Characterizing forbidden pairs for hamiltonian squares

Guantao Chen and Songling Shan

Georgia State University, Atlanta, GA 30303, USA

Abstract. The square of a graph is obtained by adding additional edges joining all pair of vertices of distance two in the original graph. Particularly, if C is a hamiltonian cycle of a graph G, then the square of C is called a hamiltonian square of G. In this paper, we characterize all possible forbidden pairs, which implies the containment of a hamiltonian square, in a 4-connected graph. The connectivity condition is necessary as, except K_3 and K_4 , the square of a cycle is always 4-connected.

Keywords. Hamiltonian square; Forbidden pair

1 Introduction

In this paper, we only consider simple and finite graphs. Let G and H be two graphs. We use $G \sqcup H$ to denote the vertex-disjoint union of G and H, and use G + H to denote the join of G and H, which is the graph on $V(G) \cup V(H)$ with edges including all edges of G and H, and all edges between V(G) and V(H). The notation \overline{G} denotes the complement of G; that is, the graph with vertex set V(G)and edges between all non-adjacent pairs of vertices in G. The square of a graph is obtained by adding additional edges joining all pair of vertices of distance two in the original graph. Particularly, if C is a hamiltonian cycle of a graph G, then the square of C is called a hamiltonian square of G. If G contains a hamiltonian square, we then say G has an H^2 . The earliest problem on hamiltonian square can be traced back to a conjecture proposed by Pósa [4]. The conjecture states that any n-vertex graph with minimum degree at least $\frac{2n}{3}$ contains a hamiltonian square. The complete tripartite graph $K_{t,t,t-1}$ has minimum degree 2(3t-1)/3 - 1/3, but has no H^2 . So, if true, the conjecture is best possible. In 1973, Seymour [14] made a

more general conjecture, which says that any n-vertex graph with minimum degree at least $\frac{kn}{k+1}$ contains a kth power of a hamiltonian cycle. Here, the kth power of a graph is obtained by joining every pair of vertices of distance at most k in the original graph. Pósa's conjecture is almost completely solved. In 1994, Fan and Häggkvist [5] showed Pósa's conjecture for $\delta(G) \geq 5n/7$. Fan and Kierstead [6], in 1996, proved that for any $\varepsilon > 0$, there is a number m, dependent only on ε , such that if $\delta(G) \geq (2/3 + \varepsilon)n + m$, then G contains the square of a Hamiltonian path between every pair of edges. This implies that G then also contains the square of a hamiltonian cycle. The same authors in 1996 [7], showed that if $\delta(G) \ge (2n-1)/3$, then G contains the square of a hamiltonian path. For graphs with large orders, Pósa's conjecture was solved by Komlós, Sárközy, and Szemerédi [12] in 1996 using the Regularity Lemma and the Blow-up Lemma. Using the absorbing method in avoiding using the Regularity Lemma, Levitt, Sárközy, and Szemerédi [13] in 2010 improved the bound on the orders. In 2011, Châu, DeBiasio, and Kierstead [2] verified Pósa's conjecture for $n \ge 200,000,000$. The work, in investigating Pósa's conjecture, was trying to find an H^2 in graphs with high minimum degrees. We may ask, what about finding an H^2 in other classes of graphs? One such possible class is the class of graphs forbidding some given small graphs.

Given a family $\mathcal{F} = \{F_1, F_2, \cdots, F_k\}$ of graphs, we say that a graph G is \mathcal{F} free if G contains no induced subgraph isomorphic to any of F_i , $i = 1, 2, \dots, k$. Particularly, when $\mathcal{F} = \{F\}$, we simply say that G is *F*-free. If G is \mathcal{F} -free, then the graphs in \mathcal{F} are called *forbidden subgraphs*. The use of forbidden subgraphs to obtain classes of graphs possessing special properties has long been a common graphical technique. A pair $\{R, S\}$ of connected graphs is called a hamiltonian forbidden pair if every 2-connected $\{R, S\}$ -free graph is hamiltonian. The characterizations for hamiltonian forbidden pairs were completely done (for example, see [1], [3], and [8]). Research has also been done on characterizing the forbidden pairs for stronger hamiltonicity properties [8], such as panconectivity (a graph G of order n is said to be panconnected if any two vertices of G, say x and y, are joined by paths of all possible lengths l from dist(x, y) to n-1), pancyclicity (an *n*-vertex graph is pancyclic if it contains cycles of length l, for each $3 \le l \le n$). In this paper, we define forbidden pairs for hamiltonian squares (H^2) . A pair of connected graphs $\{R, S\}$ is called an H^2 forbidden pair if every 4-connected $\{R, S\}$ -free graph has an H^2 . Further more, we give a full characterization for all the possible H^2 forbidden pairs.

Theorem 1.1. A pair $\{R, S\}$ of connected graphs with $R, S \neq P_3$ is an H^2 forbidden pair if and only if $R = K_{1,3}$ and $S = Z_1$, where Z_1 , as depicted in Figure 1, is obtained from $K_{1,3}$ be adding one edge between two non-adjacent vertices.

