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Characterizing forbidden pairs for hamiltonian squares

Guantao Chen and Songling Shan

Georgia State University, Atlanta, GA30303, USA

Abstract. The square of a graph is obtained by adding additional edges joining

all pair of vertices of distance two in the original graph. Particularly, if C is

a hamiltonian cycle of a graph G, then the square of C is called a hamiltonian

square of G. In this paper, we characterize all possible forbidden pairs, which

implies the containment of a hamiltonian square, in a 4-connected graph. The

connectivity condition is necessary as, except K3 and K4, the square of a cycle is

always 4-connected.
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1 Introduction

In this paper, we only consider simple and finite graphs. Let G and H be

two graphs. We use G ⊔H to denote the vertex-disjoint union of G and H if G

and H are vertex disjoint, use G ∪ H to denote the union of G and H, and use

G +H to denote the join of G and H, which is the graph on V (G) ∪ V (H) with

edges including all edges of G and H, and all edges between V (G) and V (H). The

notation G denotes the complement of G; that is, the graph with vertex set V (G)

and edges between all non-adjacent pairs of vertices in G. The square of a graph

is obtained by adding additional edges joining all pair of vertices of distance two

in the original graph. Particularly, if C is a hamiltonian cycle of a graph G, then

the square of C is called a hamiltonian square of G. If G contains a hamiltonian

square, we then say G has an H2. The earliest problem on hamiltonian square can

be traced back to a conjecture proposed by Pósa [4]. The conjecture states that

any n-vertex graph with minimum degree at least 2n
3

contains a hamiltonian square.

The complete tripartite graph Kt,t,t−1 has minimum degree 2(3t− 1)/3− 1/3, but

has noH2. So, if true, the conjecture is best possible. In 1973, Seymour [14] made a
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more general conjecture, which says that any n-vertex graph with minimum degree

at least kn
k+1

contains a kth power of a hamiltonian cycle. Here, the kth power of

a graph is obtained by joining every pair of vertices of distance at most k in the

original graph. Pósa’s conjecture is almost completely solved. In 1994, Fan and

Häggkvist [5] showed Pósa’s conjecture for δ(G) ≥ 5n/7. Fan and Kierstead [6], in

1996, proved that for any ε > 0, there is a number m, dependent only on ε, such

that if δ(G) ≥ (2/3 + ε)n +m, then G contains the square of a Hamiltonian path

between every pair of edges. This implies that G then also contains the square of a

hamiltonian cycle. The same authors in 1996 [7], showed that if δ(G) ≥ (2n−1)/3,

then G contains the square of a hamiltonian path. For graphs with large orders,

Pósa’s conjecture was solved by Komlós, Sárközy, and Szemerédi [12] in 1996 using

the Regularity Lemma and the Blow-up Lemma. Using the absorbing method in

avoiding using the Regularity Lemma, Levitt, Sárközy, and Szemerédi [13] in 2010

improved the bound on the orders. In 2011, Châu, DeBiasio, and Kierstead [2]

verified Pósa’s conjecture for n ≥ 200, 000, 000. The work, in investigating Pósa’s

conjecture, was trying to find an H2 in graphs with high minimum degrees. We

may ask, what about finding an H2 in other classes of graphs? One such possible

class is the class of graphs forbidding some given small graphs.

Given a family F = {F1, F2, · · · , Fk} of graphs, we say that a graph G is F-

free if G contains no induced subgraph isomorphic to any of Fi, i = 1, 2, · · · , k.

Particularly, when F = {F}, we simply say that G is F -free. If G is F-free, then

the graphs in F are called forbidden subgraphs. The use of forbidden subgraphs

to obtain classes of graphs possessing special properties has long been a common

graphical technique. A pair {R,S} of connected graphs is called a hamiltonian

forbidden pair if every 2-connected {R,S}-free graph is hamiltonian. The char-

acterizations for hamiltonian forbidden pairs were completely done (for example,

see [1], [3], and [8]). Research has also been done on characterizing the forbidden

pairs for stronger hamiltonicity properties [8], such as panconectivity (a graph G

of order n is said to be panconnected if any two vertices of G, say x and y, are

joined by paths of all possible lengths l from dist(x, y) to n− 1), pancyclicity (an

n-vertex graph is pancyclic if it contains cycles of length l, for each 3 ≤ l ≤ n).

