Characterizing forbidden pairs for hamiltonian squares

Guantao Chen and Songling Shan
Georgia State University, Atlanta, GA 30303, USA

Abstract

The square of a graph is obtained by adding additional edges joining all pair of vertices of distance two in the original graph. Particularly, if C is a hamiltonian cycle of a graph G, then the square of C is called a hamiltonian square of G. In this paper, we characterize all possible forbidden pairs, which implies the containment of a hamiltonian square, in a 4 -connected graph. The connectivity condition is necessary as, except K_{3} and K_{4}, the square of a cycle is always 4-connected.

Keywords. Hamiltonian square; Forbidden pair

1 Introduction

In this paper, we only consider simple and finite graphs. Let G and H be two graphs. We use $G \sqcup H$ to denote the vertex-disjoint union of G and H if G and H are vertex disjoint, use $G \cup H$ to denote the union of G and H, and use $G+H$ to denote the join of G and H, which is the graph on $V(G) \cup V(H)$ with edges including all edges of G and H, and all edges between $V(G)$ and $V(H)$. The notation \bar{G} denotes the complement of G; that is, the graph with vertex set $V(G)$ and edges between all non-adjacent pairs of vertices in G. The square of a graph is obtained by adding additional edges joining all pair of vertices of distance two in the original graph. Particularly, if C is a hamiltonian cycle of a graph G, then the square of C is called a hamiltonian square of G. If G contains a hamiltonian square, we then say G has an H^{2}. The earliest problem on hamiltonian square can be traced back to a conjecture proposed by Pósa [4]. The conjecture states that any n-vertex graph with minimum degree at least $\frac{2 n}{3}$ contains a hamiltonian square. The complete tripartite graph $K_{t, t, t-1}$ has minimum degree $2(3 t-1) / 3-1 / 3$, but has no H^{2}. So, if true, the conjecture is best possible. In 1973, Seymour [14] made a
more general conjecture, which says that any n-vertex graph with minimum degree at least $\frac{k n}{k+1}$ contains a k th power of a hamiltonian cycle. Here, the k th power of a graph is obtained by joining every pair of vertices of distance at most k in the original graph. Pósa's conjecture is almost completely solved. In 1994, Fan and Häggkvist [5] showed Pósa's conjecture for $\delta(G) \geq 5 n / 7$. Fan and Kierstead [6], in 1996, proved that for any $\varepsilon>0$, there is a number m, dependent only on ε, such that if $\delta(G) \geq(2 / 3+\varepsilon) n+m$, then G contains the square of a Hamiltonian path between every pair of edges. This implies that G then also contains the square of a hamiltonian cycle. The same authors in 1996 [7], showed that if $\delta(G) \geq(2 n-1) / 3$, then G contains the square of a hamiltonian path. For graphs with large orders, Pósa's conjecture was solved by Komlós, Sárközy, and Szemerédi [12] in 1996 using the Regularity Lemma and the Blow-up Lemma. Using the absorbing method in avoiding using the Regularity Lemma, Levitt, Sárközy, and Szemerédi [13] in 2010 improved the bound on the orders. In 2011, Châu, DeBiasio, and Kierstead [2] verified Pósa's conjecture for $n \geq 200,000,000$. The work, in investigating Pósa's conjecture, was trying to find an H^{2} in graphs with high minimum degrees. We may ask, what about finding an H^{2} in other classes of graphs? One such possible class is the class of graphs forbidding some given small graphs.

Given a family $\mathcal{F}=\left\{F_{1}, F_{2}, \cdots, F_{k}\right\}$ of graphs, we say that a graph G is \mathcal{F} free if G contains no induced subgraph isomorphic to any of $F_{i}, i=1,2, \cdots, k$. Particularly, when $\mathcal{F}=\{F\}$, we simply say that G is F-free. If G is \mathcal{F}-free, then the graphs in \mathcal{F} are called forbidden subgraphs. The use of forbidden subgraphs to obtain classes of graphs possessing special properties has long been a common graphical technique. A pair $\{R, S\}$ of connected graphs is called a hamiltonian forbidden pair if every 2 -connected $\{R, S\}$-free graph is hamiltonian. The characterizations for hamiltonian forbidden pairs were completely done (for example, see [1], [3], and [8]). Research has also been done on characterizing the forbidden pairs for stronger hamiltonicity properties [8], such as panconectivity (a graph G of order n is said to be panconnected if any two vertices of G, say x and y, are joined by paths of all possible lengths l from $\operatorname{dist}(x, y)$ to $n-1$), pancyclicity (an n-vertex graph is pancyclic if it contains cycles of length l, for each $3 \leq l \leq n$). In this paper, we define forbidden pairs for hamiltonian squares $\left(H^{2}\right)$. A pair of connected graphs $\{R, S\}$ is called an H^{2} forbidden pair if every 4-connected $\{R, S\}$-free graph has an H^{2}. Further more, we give a full characterization for all the possible H^{2} forbidden pairs.