Figure 1: Small subgraphs

To force $R = K_{1,3}$ and $S = Z_1$ in Theorem 1.1, a 4-connected 7-vertex graph with no H^2 is used in the proof. Considering graphs with larger order, we prove a stronger result.

Theorem 1.2. A pair $\{R, S\}$ of connected graphs with $R, S \neq P_3$ has the property that every 4-connected $\{R, S\}$ -free graph with at least 9 vertices has an H^2 if and only if $R \in \{K_{1,3}, K_{1,4}\}$ and $S = Z_1$.

In the study of forbidden pairs for hamiltonian or related properties, people usually consider pairs $\{K_{1,3}, P_i\}$ for $i \ge 4$. Except 4 classes of graphs, we show that all other 4-connected $\{K_{1,3}, P_4\}$ -free graphs have an H^2 , as given in the theorem below.

Theorem 1.3. Every 4-connected $\{K_{1,3}, P_4\}$ -free graph G has an H^2 unless G is isomorphic to a graph in one of the following families.

- (i) $(K_1 \sqcup K_3) + (K_m \sqcup K_q)$ with $m + q \ge 4$;
- (*ii*) $(K_2 \sqcup K_2) + (K_1 \sqcup K_m)$ with $m \ge 3$;
- (*iii*) $(K_2 \sqcup K_3) + (K_1 \sqcup K_m)$ with $m \ge 3$;
- (iv) $(K_3 \sqcup K_3) + (K_1 \sqcup K_m)$ with $m \ge 3$.

It is easy to see that the square of a cycle is pancyclic. This is true for any graphs containing an H^2 . Hence, partially, we give an answer to a question asked by Gould at the 2010 SIAM Discrete Math meeting in Austin, TX.

Problem 1. Characterize the pairs of forbidden subgraphs that imply a 4-connected graph is pancyclic.

It is worth mentioning that all the known forbidden pairs on Problem 1 include the claw: $K_{1,3}$ (see [10], [9] and [11]). Hence Theorem 1.2 gives a new forbidden pair for pancyclicity.

Sfrag replacements

2 Properties of Some Non-hamiltonian Square Graphs

In this section, we examine some properties of the graphs depicted in Figure 2. These graphs will be used in the following section to characterize the H^2 forbidden pairs. The formal definitions of these graphs are given below.

Figure 2: 4-connected no H^2 graphs

- G_1 : $K_{m,m}$, a complete bipartite graph with m vertices in each bipartite sets, where $m \ge 4$.
- G₂: $K_m \sqcup K_m \cup M$, a graph obtained from two vertex-disjoint copies of K_m by adding a perfect matching M between them, where $m \ge 4$.
- $G_3: K_m + \overline{K_{m-1}}$, the join of K_m and $\overline{K_{m-1}}$, where $m \ge 4$.
- G_4 : The graph obtained from the square of a cycle, denoted as C^2 , by joining a new vertex v_4 to four vertices on C^2 such that the four vertices induces $P_3 \sqcup K_1$ in the C^2 .
- G_5 : Let T_t be a rooted tree of depth t (the length of a longest path from the root to a leaf is t) such that all the leaves are at the same depth and all non-leaves have degree 4 (known as a prefect 4-ary tree). Then $G_5(t)$ ($t \ge 2$) is the graph obtained from T_t by connecting the leaves into a cycle in a way such that the girth of the finally resulted graph is greater than 4. The graph G_5 from the family $G_5(2)$ is depicted in Figure 2. G_5 is obtained as follows: embed a copy of T_2 on the plane, and name the leaves from the left to right, consecutively, as $x_1, y_1, z_1, x_2, y_2, z_2, \cdots, x_4, y_4, z_4$; then a cycle $C = x_1 x_2 x_3 x_4 y_1 \cdots y_4 z_1 \cdots z_4 x_1$ is obtained by joining the corresponding edges. The construction can be easily generalized to $G_5(t)$ for $t \ge 3$. (In $G_5(2)$, a cycle using the root vertex contains three non-leaves and at least two leaves; and a cycle not using the root vertex uses at least two non-leaves and 4 leaves. In any case, it indicates that $G_5(2)$ has girth at least 5.)
- G₆: $(K_2 \sqcup K_2) + (K_m \sqcup K_1)$, where $m \ge 4$. Denote the isolated vertex in $K_m \sqcup K_1$ by v_6 .

It is not hard to check that all those graphs are 4-connected. Furthermore, we have the following fact.

Lemma 2.1. None of the graphs in Figire 2 has an H^2 .

Proof. Notice that in an H^2 , the neighborhood of any vertex induces a P_4 . If G_2 has an H^2 , then it must contain one of the edges connecting the two copies of K_m . Let xy be a such edge. Then the neighbors of x on the H^2 consists of y and another three vertices from the copy of K_m containing x. However, those four vertices do not induce a copy of P_4 , showing a contradiction. Similarly, neither of the set of neighborhoods of v_4 in G_4 or of v_6 in G_6 induces P_4 . Thus, neither G_4 nor G_6 has an H^2 . As $G_3 = K_m + \overline{K_{m-1}}$, any hamiltonian cycle of G_3 contains a pair of vertices from $V(\overline{K_{m-1}})$ such that they have distance 2 on the hamiltonian cycle. This in turn implies that G_3 has no H^2 . As an H^2 contains triangles, the triangle-free graph $G_5(t)$ has no H^2 .