In this paper, we define forbidden pairs for hamiltonian squares (H2). A pair

of connected graphs {R,S} is called an H2 forbidden pair if every 4-connected

{R,S}-free graph has an H2. Further more, we give a full characterization for all

the possible H2 forbidden pairs.

Theorem 1.1. A pair {R,S} of connected graphs with R,S 6= P3 is an H2 for-

bidden pair if and only if R = K1,3 and S = Z1, where Z1, as depicted in Figure 1,
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is obtained from K1,3 be adding one edge between two non-adjacent vertices.

PSfrag replacements K1,3
K1,4 Z1

H

H0 = H +K3

G0 = K4 +K3

+

Figure 1: Small subgraphs

To force R = K1,3 and S = Z1 in Theorem 1.1, a 4-connected 7-vertex graph

with no H2 is used in the proof. Considering graphs with larger order, we prove

a stronger result.

Theorem 1.2. A pair {R,S} of connected graphs with R,S 6= P3 has the property

that every 4-connected {R,S}-free graph with at least 9 vertices has an H2 if and

only if R ∈ {K1,3,K1,4} and S = Z1.

In the study of forbidden pairs for hamiltonian or related properties, people

usually consider pairs {K1,3, Pi} for i ≥ 4. Except 4 classes of graphs, we show that

all other 4-connected {K1,3, P4}-free graphs have an H2, as given in the theorem

below.

Theorem 1.3. Every 4-connected {K1,3, P4}-free graph G has an H2 unless G is

isomorphic to a graph in one of the following families.

(i) (K1 ⊔K3) + (Km ⊔Kq) with m+ q ≥ 4;

(ii) (K2 ⊔K2) + (K1 ⊔Km) with m ≥ 3;

(iii) (K2 ⊔K3) + (K1 ⊔Km) with m ≥ 3;

(iv) (K3 ⊔K3) + (K1 ⊔Km) with m ≥ 3.
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It is easy to see that the square of a cycle is pancyclic. This is true for any

graphs containing an H2. Hence, partially, we give an answer to a question asked

by Gould at the 2010 SIAM Discrete Math meeting in Austin, TX.

Problem 1. Characterize the pairs of forbidden subgraphs that imply a 4-connected

graph is pancyclic.

It is worth mentioning that all the known forbidden pairs on Problem 1 include

the claw: K1,3 (see [10], [9] and [11]). Hence Theorem 1.2 gives a new forbidden

pair for pancyclicity.

2 Properties of Some Non-hamiltonian Square Graphs

In this section, we examine some properties of the graphs depicted in Figure 2.

These graphs will be used in the following section to characterize the H2 forbidden

pairs. The formal definitions of these graphs are given below.

PSfrag replacements

Km

Km

KmKm

G2 (m ≥ 4) G3 = Km +Km−1 (m ≥ 4)
G4

G5 ∈ G5(2)

x1 x2 x3 x4

v4

y1 y2 y3 y4 v6z1 z2 z3 z4

G6 (m ≥ 4)

+

m

1

2

Figure 2: 4-connected no H2 graphs
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G1: Km,m, a complete bipartite graph with m vertices in each bipartite sets,

where m ≥ 4.

G2: Km ⊔Km ∪M , a graph obtained from two vertex-disjoint copies of Km by

adding a perfect matching M between them, where m ≥ 4.

G3: Km +Km−1, the join of Km and Km−1, where m ≥ 4.

G4: The graph obtained from the square of a cycle, denoted as C2, by joining

a new vertex v4 to four vertices on C2 such that the four vertices induces

P3 ⊔K1 in the C2.

G5: Let Tt be a rooted tree of depth t (the length of a longest path from the

root to a leaf is t) such that all the leaves are at the same depth and all

non-leaves have degree 4 (known as a prefect 4-ary tree). Then G5(t) (t ≥ 2)

is the graph obtained from Tt by connecting the leaves into a cycle in a

way such that the girth of the finally resulted graph is greater than 4. The

graph G5 from the family G5(2) is depicted in Figure 2. G5 is obtained as

follows: embed a copy of T2 on the plane, and name the leaves from the

left to right, consecutively, as x1, y1, z1, x2, y2, z2, · · · , x4, y4, z4; then a cycle

C = x1x2x3x4y1 · · · y4z1 · · · z4x1 is obtained by joining the corresponding

edges. The construction can be easily generalized to G5(t) for t ≥ 3. (In

G5(2), a cycle using the root vertex contains three non-leaves and at least two

leaves; and a cycle not using the root vertex uses at least two non-leaves and

4 leaves. In any case, it indicates that G5(2) has girth at least 5. Similarly,

G5(t) has girth at least 5.)