Theorem 1.1. A pair $\{R, S\}$ of connected graphs with $R, S \neq P_{3}$ is an H^{2} forbidden pair if and only if $R=K_{1,3}$ and $S=Z_{1}$, where Z_{1}, as depicted in Figure 1,
is obtained from $K_{1,3}$ be adding one edge between two non-adjacent vertices.

$K_{1,3}$

$K_{1,4}$

Z_{1}

$$
G_{0}=K_{4}+\overline{K_{3}}
$$

Figure 1: Small subgraphs
To force $R=K_{1,3}$ and $S=Z_{1}$ in Theorem 1.1, a 4-connected 7 -vertex graph with no H^{2} is used in the proof. Considering graphs with larger order, we prove a stronger result.

Theorem 1.2. A pair $\{R, S\}$ of connected graphs with $R, S \neq P_{3}$ has the property that every 4 -connected $\{R, S\}$-free graph with at least 9 vertices has an H^{2} if and only if $R \in\left\{K_{1,3}, K_{1,4}\right\}$ and $S=Z_{1}$.

In the study of forbidden pairs for hamiltonian or related properties, people usually consider pairs $\left\{K_{1,3}, P_{i}\right\}$ for $i \geq 4$. Except 4 classes of graphs, we show that all other 4-connected $\left\{K_{1,3}, P_{4}\right\}$-free graphs have an H^{2}, as given in the theorem below.

Theorem 1.3. Every 4-connected $\left\{K_{1,3}, P_{4}\right\}$-free graph G has an H^{2} unless G is isomorphic to a graph in one of the following families.
(i) $\left(K_{1} \sqcup K_{3}\right)+\left(K_{m} \sqcup K_{q}\right)$ with $m+q \geq 4$;
(ii) $\left(K_{2} \sqcup K_{2}\right)+\left(K_{1} \sqcup K_{m}\right)$ with $m \geq 3$;
(iii) $\left(K_{2} \sqcup K_{3}\right)+\left(K_{1} \sqcup K_{m}\right)$ with $m \geq 3$;
(iv) $\left(K_{3} \sqcup K_{3}\right)+\left(K_{1} \sqcup K_{m}\right)$ with $m \geq 3$.

It is easy to see that the square of a cycle is pancyclic. This is true for any graphs containing an H^{2}. Hence, partially, we give an answer to a question asked by Gould at the 2010 SIAM Discrete Math meeting in Austin, TX.

Problem 1. Characterize the pairs of forbidden subgraphs that imply a 4-connected graph is pancyclic.

It is worth mentioning that all the known forbidden pairs on Problem 1 include the claw: $K_{1,3}$ (see [10], [9] and [11]). Hence Theorem 1.2 gives a new forbidden pair for pancyclicity.

2 Properties of Some Non-hamiltonian Square Graphs

In this section, we examine some properties of the graphs depicted in Figure 2. These graphs will be used in the following section to characterize the H^{2} forbidden pairs. The formal definitions of these graphs are given below.

Figure 2: 4-connected no H^{2} graphs
$G_{1}: K_{m, m}$, a complete bipartite graph with m vertices in each bipartite sets, where $m \geq 4$.
$G_{2}: K_{m} \sqcup K_{m} \cup M$, a graph obtained from two vertex-disjoint copies of K_{m} by adding a perfect matching M between them, where $m \geq 4$.
$G_{3}: K_{m}+\overline{K_{m-1}}$, the join of K_{m} and $\overline{K_{m-1}}$, where $m \geq 4$.
G_{4} : The graph obtained from the square of a cycle, denoted as C^{2}, by joining a new vertex v_{4} to four vertices on C^{2} such that the four vertices induces $P_{3} \sqcup K_{1}$ in the C^{2}.
G_{5} : Let T_{t} be a rooted tree of depth t (the length of a longest path from the root to a leaf is t) such that all the leaves are at the same depth and all non-leaves have degree 4 (known as a prefect 4-ary tree). Then $G_{5}(t)(t \geq 2)$ is the graph obtained from T_{t} by connecting the leaves into a cycle in a way such that the girth of the finally resulted graph is greater than 4 . The graph G_{5} from the family $G_{5}(2)$ is depicted in Figure 2. G_{5} is obtained as follows: embed a copy of T_{2} on the plane, and name the leaves from the left to right, consecutively, as $x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}, \cdots, x_{4}, y_{4}, z_{4}$; then a cycle $C=x_{1} x_{2} x_{3} x_{4} y_{1} \cdots y_{4} z_{1} \cdots z_{4} x_{1}$ is obtained by joining the corresponding edges. The construction can be easily generalized to $G_{5}(t)$ for $t \geq 3$. (In $G_{5}(2)$, a cycle using the root vertex contains three non-leaves and at least two leaves; and a cycle not using the root vertex uses at least two non-leaves and 4 leaves. In any case, it indicates that $G_{5}(2)$ has girth at least 5. Similarly, $G_{5}(t)$ has girth at least 5.)
$G_{6}: \quad\left(K_{2} \sqcup K_{2}\right)+\left(K_{m} \sqcup K_{1}\right)$, where $m \geq 4$. Denote the isolated vertex in $K_{m} \sqcup K_{1}$ by v_{6}.