As the graph G_2 will be used more frequently later on, we discuss its properties in more detail here.

Lemma 2.2. Let $S \notin \{K_3, P_3\}$ be a connected $\{P_4, C_4, K_4\}$ -free graph. If G_2 contains S as an induced subgraph, then S is Z_1 .

Proof. Since $V(G) \neq \emptyset$ and $E(G) \neq \emptyset$, $S \notin \{K_1, K_2\}$. Thus $|V(S)| \geq 3$. Since $S \notin \{K_3, P_3\}$ and any connected 3-vertex subgraph of G_2 is either K_3 or P_3 , we conclude that $|V(S)| \geq 4$. Furthermore, as S is K_4 -free, it contains at most 3 vertices from one of the copies of K_m . Since S is connected and $\{P_4, C_4\}$ -free, if it contains at least two vertices from one copy of K_m , then it contains at most one vertex from the other copy of K_m . Hence S contains exactly three vertices from one copy of K_m , and exactly one vertex from the other. The connected graph induced on such four vertices can only be isomorphic to Z_1 .

3 Proofs of the Main Results

In this section, we prove Theorem 1.1, Theorem 1.2, and Theorem 1.3. We first characterize the single forbidden subgraph for 4-connected graphs containing an H^2 . As any P_3 -free graph is complete, we observe that any 4-connected P_3 -free graph has an H^2 . Conversely, we have the following result.

Proposition 3.1. A connected graph F has the property that every 4-connected F-free graph has an H^2 if and only if $F = P_3$.

Proof. Since $G_1 = K_{m,m}$ has no H^2 , G_1 contains F as an induced subgraph. Hence $F = K_{1,r}$, where $r \ge 2$ or F contains an induced C_4 . As the graph G_4 in Figure 2 has no H^2 and is C_4 -free, we see that $F = K_{1,r}$. The only induced star contained in all the graphs of family G_2 is $K_{1,2}$; that is, an induced copy of P_3 . Hence $F = P_3$. We study the structure of a connected Z_1 -free graph in the following theorem, which will help us in knowing the structure of a $\{K_{1,r}, Z_1\}$ -free graph $(r \ge 3)$.

Lemma 3.1. Let G be a connected Z_1 -free graph. If there exists a vertex $v \in V(G)$ such that $d(v) \geq 3$ and v is contained in a triangle, then G is isomorphic to a complete multipartite graph K_{t_1,t_2,\cdots,t_k} .

Proof. We use induction on n = |V(G)|. When n = 4, G is either K_4 or the graph obtained from K_4 by removing one edge, so the result holds. Suppose that $n \ge 5$ and that Lemma 3.1 holds for graphs with less than n vertices. Let $v \in V(G)$ be a vertex such that $d(v) \ge 3$ and v is contained in a triangle. Let $N[v] := N(v) \cup \{v\}$ and $\overline{N}[v] = V(G) - N[v]$. Notice that $\overline{N}[v]$ may be empty. As G is Z_1 -free, we know G[N(v)] is $(K_2 \sqcup K_1)$ -free. Together with the fact that G[N(v)] contains an edge, we then know G[N(v)] is connected. Before examining the structure of G[N(v)] further, we claim the following.

Claim 3.1. If $\overline{N}[v] \neq \emptyset$, then for every $w \in \overline{N}[v]$, N(w) = N(v) holds.

Proof. Let $w \in \overline{N}[v]$. We first claim that if $N(w) \cap N(v) \neq \emptyset$, then $N(v) \subseteq N(w)$. Suppose not, then there exists $v' \in N(v)$ such that $wv' \notin E(G)$. We choose a such v' such that w is adjacent to a neighbor of v', say u', in N(v). However, the graph induced on $\{v, v', u', w\}$ is isomorphic to Z_1 , showing a contradiction. Hence $N(v) \subseteq N(w)$. The claim is proved.

We then claim that if $N(w) \cap N(v) \neq \emptyset$, then $N(w) \subseteq N(v)$. Otherwise, assume that w is adjacent to a vertex $w' \in \overline{N}[v]$. If w' is adjacent to a vertex in N(v), then we have $N(v) \subseteq N(w) \cap N(w')$ by the earlier assertion. Let $v' \in$ $N(v) \subseteq N(w) \cap N(w')$. Then $\{v, v', w, w'\}$ induces a Z_1 . Hence we assume w' is not adjacent to any vertex in N(v). Let $v', u' \in N(v) \subseteq N(w)$. Then $\{u', v', w, w'\}$ induces a Z_1 . Thus w is not adjacent to any vertex in $\overline{N}[v]$.

As G is connected, Claim 3.1 is then implied by the above two assertions. \Box

We now proceed with the proof according to several cases depending on the structure of G[N(v)]. Let |V(G) - N(v)| = t' and G' = G[N(v)]. Recall that G' is connected and is $(K_2 \sqcup K_1)$ -free.