G6: (K2⊔K2)+(Km⊔K1), where m ≥ 4. Denote the isolated vertex in Km⊔K1

by v6.

It is not hard to check that all those graphs are 4-connected. Furthermore, we

have the following fact.

Lemma 2.1. None of the graphs in Figire 2 has an H2.

Proof. Notice that in an H2, the neighborhood of any vertex induces a P4.

If G2 has an H2, then it must contain one of the edges connecting the two copies

of Km. Let xy be a such edge. Then the neighbors of x on the H2 consists of y

and another three vertices from the copy of Km containing x. However, those four

vertices do not induce a copy of P4, showing a contradiction. Similarly, neither of
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the set of neighborhoods of v4 in G4 or of v6 in G6 induces P4. Thus, neither G4

nor G6 has an H2. As G3 = Km +Km−1, any hamiltonian cycle of G3 contains a

pair of vertices from V (Km−1) such that they have distance 2 on the hamiltonian

cycle. This in turn implies that G3 has no H2. As an H2 contains triangles, the

triangle-free graph G5(t) has no H2. �

As the graph G2 will be used more frequently later on, we discuss its properties

in more detail here.

Lemma 2.2. Let S /∈ {K3, P3} be a connected {P4, C4,K4}-free graph. If G2

contains S as an induced subgraph, then S is Z1.

Proof. Since V (G) 6= ∅ and E(G) 6= ∅, S /∈ {K1,K2}. Thus |V (S)| ≥ 3.

Since S /∈ {K3, P3} and any connected 3-vertex subgraph of G2 is either K3 or P3,

we conclude that |V (S)| ≥ 4. Furthermore, as S is K4-free, it contains at most 3

vertices from one of the copies of Km. Since S is connected and {P4, C4}-free, if it

contains at least two vertices from one copy of Km, then it contains at most one

vertex from the other copy of Km. Hence S contains exactly three vertices from

one copy of Km, and exactly one vertex from the other. The connected graph

induced on such four vertices can only be isomorphic to Z1. �

3 Proofs of the Main Results

In this section, we prove Theorem 1.1, Theorem 1.2, and Theorem 1.3. We

first characterize the single forbidden subgraph for 4-connected graphs containing

an H2. As any P3-free graph is complete, we observe that any 4-connected P3-free

graph has an H2. Conversely, we have the following result.

Proposition 3.1. A connected graph F has the property that every 4-connected

F -free graph has an H2 if and only if F = P3.

Proof. Since G1 = Km,m has no H2, G1 contains F as an induced subgraph.

Hence F = K1,r, where r ≥ 2 or F contains an induced C4. As the graph G4 in

Figure 2 has no H2 and is C4-free, we see that F = K1,r. The only induced star

contained in all the graphs of family G2 is K1,2; that is, an induced copy of P3.

Hence F = P3. �
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We study the structure of a connected Z1-free graph in the following theorem,

which will help us in knowing the structure of a {K1,r, Z1}-free graph (r ≥ 3).

Lemma 3.1. Let G be a connected Z1-free graph. If there exists a vertex v ∈ V (G)

such that d(v) ≥ 3 and v is contained in a triangle, then G is isomorphic to a

complete multipartite graph Kt1,t2,··· ,tk .

Proof. We use induction on n = |V (G)|. When n = 4, G is either K4 or

the graph obtained from K4 by removing one edge, so the result holds. Suppose

that n ≥ 5 and that Lemma 3.1 holds for graphs with less than n vertices. Let

v ∈ V (G) be a vertex such that d(v) ≥ 3 and v is contained in a triangle. Let

N [v] := N(v) ∪ {v} and N [v] = V (G) − N [v]. Notice that N [v] may be empty.