It is not hard to check that all those graphs are 4-connected. Furthermore, we have the following fact.

Lemma 2.1. None of the graphs in Figire 2 has an H^{2}.

Proof. Notice that in an H^{2}, the neighborhood of any vertex induces a P_{4}. If G_{2} has an H^{2}, then it must contain one of the edges connecting the two copies of K_{m}. Let $x y$ be a such edge. Then the neighbors of x on the H^{2} consists of y and another three vertices from the copy of K_{m} containing x. However, those four vertices do not induce a copy of P_{4}, showing a contradiction. Similarly, neither of
the set of neighborhoods of v_{4} in G_{4} or of v_{6} in G_{6} induces P_{4}. Thus, neither G_{4} nor G_{6} has an H^{2}. As $G_{3}=K_{m}+\overline{K_{m-1}}$, any hamiltonian cycle of G_{3} contains a pair of vertices from $V\left(\overline{K_{m-1}}\right)$ such that they have distance 2 on the hamiltonian cycle. This in turn implies that G_{3} has no H^{2}. As an H^{2} contains triangles, the triangle-free graph $G_{5}(t)$ has no H^{2}.

As the graph G_{2} will be used more frequently later on, we discuss its properties in more detail here.

Lemma 2.2. Let $S \notin\left\{K_{3}, P_{3}\right\}$ be a connected $\left\{P_{4}, C_{4}, K_{4}\right\}$-free graph. If G_{2} contains S as an induced subgraph, then S is Z_{1}.

Proof. Since $V(G) \neq \emptyset$ and $E(G) \neq \emptyset, S \notin\left\{K_{1}, K_{2}\right\}$. Thus $|V(S)| \geq 3$. Since $S \notin\left\{K_{3}, P_{3}\right\}$ and any connected 3-vertex subgraph of G_{2} is either K_{3} or P_{3}, we conclude that $|V(S)| \geq 4$. Furthermore, as S is K_{4}-free, it contains at most 3 vertices from one of the copies of K_{m}. Since S is connected and $\left\{P_{4}, C_{4}\right\}$-free, if it contains at least two vertices from one copy of K_{m}, then it contains at most one vertex from the other copy of K_{m}. Hence S contains exactly three vertices from one copy of K_{m}, and exactly one vertex from the other. The connected graph induced on such four vertices can only be isomorphic to Z_{1}.

3 Proofs of the Main Results

In this section, we prove Theorem 1.1, Theorem 1.2, and Theorem 1.3. We first characterize the single forbidden subgraph for 4-connected graphs containing an H^{2}. As any P_{3}-free graph is complete, we observe that any 4-connected P_{3}-free graph has an H^{2}. Conversely, we have the following result.

Proposition 3.1. A connected graph F has the property that every 4 -connected F-free graph has an H^{2} if and only if $F=P_{3}$.

Proof. Since $G_{1}=K_{m, m}$ has no H^{2}, G_{1} contains F as an induced subgraph. Hence $F=K_{1, r}$, where $r \geq 2$ or F contains an induced C_{4}. As the graph G_{4} in Figure 2 has no H^{2} and is C_{4}-free, we see that $F=K_{1, r}$. The only induced star contained in all the graphs of family G_{2} is $K_{1,2}$; that is, an induced copy of P_{3}. Hence $F=P_{3}$.

We study the structure of a connected Z_{1}-free graph in the following theorem, which will help us in knowing the structure of a $\left\{K_{1, r}, Z_{1}\right\}$-free graph $(r \geq 3)$.

Lemma 3.1. Let G be a connected Z_{1}-free graph. If there exists a vertex $v \in V(G)$ such that $d(v) \geq 3$ and v is contained in a triangle, then G is isomorphic to a complete multipartite graph $K_{t_{1}, t_{2}, \cdots, t_{k}}$.

Proof. We use induction on $n=|V(G)|$. When $n=4, G$ is either K_{4} or the graph obtained from K_{4} by removing one edge, so the result holds. Suppose that $n \geq 5$ and that Lemma 3.1 holds for graphs with less than n vertices. Let $v \in V(G)$ be a vertex such that $d(v) \geq 3$ and v is contained in a triangle. Let $N[v]:=N(v) \cup\{v\}$ and $\bar{N}[v]=V(G)-N[v]$. Notice that $\bar{N}[v]$ may be empty. As G is Z_{1}-free, we know $G[N(v)]$ is $\left(K_{2} \sqcup K_{1}\right)$-free. Together with the fact that $G[N(v)]$ contains an edge, we then know $G[N(v)]$ is connected. Before examining the structure of $G[N(v)]$ further, we claim the following.

Claim 3.1. If $\bar{N}[v] \neq \emptyset$, then for every $w \in \bar{N}[v], N(w)=N(v)$ holds.