Case 1. G' has a vertex with degree at least 3 in G' and the vertex is contained in a triangle in G'.

By the induction hypothesis, $G' \cong K_{t_1,t_2,\cdots,t_{k-1}}$. Then we have $G \cong K_{t_1,t_2,\cdots,t_{k-1},t'}$.

So we suppose that the condition in Case 1 is not satisfied by G'. Let $u \in V(G')$ be a vertex of maximum degree in G'.

Case 2. $d_{G'}(u) \le 2$.

Then G' is the union of vertex disjoint paths and cycles. As G' is connected and is $(K_2 \sqcup K_1)$ -free, we know G' is isomorphic to one of the graphs K_3 , P_3 , or C_4 . In any case, G is isomorphic to a complete multipartite graph.

Case 3. $d_{G'}(u) \ge 3$.

As u is not on a triangle in G', $N_{G'}(u)$ is an independent set in G'. If $N_{G'}[u] = V(G') = N(v)$, then it is already seen that G is isomorphic to a complete multiple graph with the size of each parts as t', 1, and $d_{G'}(u)$, respectively. Hence, we assume $N(v) - N_{G'}[u] \neq \emptyset$. As G' is connected and is $(K_2 \sqcup K_1)$ -free, every vertex in $N(v) - N_{G'}[u]$ is adjacent to every vertex in $N_{G'}(u)$. Again, by the fact that G' is $(K_2 \sqcup K_1)$ -free, we know there is no edge with the two ends in $N(v) - N_{G'}[u]$. Hence, $N(v) - N_{G'}[u]$ is an independent set. Let $t_1 = d_{G'}(u)$ and $t_2 = |N(v) - N_{G'}(u)|$. We see that $G \cong K_{t_1,t_2,t'}$.

The proof is complete.

Additionally, if G is a $\{Z_1, K_{1,r}\}$ -free graph with a vertex of degree at least $r (r \geq 3)$, then G contains a vertex which is contained in a triangle and is of degree at least 3. Thus by applying Lemma 3.1 and by the fact that G is $K_{1,r}$ -free, we have the following result.

Corollary 3.1. Let G be a connected $\{Z_1, K_{1,r}\}$ -free graph with a vertex of degree at least r. Then G is isomorphic to a complete multipartite graph K_{t_1,t_2,\dots,t_k} such that each $1 \le t_i \le r-1$.

The case of r = 3 in the above Corollary has been mentioned in other research papers, for example, in [8]. By Corollary 3.1, we have the following result.

Corollary 3.2. A connected $\{K_{1,r}, Z_1\}$ -free graph with a vertex of degree at least r is (n - r + 1)-connected.

By Corollary 3.1, a 4-connected $\{Z_1, K_{1,3}\}$ -free graph G is a complete graph missing at most a matching. By finding a hamiltonian cycle of G such that non-adjacent pairs of vertices are of distance at least 3 on the cycle, we can construct an H^2 in G. Hence, we obtain the result below.

Theorem 3.1. Every 4-connected $\{Z_1, K_{1,3}\}$ -free graph contains an H^2 .

For 4-connected $\{Z_1, K_{1,4}\}$ -free graphs, we have a similar result.

Theorem 3.2. Every 4-connected $\{Z_1, K_{1,4}\}$ -free graph contains an H^2 provided $|V(G)| \ge 9$.

Proof. Let n = |V(G)|. We use induction on n to show the theorem. By Corollary 3.1, any 4-connected 9-vertex $\{Z_1, K_{1,4}\}$ -free graph contains $K_{3,3,3}$ as a spanning subgraph. It is not difficult to verify that $K_{3,3,3}$ contains an H^2 . For example, let $\{x_i, y_i, z_i\}$ (i = 1, 2, 3) be the three vertices in the *i*-th tripartition. Then $x_1x_2x_3y_1y_2y_3z_1z_2z_3x_1$ with the additional edges gives an H^2 . So we assume $n \ge 10$. Let $v \in V(G)$ be a vertex. We consider the graph G' = G - v. Then G' is 6-connected by Corollary 3.2. Additionally, G' has at least 9 vertices and is $\{Z_1, K_{1,4}\}$ -free. Hence it contains an H^2 , say C_1^2 by the induction hypothesis. Since G is a multipartite graph with each partition of size at most 3, there are at most two vertices on C_1^2 which are not adjacent to v. Thus, there are at least 4 consecutive vertices on C_1^2 such that each of them is adjacent to v. Let v_1, v_2, v_3, v_4 be 4 such consecutive vertices on C_1^2 . Then $C_1^2 - \{v_2v_3, v_2v_4, v_1v_3\} \cup \{vv_i \mid i =$ $1, 2, 3, 4\}$ gives an H^2 of G.

Notice that the order 9 condition in the above theorem is sharp. The complete tripartite 8-vertex graph $K_{2,3,3}$ is 4-connected and $\{K_{1,4}, Z_1\}$ -free, but contains no H^2 .