As G is Z1-free, we know G[N(v)] is (K2 ⊔K1)-free. Together with the fact that

G[N(v)] contains an edge, we then know G[N(v)] is connected. Before examining

the structure of G[N(v)] further, we claim the following.

Claim 3.1. If N [v] 6= ∅, then for every w ∈ N [v], N(w) = N(v) holds.

Proof. Let w ∈ N [v]. We first claim that if N(w) ∩ N(v) 6= ∅, then N(v) ⊆

N(w). Suppose not, then there exists v′ ∈ N(v) such that wv′ /∈ E(G). We choose

a such v′ such that w is adjacent to a neighbor of v′, say u′, in N(v). However,

the graph induced on {v, v′, u′, w} is isomorphic to Z1, showing a contradiction.

Hence N(v) ⊆ N(w). The claim is proved.

We then claim that if N(w) ∩ N(v) 6= ∅, then N(w) ⊆ N(v). Otherwise,

assume that w is adjacent to a vertex w′ ∈ N [v]. If w′ is adjacent to a vertex

in N(v), then we have N(v) ⊆ N(w) ∩ N(w′) by the earlier assertion. Let v′ ∈

N(v) ⊆ N(w) ∩N(w′). Then {v, v′, w,w′} induces a Z1. Hence we assume w′ is

not adjacent to any vertex in N(v). Let v′, u′ ∈ N(v) ⊆ N(w). Then {u′, v′, w,w′}

induces a Z1. Thus w is not adjacent to any vertex in N [v].

As G is connected, Claim 3.1 is then implied by the above two assertions.

We now proceed with the proof according to several cases depending on the

structure of G[N(v)]. Let |V (G) −N(v)| = t′ and G′ = G[N(v)]. Recall that G′

is connected and is (K2 ⊔K1)-free.

Case 1. G′ has a vertex with degree at least 3 in G′ and the vertex is contained

in a triangle in G′.

By the induction hypothesis, G′ ∼= Kt1,t2,··· ,tk−1
. Then we have G ∼= Kt1,t2,··· ,tk−1,t

′ .
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So we suppose that the condition in Case 1 is not satisfied by G′. Let u ∈ V (G′)

be a vertex of maximum degree in G′.

Case 2. dG′(u) ≤ 2.

Then G′ is the union of vertex disjoint paths and cycles. As G′ is connected

and is (K2 ⊔K1)-free, we know G′ is isomorphic to one of the graphs K3, P3, or

C4. In any case, G is isomorphic to a complete multipartite graph.

Case 3. dG′(u) ≥ 3.

As u is not on a triangle in G′, NG′(u) is an independent set in G′. If NG′ [u] =

V (G′) = N(v), then it is already seen that G is isomorphic to a complete multiple

graph with the size of each parts as t′, 1, and dG′(u), respectively. Hence, we

assume N(v)−NG′ [u] 6= ∅. As G′ is connected and is (K2 ⊔K1)-free, every vertex

in N(v)−NG′ [u] is adjacent to every vertex in NG′(u). Again, by the fact that G′ is

(K2⊔K1)-free, we know there is no edge with the two ends inN(v)−NG′ [u]. Hence,

N(v) − NG′ [u] is an independent set. Let t1 = dG′(u) and t2 = |N(v) −NG′(u)|.

We see that G ∼= Kt1,t2,t′ .

The proof is complete. �

Additionally, if G is a {Z1,K1,r}-free graph with a vertex of degree at least

r (r ≥ 3), then G contains a vertex which is contained in a triangle and is of degree

at least 3. Thus by applying Lemma 3.1 and by the fact that G is K1,r-free, we

have the following result.

Corollary 3.1. Let G be a connected {Z1,K1,r}-free graph with a vertex of degree

at least r. Then G is isomorphic to a complete multipartite graph Kt1,t2,··· ,tk such

that each 1 ≤ ti ≤ r − 1.

The case of r = 3 in the above Corollary has been mentioned in other research

papers, for example, in [8]. By Corollary 3.1, we have the following result.

Corollary 3.2. A connected {K1,r, Z1}-free graph with a vertex of degree at least

r is (n− r + 1)-connected.