Proof. Let $w \in \bar{N}[v]$. We first claim that if $N(w) \cap N(v) \neq \emptyset$, then $N(v) \subseteq$ $N(w)$. Suppose not, then there exists $v^{\prime} \in N(v)$ such that $w v^{\prime} \notin E(G)$. We choose a such v^{\prime} such that w is adjacent to a neighbor of v^{\prime}, say u^{\prime}, in $N(v)$. However, the graph induced on $\left\{v, v^{\prime}, u^{\prime}, w\right\}$ is isomorphic to Z_{1}, showing a contradiction. Hence $N(v) \subseteq N(w)$. The claim is proved.

We then claim that if $N(w) \cap N(v) \neq \emptyset$, then $N(w) \subseteq N(v)$. Otherwise, assume that w is adjacent to a vertex $w^{\prime} \in \bar{N}[v]$. If w^{\prime} is adjacent to a vertex in $N(v)$, then we have $N(v) \subseteq N(w) \cap N\left(w^{\prime}\right)$ by the earlier assertion. Let $v^{\prime} \in$ $N(v) \subseteq N(w) \cap N\left(w^{\prime}\right)$. Then $\left\{v, v^{\prime}, w, w^{\prime}\right\}$ induces a Z_{1}. Hence we assume w^{\prime} is not adjacent to any vertex in $N(v)$. Let $v^{\prime}, u^{\prime} \in N(v) \subseteq N(w)$. Then $\left\{u^{\prime}, v^{\prime}, w, w^{\prime}\right\}$ induces a Z_{1}. Thus w is not adjacent to any vertex in $\bar{N}[v]$.

As G is connected, Claim 3.1 is then implied by the above two assertions.
We now proceed with the proof according to several cases depending on the structure of $G[N(v)]$. Let $|V(G)-N(v)|=t^{\prime}$ and $G^{\prime}=G[N(v)]$. Recall that G^{\prime} is connected and is ($K_{2} \sqcup K_{1}$)-free.

Case 1. G^{\prime} has a vertex with degree at least 3 in G^{\prime} and the vertex is contained in a triangle in G^{\prime}.

By the induction hypothesis, $G^{\prime} \cong K_{t_{1}, t_{2}, \cdots, t_{k-1}}$. Then we have $G \cong K_{t_{1}, t_{2}, \cdots, t_{k-1}, t^{\prime}}$.

So we suppose that the condition in Case 1 is not satisfied by G^{\prime}. Let $u \in V\left(G^{\prime}\right)$ be a vertex of maximum degree in G^{\prime}.

Case 2. $d_{G^{\prime}}(u) \leq 2$.
Then G^{\prime} is the union of vertex disjoint paths and cycles. As G^{\prime} is connected and is $\left(K_{2} \sqcup K_{1}\right)$-free, we know G^{\prime} is isomorphic to one of the graphs K_{3}, P_{3}, or C_{4}. In any case, G is isomorphic to a complete multipartite graph.

Case 3. $d_{G^{\prime}}(u) \geq 3$.
As u is not on a triangle in $G^{\prime}, N_{G^{\prime}}(u)$ is an independent set in G^{\prime}. If $N_{G^{\prime}}[u]=$ $V\left(G^{\prime}\right)=N(v)$, then it is already seen that G is isomorphic to a complete multiple graph with the size of each parts as $t^{\prime}, 1$, and $d_{G^{\prime}}(u)$, respectively. Hence, we assume $N(v)-N_{G^{\prime}}[u] \neq \emptyset$. As G^{\prime} is connected and is $\left(K_{2} \sqcup K_{1}\right)$-free, every vertex in $N(v)-N_{G^{\prime}}[u]$ is adjacent to every vertex in $N_{G^{\prime}}(u)$. Again, by the fact that G^{\prime} is $\left(K_{2} \sqcup K_{1}\right)$-free, we know there is no edge with the two ends in $N(v)-N_{G^{\prime}}[u]$. Hence, $N(v)-N_{G^{\prime}}[u]$ is an independent set. Let $t_{1}=d_{G^{\prime}}(u)$ and $t_{2}=\left|N(v)-N_{G^{\prime}}(u)\right|$. We see that $G \cong K_{t_{1}, t_{2}, t^{\prime}}$.

The proof is complete.
Additionally, if G is a $\left\{Z_{1}, K_{1, r}\right\}$-free graph with a vertex of degree at least $r(r \geq 3)$, then G contains a vertex which is contained in a triangle and is of degree at least 3 . Thus by applying Lemma 3.1 and by the fact that G is $K_{1, r}$-free, we have the following result.

Corollary 3.1. Let G be a connected $\left\{Z_{1}, K_{1, r}\right\}$-free graph with a vertex of degree at least r. Then G is isomorphic to a complete multipartite graph $K_{t_{1}, t_{2}, \cdots, t_{k}}$ such that each $1 \leq t_{i} \leq r-1$.

The case of $r=3$ in the above Corollary has been mentioned in other research papers, for example, in [8]. By Corollary 3.1, we have the following result.

Corollary 3.2. A connected $\left\{K_{1, r}, Z_{1}\right\}$-free graph with a vertex of degree at least r is $(n-r+1)$-connected.