Before proving Theorem 1.1 and Theorem 1.2, we notice that if $\{R, S\}$ is a forbidden pair implying the containment of an H^2 in a 4-connected graph, then neither of R or S is a triangle since an H^2 always contains triangles.

3.1 Proof of Theorem 1.1

The sufficiency follows from Theorem 3.1.

Conversely, we will first show that one of R and S must be a claw. Thus, suppose that $R, S \neq K_{1,3}$. Assume, without loss of generality, that R is an induced subgraph of $G_1 = K_{m,m}$. Then $R = K_{1,r}$, where $r \geq 4$ or R contains an induced C_4 . We now consider two cases.

Case 1: $R = K_{1,r} (r \ge 4)$.

The graph G_4 has no induced copy of R, so it contains an induced copy of S. As G_4 is $\{K_4, K_{1,3}\}$ -free, we see that S contains no K_4 and no induced $K_{1,3}$. Also, R is not an induced subgraph of $G_0 = K_4 + \overline{K_3}$. So G_0 contains S as an induced subgraph. Since $S \notin \{P_3, K_3\}$ and any connected 3-vertex subgraph of G_0 is contained in $\{P_3, K_3\}$, we conclude that S has at least 4 vertices. In G_0 , any 4 vertices of G_0 with at most one vertex in $\overline{K_3}$ induces a K_4 ; and any 4 vertices of G_0 with three vertices in $\overline{K_3}$ induces a $K_{1,3}$. Hence, S contains exactly two vertices from the subgraph K_4 of G_0 and exactly two vertices from the subgraph K_4 of G_0 and exactly two vertices from the subgraph $\overline{K_4}$ of K_4 , and no induced $K_{1,3}$. So S is an induced K_4^- (K_4 with exactly one edge removed). However, G_2 has no induced $R = K_{1,r}$ ($r \ge 4$), and no induced K_4^- . We obtain a contradiction.

Case 2: R contains an induced C_4 .

Since G_4 has no induced copy of R, it contains an induced copy of S. As G_4 is $\{K_4, K_{1,3}\}$ -free, we see that S contains no K_4 and no induced $K_{1,3}$. Also, R is not an induced subgraph of G_3 . So G_3 contains S as an induced subgraph. Since S is connected and $S \notin \{K_1, K_2, K_3, P_3\}$, and any connected 2-vertex, 3-vertex subgraphs of G_3 are contained in $\{K_2, K_3, P_3\}$, we conclude that $|V(S)| \ge 4$. In G_3 , any 4 vertices from K_m or any 3 vertices from K_m and one vertex from $\overline{K_{m-1}}$ induce a K_4 ; and any 4 vertices in which three from $\overline{K_{m-1}}$ induce a $K_{1,3}$. We conclude that S contains exactly two vertices from K_m and exactly two vertices from $\overline{K_{m-1}}$, as S contains no K_4 and no induced $K_{1,3}$. So S is an induced K_4^- . However, each graph in $G_5(t)$ has no H^2 , no induced C_4 , and no triangle (so no K_4^-). This gives a contradiction.

Thus, one of R and S must be a claw. We assume, without loss of generality, that $R = K_{1,3}$. As R is $K_{1,3}$, S in an induced subgraph of G_2 , G_4 , and G_6 , as none of them contains induced claws. Note that G_4 is $\{C_4, K_4\}$ -free, and G_6 is P_4 -free, so S is $\{P_4, C_4, K_4\}$ -free. Applying Lemma 2.2, we see S is Z_1 .

3.2 Proof of Theorem 1.2

The sufficiency follows from Theorem 3.2.

Conversely, we will first show that one of R and S must be Z_1 . Thus, suppose that $R, S \neq Z_1$. Assume, without loss of generality, that R is an induced subgraph of $G_1 = K_{m,m}$. Then $R = K_{1,r}$, where $r \geq 3$ or R contains an induced C_4 . We now consider two cases.

Case 1:
$$R = K_{1,r} (r \ge 3).$$

Then R is not an induced subgraph of G_2 . So G_2 contains S as an induced subgraph. Both G_4 and G_6 contains an induced copy of S since neither of them contains an induced copy of R. Since G_4 is $\{C_4, K_4\}$ -free and G_6 is P_4 -free, we see that S is $\{P_4, C_4, K_4\}$ -free. Applying Lemma 2.2, we have $S = Z_1$.

Case 2: R contains an induced C_4 .

The graph G_4 has no induced copy of R, so it contains an induced copy of S. As G_4 is $\{K_4, K_{1,3}\}$ -free, we see that S contains no K_4 and no induced $K_{1,3}$. Also, R is not an induced subgraph of G_3 . So G_3 contains S as an induced subgraph. Since S is connected and $S \notin \{K_1, K_2, K_3, P_3\}$, and any connected 2-vertex, 3-vertex subgraphs of G_3 are contained in $\{K_2, K_3, P_3\}$, we conclude that $|V(S)| \ge 4$. In G_3 , any 4 vertices from K_m or any 3 vertices from K_m and one vertex from $\overline{K_{m-1}}$ induce a K_4 ; and any 4 vertices in which three from $\overline{K_{m-1}}$ induce a $K_{1,3}$. We conclude that S contains no K_4 and no induced $K_{1,3}$. So S is an induced K_4^- . However, G_2 has no induced $R = K_{1,r}$ ($r \ge 3$) and no induced K_4^- . We obtain a contradiction.