By Corollary 3.1, a 4-connected {Z1,K1,3}-free graph G is a complete graph

missing at most a matching. By finding a hamiltonian cycle of G such that non-

adjacent pairs of vertices are of distance at least 3 on the cycle, we can construct

an H2 in G. Hence, we obtain the result below.
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Theorem 3.1. Every 4-connected {Z1,K1,3}-free graph contains an H2.

For 4-connected {Z1,K1,4}-free graphs, we have a similar result.

Theorem 3.2. Every 4-connected {Z1,K1,4}-free graph contains an H2 provided

|V (G)| ≥ 9.

Proof. Let n = |V (G)|. We use induction on n to show the theorem. By

Corollary 3.1, any 4-connected 9-vertex {Z1,K1,4}-free graph contains K3,3,3 as a

spanning subgraph. It is not difficult to verify that K3,3,3 contains an H2. For

example, let {xi, yi, zi} (i = 1, 2, 3) be the three vertices in the i-th tripartition.

Then x1x2x3y1y2y3z1z2z3x1 with the additional edges gives an H2. So we assume

n ≥ 10. Let v ∈ V (G) be a vertex. We consider the graph G′ = G − v. Then

G′ is 6-connected by Corollary 3.2. Additionally, G′ has at least 9 vertices and

is {Z1,K1,4}-free. Hence it contains an H2, say C2
1 by the induction hypothesis.

Since G is a multipartite graph with each partition of size at most 3, there are at

most two vertices on C2
1 which are not adjacent to v. Thus, there are at least 4

consecutive vertices on C2
1 such that each of them is adjacent to v. Let v1, v2, v3, v4

be 4 such consecutive vertices on C2
1 . Then C2

1 − {v2v3, v2v4, v1v3} ∪ {vvi | i =

1, 2, 3, 4} gives an H2 of G. �

Notice that the order 9 condition in the above theorem is sharp. The complete

tripartite 8-vertex graph K2,3,3 is 4-connected and {K1,4, Z1}-free, but contains no

H2.

Before proving Theorem 1.1 and Theorem 1.2, we notice that if {R,S} is a

forbidden pair implying the containment of an H2 in a 4-connected graph, then

neither of R or S is a triangle since an H2 always contains triangles.

3.1 Proof of Theorem 1.1

The sufficiency follows from Theorem 3.1.

Conversely, we will first show that one of R and S must be a claw. Thus,

suppose that R,S 6= K1,3. Assume, without loss of generality, that R is an induced

subgraph of G1 = Km,m. Then R = K1,r, where r ≥ 4 or R contains an induced

C4. We now consider two cases.

Case 1: R = K1,r (r ≥ 4).
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The graph G4 has no induced copy of R, so it contains an induced copy of

S. As G4 is {K4,K1,3}-free, we see that S contains no K4 and no induced K1,3.

Also, R is not an induced subgraph of G0 = K4 + K3. So G0 contains S as an

induced subgraph. Since S /∈ {P3,K3} and any connected 3-vertex subgraph of

G0 is contained in {P3,K3}, we conclude that S has at least 4 vertices. In G0, any

4 vertices of G0 with at most one vertex in K3 induces a K4; and any 4 vertices

of G0 with three vertices in K3 induces a K1,3. Hence, S contains exactly two

vertices from the subgraph K4 of G0 and exactly two vertices from the subgraph

K3 of G0, as S contains no K4, and no induced K1,3. So S is an induced K−

4
(K4

with exactly one edge removed). However, G2 has no induced R = K1,r (r ≥ 4),

and no induced K−

4
. We obtain a contradiction.

Case 2: R contains an induced C4.

Since G4 has no induced copy of R, it contains an induced copy of S. As G4

is {K4,K1,3}-free, we see that S contains no K4 and no induced K1,3. Also, R is

not an induced subgraph of G3. So G3 contains S as an induced subgraph. Since

S is connected and S /∈ {K1,K2,K3, P3}, and any connected 2-vertex, 3-vertex

subgraphs of G3 are contained in {K2,K3, P3}, we conclude that |V (S)| ≥ 4. In

G3, any 4 vertices from Km or any 3 vertices from Km and one vertex from Km−1

induce a K4; and any 4 vertices in which three from Km−1 induce a K1,3. We

conclude that S contains exactly two vertices from Km and exactly two vertices

from Km−1, as S contains no K4 and no induced K1,3. So S is an induced K−

4
.