By Corollary 3.1, a 4-connected $\left\{Z_{1}, K_{1,3}\right\}$-free graph G is a complete graph missing at most a matching. By finding a hamiltonian cycle of G such that nonadjacent pairs of vertices are of distance at least 3 on the cycle, we can construct an H^{2} in G. Hence, we obtain the result below.

Theorem 3.1. Every 4 -connected $\left\{Z_{1}, K_{1,3}\right\}$-free graph contains an H^{2}.

For 4-connected $\left\{Z_{1}, K_{1,4}\right\}$-free graphs, we have a similar result.
Theorem 3.2. Every 4 -connected $\left\{Z_{1}, K_{1,4}\right\}$-free graph contains an H^{2} provided $|V(G)| \geq 9$.

Proof. Let $n=|V(G)|$. We use induction on n to show the theorem. By Corollary 3.1, any 4-connected 9-vertex $\left\{Z_{1}, K_{1,4}\right\}$-free graph contains $K_{3,3,3}$ as a spanning subgraph. It is not difficult to verify that $K_{3,3,3}$ contains an H^{2}. For example, let $\left\{x_{i}, y_{i}, z_{i}\right\}(i=1,2,3)$ be the three vertices in the i-th tripartition. Then $x_{1} x_{2} x_{3} y_{1} y_{2} y_{3} z_{1} z_{2} z_{3} x_{1}$ with the additional edges gives an H^{2}. So we assume $n \geq 10$. Let $v \in V(G)$ be a vertex. We consider the graph $G^{\prime}=G-v$. Then G^{\prime} is 6 -connected by Corollary 3.2. Additionally, G^{\prime} has at least 9 vertices and is $\left\{Z_{1}, K_{1,4}\right\}$-free. Hence it contains an H^{2}, say C_{1}^{2} by the induction hypothesis. Since G is a multipartite graph with each partition of size at most 3, there are at most two vertices on C_{1}^{2} which are not adjacent to v. Thus, there are at least 4 consecutive vertices on C_{1}^{2} such that each of them is adjacent to v. Let $v_{1}, v_{2}, v_{3}, v_{4}$ be 4 such consecutive vertices on C_{1}^{2}. Then $C_{1}^{2}-\left\{v_{2} v_{3}, v_{2} v_{4}, v_{1} v_{3}\right\} \cup\left\{v v_{i} \mid i=\right.$ $1,2,3,4\}$ gives an H^{2} of G.

Notice that the order 9 condition in the above theorem is sharp. The complete tripartite 8-vertex graph $K_{2,3,3}$ is 4 -connected and $\left\{K_{1,4}, Z_{1}\right\}$-free, but contains no H^{2}.

Before proving Theorem 1.1 and Theorem 1.2, we notice that if $\{R, S\}$ is a forbidden pair implying the containment of an H^{2} in a 4-connected graph, then neither of R or S is a triangle since an H^{2} always contains triangles.

3.1 Proof of Theorem 1.1

The sufficiency follows from Theorem 3.1.
Conversely, we will first show that one of R and S must be a claw. Thus, suppose that $R, S \neq K_{1,3}$. Assume, without loss of generality, that R is an induced subgraph of $G_{1}=K_{m, m}$. Then $R=K_{1, r}$, where $r \geq 4$ or R contains an induced C_{4}. We now consider two cases.

Case 1: $\quad R=K_{1, r}(r \geq 4)$.

The graph G_{4} has no induced copy of R, so it contains an induced copy of S. As G_{4} is $\left\{K_{4}, K_{1,3}\right\}$-free, we see that S contains no K_{4} and no induced $K_{1,3}$. Also, R is not an induced subgraph of $G_{0}=K_{4}+\overline{K_{3}}$. So G_{0} contains S as an induced subgraph. Since $S \notin\left\{P_{3}, K_{3}\right\}$ and any connected 3 -vertex subgraph of G_{0} is contained in $\left\{P_{3}, K_{3}\right\}$, we conclude that S has at least 4 vertices. In G_{0}, any 4 vertices of G_{0} with at most one vertex in $\overline{K_{3}}$ induces a K_{4}; and any 4 vertices of G_{0} with three vertices in $\overline{K_{3}}$ induces a $K_{1,3}$. Hence, S contains exactly two vertices from the subgraph K_{4} of G_{0} and exactly two vertices from the subgraph $\overline{K_{3}}$ of G_{0}, as S contains no K_{4}, and no induced $K_{1,3}$. So S is an induced $K_{4}^{-}\left(K_{4}\right.$ with exactly one edge removed). However, G_{2} has no induced $R=K_{1, r}(r \geq 4)$, and no induced K_{4}^{-}. We obtain a contradiction.