Thus one of R and S must be Z_1 . Assume, without loss of generality, that $S = Z_1$. As $G_1 = K_{m,m}$ contains no Z_1 , G_1 contains an induced copy of R. Hence $R = K_{1,r}$, where $r \ge 3$ or R contains an induced C_4 . Since each graph in $G_5(t)$ $(t \ge 2)$ is C_4 -free, and the only possible stars in it are $K_{1,r}$ for $r \le 4$, we see that $R = K_{1,r}$ for r = 3, 4.

3.3 Proof of Theorem 1.3

We now prove Theorem 1.3. Let P be a path. We use P^2 to denote the square of P. In omitting the edges joining distance 2 vertices on the path, we will use the same notation to denote the square of the path. Similar notation for the square of a cycle. Let $P_1^2 = v_1 v_2 \cdots v_{s-1} v_s$ and $P_2^2 = u_1 u_2 \cdots u_{t-1} u_t$ be two path squares. We denote by $P_1^2 P_2^2$ as the concatenation of P_1^2 and P_2^2 by adding edges $u_1 v_s, u_1 v_{s-1}$ and $u_2 v_s$, where $u_1 v_{s-1}$ exists only if $s \ge 2$ and $u_2 v_s$ exists only if $t \ge 2$. Also, the notations $v_1 P_1^2, P_1^2 v_s$, or $v_1 P_1^2 v_s$ may be used for specifying the end vertices of P_1^2 . We may assume that G is not complete. Let S be a minimum vertex-cut of G. Let $G_i = (V_i, E_i)$ $(i = 1, 2, \dots, k)$ be all the components of G - S. Since G is 4-connected, $|S| \ge 4$. As S is a minimum vertex-cut, we have the following claim.

Claim 1: For every vertex $v \in S$, $N(v) \cap V_i \neq \emptyset$, for all $i = 1, 2, \dots, k$.

Since G is claw-free, from Claim 1 we get Claim 2 below.

Claim 2: k = 2; that is, G - S has exactly two components.

Also, by the fact that G is P_4 -free, we conclude the following claim.

Claim 3: For each $v \in S$, $N_{G_i}(v) = V_i$ for i = 1, 2.

As $E(V_1, V_2) = \emptyset$, G is claw-free, and by Claim 3, we obtain Claim 4 as follows.

Claim 4: G_i is a complete subgraph of G for i = 1, 2.

We will use induction on n = |V(G)| in some cases of the proof. The smallest 4-connected $\{K_{1,3}, P_4\}$ -free graph is K_5 , it contains an H^2 . So we suppose $n \ge 6$ and suppose that the theorem holds for the described graphs of smaller orders. Let P_i^2 be a hamiltonian path square of G_i (i = 1, 2).

If G[S] is 4-connected and is not isomorphic to any graphs in the exception families, then by the induction hypothesis, G[S] contains an H^2 , say C_s^2 , which contains at least 4 vertices by the assumption that G[S] is 4-connected. Let x_1, x_2, x_3 and x_4 be 4 consecutive vertices on C_s^2 . By Claim 3, $N_{G_i}(x_j) = V_i$ for j = 1, 2, 3, 4and i = 1, 2. Hence $C^2 = x_1 x_2 P_1^2 x_3 x_4 P_2^2 C_s^2 x_1$ is an H^2 of G.

So, we assume that G[S] is 4-connected and G[S] is a graph in some of the exception families. In this case, we first show that every graph in the exception families has a hamiltonian path square. Then by concatenating the path square, P_1^2 , and P_2^2 together, we can get an H^2 of G.

Let Q be a graph isomorphic to $(K_1 \sqcup K_3) + (K_m \sqcup K_q)$ for some $m + q \ge 4$. We may assume, without loss of generality, that $m \ge 2$. Then we let P_3^2 be a path square of K_3 , P_m^2 a path square of K_m , and P_q^2 a path square of K_q . Also, let x be the single vertex from K_1 . Then $P_q^2 P_3^2 P_m^2 x$ is a hamiltonian path square of Q. The constructions for a hamiltonian path square for graphs in the families of $(K_2 \sqcup K_2) + (K_1 \sqcup K_m), (K_2 \sqcup K_3) + (K_1 \sqcup K_m), \text{ and } (K_3 \sqcup K_3) + (K_1 \sqcup K_m)$ are similar, so we omit the details here. Now let P_s^2 be a hamiltonian path square of G[S], and let x_1, x_2, x_3 and x_4 be 4 consecutive vertices on P_s^2 . By Claim 3, for any $v \in S$, $N_{G_i}(v) = V_i$ (i = 1, 2). So $C^2 = x_1 x_2 P_1^2 x_3 x_4 P_2^2 P_s^2 x_1$ is an H^2 of G.

The remaining proof is divided into two cases according to the connectivity of G[S]. Let G' = G[S].