However, each graph in G5(t) has no H2, no induced C4, and no triangle (so no

K−

4
). This gives a contradiction.

Thus, one of R and S must be a claw. We assume, without loss of generality,

that R = K1,3. As R is K1,3, S in an induced subgraph of G2, G4, and G6, as

none of them contains induced claws. Note that G4 is {C4,K4}-free, and G6 is

P4-free, so S is {P4, C4,K4}-free. Applying Lemma 2.2, we see S is Z1. �

3.2 Proof of Theorem 1.2

The sufficiency follows from Theorem 3.2.

Conversely, we will first show that one of R and S must be Z1. Thus, suppose

that R,S 6= Z1. Assume, without loss of generality, that R is an induced subgraph

of G1 = Km,m. Then R = K1,r, where r ≥ 3 or R contains an induced C4. We

10



now consider two cases.

Case 1: R = K1,r (r ≥ 3).

Then R is not an induced subgraph of G2. So G2 contains S as an induced

subgraph. Both G4 and G6 contains an induced copy of S since neither of them

contains an induced copy of R. Since G4 is {C4,K4}-free and G6 is P4-free, we see

that S is {P4, C4,K4}-free. Applying Lemma 2.2, we have S = Z1.

Case 2: R contains an induced C4.

The graph G4 has no induced copy of R, so it contains an induced copy of S. As

G4 is {K4,K1,3}-free, we see that S contains no K4 and no induced K1,3. Also, R

is not an induced subgraph of G3. So G3 contains S as an induced subgraph. Since

S is connected and S /∈ {K1,K2,K3, P3}, and any connected 2-vertex, 3-vertex

subgraphs of G3 are contained in {K2,K3, P3}, we conclude that |V (S)| ≥ 4. In

G3, any 4 vertices from Km or any 3 vertices from Km and one vertex from Km−1

induce a K4; and any 4 vertices in which three from Km−1 induce a K1,3. We

conclude that S contains exactly two vertices from Km and exactly two vertices

from Km−1, as S contains no K4 and no induced K1,3. So S is an induced K−

4
.

However, G2 has no induced R = K1,r (r ≥ 3) and no induced K−

4
. We obtain a

contradiction.

Thus one of R and S must be Z1. Assume, without loss of generality, that

S = Z1. As G1 = Km,m contains no Z1, G1 contains an induced copy of R.

Hence R = K1,r, where r ≥ 3 or R contains an induced C4. Since each graph in

G5(t) (t ≥ 2) is C4-free, and the only possible stars in it are K1,r for r ≤ 4, we see

that R = K1,r for r = 3, 4. �

3.3 Proof of Theorem 1.3

We now prove Theorem 1.3. Let P be a path. We use P 2 to denote the square

of P . In omitting the edges joining distance 2 vertices on the path, we will use the

same notation to denote the square of the path. Similar notation for the square of a

cycle. Let P 2
1 = v1v2 · · · vs−1vs and P 2

2 = u1u2 · · · ut−1ut be two path squares. We

denote by P 2
1P

2
2 as the concatenation of P 2

1 and P 2
2 by adding edges u1vs, u1vs−1

and u2vs, where u1vs−1 exists only if s ≥ 2 and u2vs exists only if t ≥ 2. Also, the

notations v1P
2
1 , P

2
1 vs, or v1P

2
1 vs may be used for specifying the end vertices of P 2

1 .
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We may assume that G is not complete. Let S be a minimum vertex-cut of

G. Let Gi = (Vi, Ei) (i = 1, 2, · · · , k) be all the components of G − S. Since G is

4-connected, |S| ≥ 4. As S is a minimum vertex-cut, we have the following claim.

Claim 1: For every vertex v ∈ S, N(v) ∩ Vi 6= ∅, for all i = 1, 2, · · · , k.

Since G is claw-free, from Claim 1 we get Claim 2 below.

Claim 2: k = 2; that is, G− S has exactly two components.

Also, by the fact that G is P4-free, we conclude the following claim.

Claim 3: For each v ∈ S, NGi
(v) = Vi for i = 1, 2.

As E(V1, V2) = ∅, G is claw-free, and by Claim 3, we obtain Claim 4 as follows.

Claim 4: Gi is a complete subgraph of G for i = 1, 2.