Case 2: $\quad R$ contains an induced C_{4}.
Since G_{4} has no induced copy of R, it contains an induced copy of S. As G_{4} is $\left\{K_{4}, K_{1,3}\right\}$-free, we see that S contains no K_{4} and no induced $K_{1,3}$. Also, R is not an induced subgraph of G_{3}. So G_{3} contains S as an induced subgraph. Since S is connected and $S \notin\left\{K_{1}, K_{2}, K_{3}, P_{3}\right\}$, and any connected 2 -vertex, 3 -vertex subgraphs of G_{3} are contained in $\left\{K_{2}, K_{3}, P_{3}\right\}$, we conclude that $|V(S)| \geq 4$. In G_{3}, any 4 vertices from K_{m} or any 3 vertices from K_{m} and one vertex from $\overline{K_{m-1}}$ induce a K_{4}; and any 4 vertices in which three from $\overline{K_{m-1}}$ induce a $K_{1,3}$. We conclude that S contains exactly two vertices from K_{m} and exactly two vertices from $\overline{K_{m-1}}$, as S contains no K_{4} and no induced $K_{1,3}$. So S is an induced K_{4}^{-}. However, each graph in $G_{5}(t)$ has no H^{2}, no induced C_{4}, and no triangle (so no K_{4}^{-}). This gives a contradiction.

Thus, one of R and S must be a claw. We assume, without loss of generality, that $R=K_{1,3}$. As R is $K_{1,3}, S$ in an induced subgraph of G_{2}, G_{4}, and G_{6}, as none of them contains induced claws. Note that G_{4} is $\left\{C_{4}, K_{4}\right\}$-free, and G_{6} is P_{4}-free, so S is $\left\{P_{4}, C_{4}, K_{4}\right\}$-free. Applying Lemma 2.2, we see S is Z_{1}.

3.2 Proof of Theorem 1.2

The sufficiency follows from Theorem 3.2.
Conversely, we will first show that one of R and S must be Z_{1}. Thus, suppose that $R, S \neq Z_{1}$. Assume, without loss of generality, that R is an induced subgraph of $G_{1}=K_{m, m}$. Then $R=K_{1, r}$, where $r \geq 3$ or R contains an induced C_{4}. We
now consider two cases.
Case 1: $\quad R=K_{1, r}(r \geq 3)$.
Then R is not an induced subgraph of G_{2}. So G_{2} contains S as an induced subgraph. Both G_{4} and G_{6} contains an induced copy of S since neither of them contains an induced copy of R. Since G_{4} is $\left\{C_{4}, K_{4}\right\}$-free and G_{6} is P_{4}-free, we see that S is $\left\{P_{4}, C_{4}, K_{4}\right\}$-free. Applying Lemma 2.2, we have $S=Z_{1}$.

Case 2: $\quad R$ contains an induced C_{4}.
The graph G_{4} has no induced copy of R, so it contains an induced copy of S. As G_{4} is $\left\{K_{4}, K_{1,3}\right\}$-free, we see that S contains no K_{4} and no induced $K_{1,3}$. Also, R is not an induced subgraph of G_{3}. So G_{3} contains S as an induced subgraph. Since S is connected and $S \notin\left\{K_{1}, K_{2}, K_{3}, P_{3}\right\}$, and any connected 2-vertex, 3 -vertex subgraphs of G_{3} are contained in $\left\{K_{2}, K_{3}, P_{3}\right\}$, we conclude that $|V(S)| \geq 4$. In G_{3}, any 4 vertices from K_{m} or any 3 vertices from K_{m} and one vertex from $\overline{K_{m-1}}$ induce a K_{4}; and any 4 vertices in which three from $\overline{K_{m-1}}$ induce a $K_{1,3}$. We conclude that S contains exactly two vertices from K_{m} and exactly two vertices from $\overline{K_{m-1}}$, as S contains no K_{4} and no induced $K_{1,3}$. So S is an induced K_{4}^{-}. However, G_{2} has no induced $R=K_{1, r}(r \geq 3)$ and no induced K_{4}^{-}. We obtain a contradiction.

Thus one of R and S must be Z_{1}. Assume, without loss of generality, that $S=Z_{1}$. As $G_{1}=K_{m, m}$ contains no Z_{1}, G_{1} contains an induced copy of R. Hence $R=K_{1, r}$, where $r \geq 3$ or R contains an induced C_{4}. Since each graph in $G_{5}(t)(t \geq 2)$ is C_{4}-free, and the only possible stars in it are $K_{1, r}$ for $r \leq 4$, we see that $R=K_{1, r}$ for $r=3,4$.

3.3 Proof of Theorem 1.3

We now prove Theorem 1.3. Let P be a path. We use P^{2} to denote the square of P. In omitting the edges joining distance 2 vertices on the path, we will use the same notation to denote the square of the path. Similar notation for the square of a cycle. Let $P_{1}^{2}=v_{1} v_{2} \cdots v_{s-1} v_{s}$ and $P_{2}^{2}=u_{1} u_{2} \cdots u_{t-1} u_{t}$ be two path squares. We denote by $P_{1}^{2} P_{2}^{2}$ as the concatenation of P_{1}^{2} and P_{2}^{2} by adding edges $u_{1} v_{s}, u_{1} v_{s-1}$ and $u_{2} v_{s}$, where $u_{1} v_{s-1}$ exists only if $s \geq 2$ and $u_{2} v_{s}$ exists only if $t \geq 2$. Also, the notations $v_{1} P_{1}^{2}, P_{1}^{2} v_{s}$, or $v_{1} P_{1}^{2} v_{s}$ may be used for specifying the end vertices of P_{1}^{2}.