Case 1. Suppose G' is connected but not 4-connected.

If $G' \cong K_4$, let $C_s^2 = x_1 x_2 x_3 x_4$ be an H^2 of it. Then $C^2 = x_1 x_2 P_1^2 x_3 x_4 P_2^2 x_1$ is an H^2 of G. So suppose $G' \ncong K_4$. As $|V(G')| \ge 4$ and G' is not 4-connected, G' is not complete. Let S' be a minimum vertex-cut of G'. Notice that $1 \le |S'| \le 3$. Similar discussion as in Claim 1-Claim 4 shows that G' - S' has exactly two components, say, G'_1 and G'_2 such that each is a complete subgraph, and $G' = G'[S'] + (G'_1 \sqcup G'_2)$. As G' is also claw-free, we see that S' is $\overline{K_3}$ -free. Let P_{1i}^2 be a hamiltonian path square of G'_i (i = 1, 2). Suppose, without loss of generality, that $|V(P_{11}^2)| \le |V(P_{12}^2)|$. We define two new vertex disjoint path squares of G'.

C1. |S'| = 1. Let $S' = \{x_1\}$ and $P_{21}^2 = P_{11}^2 x_1, P_{22}^2 = P_{12}^2$;

C2.
$$|S'| = 2$$
. Let $S' = \{x_1, x_2\}$ and $P_{21}^2 = P_{11}^2 x_1, P_{22}^2 = P_{12}^2 x_2;$

C3. |S'| = 3. Let $S' = \{x_1, x_2, x_3\}$, and assume that $x_1x_3 \in E(G')$ by the fact that S' is $\overline{K_3}$ -free, then let $P_{21}^2 = x_1x_3P_{11}^2$, $P_{22}^2 = P_{12}^2x_2$.

If C1 is true, then $\max\{|V_1|, |V_2|\} \ge 2$. Otherwise, $S' \cup V_1 \cup V_2$, a 3-set, separates G'_1 and G'_2 , contradicting the 4-connectedness assumption of G. Assume, without loss of generality, that $|V_1| \ge 2$. To specify the end vertices, we denote $P_{21}^2 = x_1 P_{21}^2 x$ and $P_{22}^2 = z P_{22}^2 x_2$, where $x_1 \in S'$ and $z \in V(G') - S'$. Clearly, $x_1z \in E(G)$. As $|V(G')| \ge 4$ and |S'| = 1, $|V(P_{12}^2)| \ge 2$ by the assumption that $|V(P_{11}^2)| \le |V(P_{12}^2)|$. Hence, both P_{21}^2 and P_{22}^2 have at least 2 vertices. In specifying one end of the hamiltonian path square P_2^2 of G_2 , let $P_2^2 = P_2^2 w$. Then $x_1P_{21}^2 x P_1^2 x_2 P_{22}^2 z P_2^2 w x_1$ is an H^2 of G even if $|V(P_2^2)| = 1$.

For cases C2 and C3, to specify the end vertices, we denote $P_{21}^2 = x_1 P_{21}^2 x$ and $P_{22}^2 = z P_{22}^2 x_2$, where $x_1, x_2 \in S'$ and $x, z \in V(G') - S'$. Since each of P_{11}^2 and P_{12}^2 has at least one vertex, each of the P_{21}^2 and P_{22}^2 defined in C2 and C3 has at least two vertices. By the fact that $G' = G'[S'] + (G'_1 \sqcup G'_2)$ and the assumption that $x_1 x_3 \in E(G)$, we see both P_{21}^2 and P_{22}^2 are path squares satisfying $x_1 z, x x_2 \in E(G)$.

In specifying one end of the hamiltonian path square P_2^2 of G_2 , let $P_2^2 = P_2^2 w$. Then $x_1 P_{21}^2 x P_1^2 x_2 P_{22}^2 z P_2^2 w x_1$ is an H^2 of G even if $|V(P_1^2)| = 1$ or $|V(P_2^2)| = 1$.

Case 2. Suppose G' is disconnected.

As G is claw-free and $G = G' + (G_1 \sqcup G_2)$, we see that G' consists of exactly two complete components, say G'_1 and G'_2 . So $G = (G'_1 \sqcup G'_2) + (G_1 \sqcup G_2)$ and $V_1 \cup V_2$ is also a vertex-cut of G. For i = 1, 2, let $|V(G'_i)| = |V'_i|$. So $|V_1 \cup V_2| \ge |V'_1 \cup V'_2| = |S|$, by the minimality of |S|. Recall that G is not isomorphic to any of the graphs in the following families:

- (i) $(K_1 \sqcup K_3) + (K_m \sqcup K_q)$ with $m + q \ge 4$;
- (ii) $(K_2 \sqcup K_2) + (K_1 \sqcup K_m)$ with $m \ge 3$;
- (iii) $(K_2 \sqcup K_3) + (K_1 \sqcup K_m)$ with $m \ge 3$;
- (iv) $(K_3 \sqcup K_3) + (K_1 \sqcup K_m)$ with $m \ge 3$.