We will use induction on n = |V (G)| in some cases of the proof. The smallest

4-connected {K1,3, P4}-free graph is K5, it contains an H2. So we suppose n ≥ 6

and suppose that the theorem holds for the described graphs of smaller orders.

Let P 2
i be a hamiltonian path square of Gi (i = 1, 2).

If G[S] is 4-connected and is not isomorphic to any graphs in the exception

families, then by the induction hypothesis, G[S] contains anH2, say C2
s , which con-

tains at least 4 vertices by the assumption that G[S] is 4-connected. Let x1, x2, x3

and x4 be 4 consecutive vertices on C2
s . By Claim 3, NGi

(xj) = Vi for j = 1, 2, 3, 4

and i = 1, 2. Hence C2 = x1x2P
2
1 x3x4P

2
2C

2
sx1 is an H2 of G.

So, we assume that G[S] is 4-connected and G[S] is a graph in some of the

exception families. In this case, we first show that every graph in the exception

families has a hamiltonian path square. Then by concatenating the path square,

P 2
1 , and P 2

2 together, we can get an H2 of G.

Let Q be a graph isomorphic to (K1 ⊔K3) + (Km ⊔Kq) for some m+ q ≥ 4.

We may assume, without loss of generality, that m ≥ 2. Then we let P 2
3 be a path

square of K3, P
2
m a path square of Km, and P 2

q a path square of Kq. Also, let

x be the single vertex from K1. Then P 2
q P

2
3P

2
mx is a hamiltonian path square of

Q. The constructions for a hamiltonian path square for graphs in the families of

(K2 ⊔K2) + (K1 ⊔Km), (K2 ⊔K3) + (K1 ⊔Km), and (K3 ⊔K3) + (K1 ⊔Km) are

similar, so we omit the details here.
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Now let P 2
s be a hamiltonian path square of G[S], and let x1, x2, x3 and x4 be

4 consecutive vertices on P 2
s . By Claim 3, for any v ∈ S, NGi

(v) = Vi (i = 1, 2).

So C2 = x1x2P
2
1 x3x4P

2
2 P

2
s x1 is an H2 of G.

The remaining proof is divided into two cases according to the connectivity of

G[S]. Let G′ = G[S].

Case 1. Suppose G′ is connected but not 4-connected.

If G′ ∼= K4, let C2
s = x1x2x3x4 be an H2 of it. Then C2 = x1x2P

2
1 x3x4P

2
2 x1

is an H2 of G. So suppose G′ 6∼= K4. As |V (G′)| ≥ 4 and G′ is not 4-connected,

G′ is not complete. Let S′ be a minimum vertex-cut of G′. Notice that 1 ≤

|S′| ≤ 3. Similar discussion as in Claim 1-Claim 4 shows that G′ − S′ has exactly

two components, say, G′

1 and G′

2 such that each is a complete subgraph, and

G′ = G′[S′] + (G′

1 ⊔G′

2). As G
′ is also claw-free, we see that S′ is K3-free. Let P

2
1i

be a hamiltonian path square of G′

i (i = 1, 2). Suppose, without loss of generality,

that |V (P 2
11)| ≤ |V (P 2

12)|. We define two new vertex disjoint path squares of G′.

C1. |S′| = 1. Let S′ = {x1} and P 2
21 = P 2

11x1, P
2
22 = P 2

12;

C2. |S′| = 2. Let S′ = {x1, x2} and P 2
21 = P 2

11x1, P
2
22 = P 2

12x2;

C3. |S′| = 3. Let S′ = {x1, x2, x3}, and assume that x1x3 ∈ E(G′) by the fact

that S′ is K3-free, then let P 2
21 = x1x3P

2
11, P

2
22 = P 2

12x2.

If C1 is true, then max{|V1|, |V2|} ≥ 2. Otherwise, S′ ∪ V1 ∪ V2, a 3-set,

separates G′

1 and G′

2, contradicting the 4-connectedness assumption of G. Assume,

without loss of generality, that |V1| ≥ 2. To specify the end vertices, we denote

P 2
21 = x1P

2
21x and P 2

22 = zP 2
22x2, where x1 ∈ S′ and z ∈ V (G′) − S′. Clearly,

x1z ∈ E(G). As |V (G′)| ≥ 4 and |S′| = 1, |V (P 2
12)| ≥ 2 by the assumption

that |V (P 2
11)| ≤ |V (P 2

12)|. Hence, both P 2
21 and P 2

22 have at least 2 vertices. In

specifying one end of the hamiltonian path square P 2
2 of G2, let P

2
2 = P 2

2w. Then

x1P
2
21xP

2
1 x2P

2
22zP

2
2wx1 is an H2 of G even if |V (P 2

2 )| = 1.