We may assume that G is not complete. Let S be a minimum vertex-cut of G. Let $G_{i}=\left(V_{i}, E_{i}\right)(i=1,2, \cdots, k)$ be all the components of $G-S$. Since G is 4-connected, $|S| \geq 4$. As S is a minimum vertex-cut, we have the following claim.
Claim 1: For every vertex $v \in S, N(v) \cap V_{i} \neq \emptyset$, for all $i=1,2, \cdots, k$.
Since G is claw-free, from Claim 1 we get Claim 2 below.
Claim 2: $k=2$; that is, $G-S$ has exactly two components.
Also, by the fact that G is P_{4}-free, we conclude the following claim.
Claim 3: For each $v \in S, N_{G_{i}}(v)=V_{i}$ for $i=1,2$.
As $E\left(V_{1}, V_{2}\right)=\emptyset, G$ is claw-free, and by Claim 3, we obtain Claim 4 as follows.
Claim 4: G_{i} is a complete subgraph of G for $i=1,2$.
We will use induction on $n=|V(G)|$ in some cases of the proof. The smallest 4 -connected $\left\{K_{1,3}, P_{4}\right\}$-free graph is K_{5}, it contains an H^{2}. So we suppose $n \geq 6$ and suppose that the theorem holds for the described graphs of smaller orders. Let P_{i}^{2} be a hamiltonian path square of $G_{i}(i=1,2)$.

If $G[S]$ is 4-connected and is not isomorphic to any graphs in the exception families, then by the induction hypothesis, $G[S]$ contains an H^{2}, say C_{s}^{2}, which contains at least 4 vertices by the assumption that $G[S]$ is 4 -connected. Let x_{1}, x_{2}, x_{3} and x_{4} be 4 consecutive vertices on C_{s}^{2}. By Claim $3, N_{G_{i}}\left(x_{j}\right)=V_{i}$ for $j=1,2,3,4$ and $i=1,2$. Hence $C^{2}=x_{1} x_{2} P_{1}^{2} x_{3} x_{4} P_{2}^{2} C_{s}^{2} x_{1}$ is an H^{2} of G.

So, we assume that $G[S]$ is 4 -connected and $G[S]$ is a graph in some of the exception families. In this case, we first show that every graph in the exception families has a hamiltonian path square. Then by concatenating the path square, P_{1}^{2}, and P_{2}^{2} together, we can get an H^{2} of G.

Let Q be a graph isomorphic to $\left(K_{1} \sqcup K_{3}\right)+\left(K_{m} \sqcup K_{q}\right)$ for some $m+q \geq 4$. We may assume, without loss of generality, that $m \geq 2$. Then we let P_{3}^{2} be a path square of K_{3}, P_{m}^{2} a path square of K_{m}, and P_{q}^{2} a path square of K_{q}. Also, let x be the single vertex from K_{1}. Then $P_{q}^{2} P_{3}^{2} P_{m}^{2} x$ is a hamiltonian path square of Q. The constructions for a hamiltonian path square for graphs in the families of $\left(K_{2} \sqcup K_{2}\right)+\left(K_{1} \sqcup K_{m}\right),\left(K_{2} \sqcup K_{3}\right)+\left(K_{1} \sqcup K_{m}\right)$, and $\left(K_{3} \sqcup K_{3}\right)+\left(K_{1} \sqcup K_{m}\right)$ are similar, so we omit the details here.

Now let P_{s}^{2} be a hamiltonian path square of $G[S]$, and let x_{1}, x_{2}, x_{3} and x_{4} be 4 consecutive vertices on P_{s}^{2}. By Claim 3, for any $v \in S, N_{G_{i}}(v)=V_{i}(i=1,2)$. So $C^{2}=x_{1} x_{2} P_{1}^{2} x_{3} x_{4} P_{2}^{2} P_{s}^{2} x_{1}$ is an H^{2} of G.

The remaining proof is divided into two cases according to the connectivity of $G[S]$. Let $G^{\prime}=G[S]$.

Case 1. Suppose G^{\prime} is connected but not 4-connected.
If $G^{\prime} \cong K_{4}$, let $C_{s}^{2}=x_{1} x_{2} x_{3} x_{4}$ be an H^{2} of it. Then $C^{2}=x_{1} x_{2} P_{1}^{2} x_{3} x_{4} P_{2}^{2} x_{1}$ is an H^{2} of G. So suppose $G^{\prime} \neq K_{4}$. As $\left|V\left(G^{\prime}\right)\right| \geq 4$ and G^{\prime} is not 4 -connected, G^{\prime} is not complete. Let S^{\prime} be a minimum vertex-cut of G^{\prime}. Notice that $1 \leq$ $\left|S^{\prime}\right| \leq 3$. Similar discussion as in Claim 1-Claim 4 shows that $G^{\prime}-S^{\prime}$ has exactly two components, say, G_{1}^{\prime} and G_{2}^{\prime} such that each is a complete subgraph, and $G^{\prime}=G^{\prime}\left[S^{\prime}\right]+\left(G_{1}^{\prime} \sqcup G_{2}^{\prime}\right)$. As G^{\prime} is also claw-free, we see that S^{\prime} is $\overline{K_{3}}$-free. Let $P_{1 i}^{2}$ be a hamiltonian path square of $G_{i}^{\prime}(i=1,2)$. Suppose, without loss of generality, that $\left|V\left(P_{11}^{2}\right)\right| \leq\left|V\left(P_{12}^{2}\right)\right|$. We define two new vertex disjoint path squares of G^{\prime}.