Assume first that $\min\{|V_1|, |V_2|, |V_1'|, |V_2'|\} \ge 2$. In specifying the end vertices, we let $P_1^2 = x_1 P_1^2 y_1$, $P_2^2 = x_2 P_2^2 y_2$, $P_{11}^2 = x_{11} P_{11}^2 y_{11}$, and $P_{12}^2 = x_{21} P_{12}^2 y_{21}$ be the hamiltonian path square of G_1 , G_2 , G_1' and G_2' , respectively. Then as $G = (G_1' \sqcup G_2') + (G_1 \sqcup G_2)$, we know $x_1 P_1^2 y_{11} x_{11} P_{11}^2 y_{11} x_2 P_2^2 y_{22} x_{21} P_{12}^2 y_{21} x_1$ is an H^2 of G. So assume, without loss of generality, that $|V_1| = 1$. Then as G is not isomorphic to any graphs in (i) and $|V_1 \cup V_2| \ge |V_1' \cup V_2'| = |S| \ge 4$, we have that $|V_2| \ge 4$. So, $G_1 \sqcup G_2 \cong K_1 \sqcup K_m$ for some $m \ge 4$. Also, as G is not isomorphic to any graphs in (i)-(iv), $G_1' \sqcup G_2' \ncong K_1 \sqcup K_3, K_2 \sqcup K_2, K_2 \sqcup K_3, K_3 \sqcup K_3$. This indicates that $\max\{|V_1'|, |V_2'|\} \ge 4$. We may assume, without loss of generality, that $|V_1'| \ge 4$. Let $P_2^2 = x_{21}x_{22}\cdots x_{2,s-1}x_{2s}$ ($s \ge 4$) be the hamiltonian path square of G_1 , and let P_{12}^2 be a hamiltonian path square of G_2' . Then $x_{11}x_{12}P_1^2x_{13}x_{14}P_{11}^2x_{1,t-1}x_{1t}x_{21}x_{22}P_{12}^2x_{23}x_{24}P_2^2x_{2,s-1}x_{2s}x_{11}$ is an H^2 of G.

The proof of Theorem 1.3 is then complete.

Acknowledgements: The authors wish to thank the two anonymous referees for their helpful comments.

References

- Pascal Moussa Bedrossian. Forbidden subgraph and minimum degree conditions for hamiltonicity. ProQuest LLC, Ann Arbor, MI, 1991. Thesis (Ph.D.)-Memphis State University.
- [2] Phong Châu, Louis DeBiasio, and H. A. Kierstead. Pósa's conjecture for graphs of order at least 2 × 10⁸. Random Structures Algorithms, 39(4):507– 525, 2011.
- [3] D. Duffus, M. S. Jacobson, and R. J. Gould. Forbidden subgraphs and the Hamiltonian theme. In *The theory and applications of graphs (Kalamazoo, Mich.*, 1980), pages 297–316. Wiley, New York, 1981.
- [4] P. Erdős. Problem 9. In Theory of Graphs and Its Applications, Proceedings of the Symposium held in Smolenice in June 1963 (Ed. M. Fiedler), page 159.
 Prague, Czechoslovakia: Publishing House of the Czechoslovak Academy of Sciences, 1964.
- [5] Genghua Fan and Roland Häggkvist. The square of a Hamiltonian cycle. SIAM J. Discrete Math., 7(2):203–212, 1994.
- [6] Genghua Fan and H. A. Kierstead. The square of paths and cycles. J. Combin. Theory Ser. B, 63(1):55–64, 1995.
- [7] Genghua Fan and H. A. Kierstead. Hamiltonian square-paths. J. Combin. Theory Ser. B, 67(2):167–182, 1996.
- [8] Ralph J. Faudree and Ronald J. Gould. Characterizing forbidden pairs for Hamiltonian properties. *Discrete Math.*, 173(1-3):45–60, 1997.
- [9] Michael Ferrara, Silke Gehrke, Ronald Gould, Colton Magnant, and Jeffrey Powell. Pancyclicity of 4-connected {claw, generalized bull}-free graphs. *Discrete Math.*, 313(4):460–467, 2013.
- [10] Michael Ferrara, Timothy Morris, and Paul Wenger. Pancyclicity of 4connected, claw-free, P₁₀-free graphs. J. Graph Theory, 71(4):435–447, 2012.
- [11] Silke Gehrke. Hamiltonicity and pancyclicity of 4-connected, claw- and netfree graphs. ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)–Emory University.

- [12] János Komlós, Gábor N. Sárközy, and Endre Szemerédi. On the square of a Hamiltonian cycle in dense graphs. In Proceedings of the Seventh International Conference on Random Structures and Algorithms (Atlanta, GA, 1995), volume 9, pages 193–211, 1996.
- [13] Ian Levitt, Gábor N. Sárközy, and Endre Szemerédi. How to avoid using the regularity lemma: Pósa's conjecture revisited. *Discrete Math.*, 310(3):630– 641, 2010.
- [14] P. Seymour. Problem section. In Combinatorics: Proceedings of the British Combinatorial Conference 1973, T.P. McDonough and V.C. Mavron, Eds., pages 201–202. Cambridge University Press, 1974.