For cases C2 and C3, to specify the end vertices, we denote P 2
21 = x1P

2
21x and

P 2
22 = zP 2

22x2, where x1, x2 ∈ S′ and x, z ∈ V (G′)− S′. Since each of P 2
11 and P 2

12

has at least one vertex, each of the P 2
21 and P 2

22 defined in C2 and C3 has at least

two vertices. By the fact that G′ = G′[S′] + (G′

1 ⊔ G′

2) and the assumption that

x1x3 ∈ E(G), we see both P 2
21 and P 2

22 are path squares satisfying x1z, xx2 ∈ E(G).
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In specifying one end of the hamiltonian path square P 2
2 of G2, let P 2

2 = P 2
2w.

Then x1P
2
21xP

2
1 x2P

2
22zP

2
2wx1 is an H2 of G even if |V (P 2

1 )| = 1 or |V (P 2
2 )| = 1.

Case 2. Suppose G′ is disconnected.

As G is claw-free and G = G′+(G1⊔G2), we see that G
′ consists of exactly two

complete components, say G′

1 and G′

2. So G = (G′

1⊔G′

2)+(G1⊔G2) and V1∪V2 is

also a vertex-cut ofG. For i = 1, 2, let |V (G′

i)| = |V ′

i |. So |V1∪V2| ≥ |V ′

1∪V
′

2 | = |S|,

by the minimality of |S|. Recall that G is not isomorphic to any of the graphs in

the following families:

(i) (K1 ⊔K3) + (Km ⊔Kq) with m+ q ≥ 4;

(ii) (K2 ⊔K2) + (K1 ⊔Km) with m ≥ 3;

(iii) (K2 ⊔K3) + (K1 ⊔Km) with m ≥ 3;

(iv) (K3 ⊔K3) + (K1 ⊔Km) with m ≥ 3.

Assume first that min{|V1|, |V2|, |V
′

1 |, |V
′

2 |} ≥ 2. In specifying the end ver-

tices, we let P 2
1 = x1P

2
1 y1, P

2
2 = x2P

2
2 y2, P

2
11 = x11P

2
11y11, and P 2

12 = x21P
2
12y21

be the hamiltonian path square of G1, G2, G′

1 and G′

2, respectively. Then as

G = (G′

1 ⊔ G′

2) + (G1 ⊔ G2), we know x1P
2
1 y1x11P

2
11y11x2P

2
2 y2x21P

2
12y21x1 is an

H2 of G. So assume, without loss of generality, that |V1| = 1. Then as G is not

isomorphic to any graphs in (i) and |V1 ∪ V2| ≥ |V ′

1 ∪ V ′

2 | = |S| ≥ 4, we have that

|V2| ≥ 4. So, G1 ⊔ G2
∼= K1 ⊔ Km for some m ≥ 4. Also, as G is not isomor-

phic to any graphs in (i)-(iv), G′

1 ⊔ G′

2 6∼= K1 ⊔ K3,K2 ⊔ K2,K2 ⊔ K3,K3 ⊔ K3.

This indicates that max{|V ′

1 |, |V
′

2 |} ≥ 4. We may assume, without loss of gen-

erality, that |V ′

1 | ≥ 4. Let P 2
2 = x21x22 · · · x2,s−1x2s (s ≥ 4) be the hamiltonian

path square of G2 specified earlier, P 2
11 = x11x12 · · · x1,t−1x1t (t ≥ 4) be a hamil-

tonian path square of G′

1, and let P 2
12 be a hamiltonian path square of G′

2. Then

x11x12P
2
1 x13x14P

2
11x1,t−1x1tx21x22P

2
12x23x24P

2
2 x2,s−1x2sx11 is an H2 of G.

The proof of Theorem 1.3 is then complete. �
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