according to Lemma 3.5(1), there exists a Hamiltonian path (r1, ξ) of Q
top
4 − {r, g}

that connects r1 to g1. Let ξ = ηθζ with (r1η, r1ηθ) equals (r2, g2) or (g2, r2). Let also (r1η
′v, µ) be a

Hamiltonian path of Qbot
4 that connects r1η

′v to g1(ζ
R)′v. The desired 2−path covering of Q4 − {r, g} is

(r1, η
′vµvζ∗), (r1η, θ).

Case 2. r1, r2, g1 are on the top plate and g2 is on the bottom plate.

Subcase 2(a). If {g1, r2} 6∈ B{r,g} then, according to Lemma 3.5(1), there exists a Hamiltonian path

(g1, ω) of Q
top
4 − F that connects g1 to r2. Let ω = ξη with g1ξ = r1 and let (r1ϕ(η)v, θ) be a Hamiltonian

path of Qbot
4 that connects r1ϕ(η)v to g2. The desired 2−path covering of Q4 − {r, g} is (g1, ξ), (g2, θ

Rvη∗).

Subcase 2(b). If {g1, r2} ∈ B{r,g} then {g1, r1} 6∈ B{r,g} and there exists a Hamiltonian path (g1, ω) of
Q4 − F that connects g1 to r1. Let ω = ξη with g1ξ = r2. We have to consider two sub-subcases:

(i) g2v = r1 or g2v = r2.

We observe that the lengths of ξ and η are 1 and 4 or 3 and 2.

If ξ is the longer word, then we use [0, 0, 2, 0] = 2 to produce a 2−path covering (g1ξ
′v, µ), (g1ξ

′′v, ν)
of Qbot

4 that connects g1ξ
′v to g2 and g1ξ

′′v to r2ϕ(η)v. The desired 2−path covering of Q4 − {r, g} is
(g1, ξ

′′vνvη∗), (g2, µ
Rvϕ(ξR)).

If η is the longer word, then we use [0, 0, 2, 0] = 2 to produce a 2−path covering (g1ξ
′v, µ), (r2ϕ(η)v, ν)

of Qbot
4 that connects g1ξ

′v to r1(η
R)′′v and r2ϕ(η)v to g2. The desired 2−path covering of Q4 − {r, g} is

(g1, ξ
′vµvη∗∗), (r2, ϕ(η)vν).

(ii) g2v is an interior vertex of the path (g1, ω).

If ξ = θζ with g1θ = g2v then we use [1, 1, 0, 1] = 2 to produce a Hamiltonian path (g1θ
′v, µ) ofQtop

4 −{g2}
that connects g1θ

′v to r2ϕ(η)v. The desired 2−path covering of Q4 − {r, g} is (g1, θ
′vµvη∗), (r2, ζ

Rv).

If η = θζ with r2θ = g2v then we use [1, 1, 0, 1] = 2 to produce a Hamiltonian path (g1ξ
′v, µ) ofQtop

4 −{g2}
that connects g1ξ

′v to r1(ζ
R)′v. The desired 2−path covering of Q4 − {r, g} is (g1, ξ

′vµvζ∗), (r2, θv).

Case 3. r1, r2 ∈ Qtop
4 and g1, g2 ∈ Qbot

4 .

Find a Hamiltonian path of Qtop
4 − {g} that connects r1 to r2. The vertex r belongs to that path. Cut

that path just before r and right after r and connect these two vertices with bridges to the bottom plate.
Let r3 and r4 be the ends of these bridges that belong to the bottom plate. Then use [0, 0, 2, 0] = 2 to find
a 2−path covering of the bottom plate that connects r3 and r4 to the appropriate vertices g1 and g2.

Case 4. r1, g1 ∈ Qtop
4 and r2, g2 ∈ Qbot

4 .

Consider Qtop
4 . It is not difficult to verify that either there is a Hamiltonian path for Qtop

4 − {r, g} that
connects r1 to g1 or there is a path with length 3 connecting r1 to g1 such that exactly one edge remains
not covered. In the first case use [0, 0, 1, 0] = 1 to find a Hamiltonian path for Qbot

4 connecting r2 to g2. In
the second case denote by r3 and g3 the vertices in the bottom plate that are neighbors of the vertices in
Qtop

4 that are not covered. Use Corollary 3.2 to find a Hamiltonian path for Qbot
4 that connects r2 to g2 and

passes trough the edge {r3, g3}. Cut that path at that edge and using two bridges connect both pieces to
the non-covered edge from the top plate.

Case 5. r1, g2 ∈ Qtop
4 and r2, g1 ∈ Qbot

4 .

We consider two subcases:

Subcase 5(a). Assume that {r1, g2} 6∈ B{r,g}. Then there is a Hamiltonian path (r1, ξ) of Qtop
4 − {r, g}

that connects r1 to g2. There are three sub-subcases that depend on whether or not r2 or g1 are adjacent to
vertices inside of the path (r1, ξ).

(i) Assume that ξ = ηθ with r1ηv = g1. Let (r1ηϕ(θ)v, µ) be a Hamiltonian path of Qbot
4 − {g1} that

connects r1ηϕ(θ)v to r2. The desired 2−path covering of Q4 −F for this case is (r1, ηv), (r2, µ
Rvθ∗).
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(ii) Assume that ξ = ηθ with g2θ
Rv = r2. Let (r1η

′v, µ) be a Hamiltonian path of Qbot
4 − {r2} that

connects r1η
′v to g1. The desired 2−path covering of Q4 −F for this case is (r1, η

′vµ), (r2, vθ).
(iii) Finally, let neither r2 nor g1 be adjacent to a vertex in the path (r1, ξ). Let ξ = xyη for some letters

x, y, and a word η. Then there is a 2−path covering (r1xv, µ), (r1xyv, ν) of Qbot
4 that connects r1xv to g1

and r1xyv to r2. The desired 2−path covering of Q4 −F for this case is (r1, xvµ), (r2, ν
Rvη).

Subcase 5(b). Let {r1, g2} ∈ B{r,g}. Then, according to Lemma 3.5, there exist two distinct 2−path

coverings of Qtop
4 − {r, g} with paths of length 2, one starting at r1 and the other starting at g2. We can

choose a 2−path covering of Qtop
4 − {r, g} to be (r1, ξ), (g2, η), with r1ξv 6= g1 or g2ηv 6= r2. There are three

sub-subcases:
(i) Let r1ξv 6= g1 and g2ηv 6= r2. Let (r1ξv, µ), (g2ηv, ν) be a 2−path covering of Qbot

4 that connects r1ξv
to g1 and g2ηv to r2. The desired 2−path covering of Q4 −F for this case is (r1, ξvµ), (g2, ηvν).

(ii) Let r1ξv 6= g1 and g2ηv = r2. Let (r1ξv, µ) be a Hamiltonian path of Qbot
4 − {r2} that connects r1ξv

to g1. The desired 2−path covering of Q4 −F for this case is (r1, ξvµ), (g2, ηv).
(iii) Let r1ξv = g1 and g2ηv 6= r2. This case is completely symmetrical to case (ii).
Case 6. r1 ∈ Qtop

4 and r2, g1, g2 ∈ Qbot
4 .

Use Lemma 3.4 to find a Hamiltonian path of Qtop
4 − {g} that connects r to r1 and such that the vertex

g3 which is next to r in this path is not adjacent to r2. Let the second end of the bridge that begins at g3
be r3. Use [0, 0, 2, 0] = 2 to find a 2−path covering of the bottom plate that connects r3 to g1 and r2 to g2.

Case 7. r1, r2, g1, g2 ∈ Qbot
4 .

Use [0, 0, 2, 0] = 2 to find a 2−path covering of Qbot
4 that connects r1 to g1 and r2 to g2. Then find an

edge that belongs to one of the two paths whose neighbors r3 and g3 in Qtop
4 are not deleted vertices and also

{r3, g3} 6∈ B{r,g}. Cut that path at that edge and use Lemma 3.5 to find a Hamiltonian path for Qtop
4 −{r, g}

that connects r3 to g3.

B Summary of results

The following table summarizes some of the results obtained in this paper. The rows represent admissible
combinations of M and C and the columns contain all the values of N and O such that N + O ≤ 3. Each
star in the table represents an impossible case. The missing entries in the table correspond to values of
[M,C,N,O] that we do not know yet. The inequalities in the table represent an upper or lower bound of
the corresponding entry. Finally, the entries with an asterisk are results that were obtained after this paper
was submitted for publication and therefore their proofs are not contained in this paper.

MC\NO 01 10 20 11 02 30 21 12 03
00 ⋆ 1 2 ⋆ 4 5 ⋆ 4∗ ⋆
11 2 ⋆ ⋆ 4 ⋆ ⋆ 5∗ ⋆ 5∗

20 ⋆ 4 4 ⋆ 5 ⋆ ⋆
22 ⋆ ⋆ ⋆ ⋆ 4 ⋆ ⋆ ≤ 6 ⋆
31 4 ⋆ ⋆ 5 ⋆ ⋆ ⋆
33 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ≤ 6
40 ⋆ 5 5∗ ⋆ ⋆ ⋆
42 ⋆ ⋆ ⋆ ⋆ 5 ⋆ ⋆ ⋆
44 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
51 5 ⋆ ⋆ ≥ 5 ⋆ ⋆ ⋆
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