C1. $\left|S^{\prime}\right|=1$. Let $S^{\prime}=\left\{x_{1}\right\}$ and $P_{21}^{2}=P_{11}^{2} x_{1}, P_{22}^{2}=P_{12}^{2}$;
C2. $\left|S^{\prime}\right|=2$. Let $S^{\prime}=\left\{x_{1}, x_{2}\right\}$ and $P_{21}^{2}=P_{11}^{2} x_{1}, P_{22}^{2}=P_{12}^{2} x_{2}$;
C3. $\left|S^{\prime}\right|=3$. Let $S^{\prime}=\left\{x_{1}, x_{2}, x_{3}\right\}$, and assume that $x_{1} x_{3} \in E\left(G^{\prime}\right)$ by the fact that S^{\prime} is $\overline{K_{3}}$-free, then let $P_{21}^{2}=x_{1} x_{3} P_{11}^{2}, P_{22}^{2}=P_{12}^{2} x_{2}$.

If C 1 is true, then $\max \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\} \geq 2$. Otherwise, $S^{\prime} \cup V_{1} \cup V_{2}$, a 3-set, separates G_{1}^{\prime} and G_{2}^{\prime}, contradicting the 4-connectedness assumption of G. Assume, without loss of generality, that $\left|V_{1}\right| \geq 2$. To specify the end vertices, we denote $P_{21}^{2}=x_{1} P_{21}^{2} x$ and $P_{22}^{2}=z P_{22}^{2} x_{2}$, where $x_{1} \in S^{\prime}$ and $z \in V\left(G^{\prime}\right)-S^{\prime}$. Clearly, $x_{1} z \in E(G)$. As $\left|V\left(G^{\prime}\right)\right| \geq 4$ and $\left|S^{\prime}\right|=1,\left|V\left(P_{12}^{2}\right)\right| \geq 2$ by the assumption that $\left|V\left(P_{11}^{2}\right)\right| \leq\left|V\left(P_{12}^{2}\right)\right|$. Hence, both P_{21}^{2} and P_{22}^{2} have at least 2 vertices. In specifying one end of the hamiltonian path square P_{2}^{2} of G_{2}, let $P_{2}^{2}=P_{2}^{2} w$. Then $x_{1} P_{21}^{2} x P_{1}^{2} x_{2} P_{22}^{2} z P_{2}^{2} w x_{1}$ is an H^{2} of G even if $\left|V\left(P_{2}^{2}\right)\right|=1$.

For cases C 2 and C 3 , to specify the end vertices, we denote $P_{21}^{2}=x_{1} P_{21}^{2} x$ and $P_{22}^{2}=z P_{22}^{2} x_{2}$, where $x_{1}, x_{2} \in S^{\prime}$ and $x, z \in V\left(G^{\prime}\right)-S^{\prime}$. Since each of P_{11}^{2} and P_{12}^{2} has at least one vertex, each of the P_{21}^{2} and P_{22}^{2} defined in C 2 and C 3 has at least two vertices. By the fact that $G^{\prime}=G^{\prime}\left[S^{\prime}\right]+\left(G_{1}^{\prime} \sqcup G_{2}^{\prime}\right)$ and the assumption that $x_{1} x_{3} \in E(G)$, we see both P_{21}^{2} and P_{22}^{2} are path squares satisfying $x_{1} z, x x_{2} \in E(G)$.

In specifying one end of the hamiltonian path square P_{2}^{2} of G_{2}, let $P_{2}^{2}=P_{2}^{2} w$. Then $x_{1} P_{21}^{2} x P_{1}^{2} x_{2} P_{22}^{2} z P_{2}^{2} w x_{1}$ is an H^{2} of G even if $\left|V\left(P_{1}^{2}\right)\right|=1$ or $\left|V\left(P_{2}^{2}\right)\right|=1$.

Case 2. Suppose G^{\prime} is disconnected.
As G is claw-free and $G=G^{\prime}+\left(G_{1} \sqcup G_{2}\right)$, we see that G^{\prime} consists of exactly two complete components, say G_{1}^{\prime} and G_{2}^{\prime}. So $G=\left(G_{1}^{\prime} \sqcup G_{2}^{\prime}\right)+\left(G_{1} \sqcup G_{2}\right)$ and $V_{1} \cup V_{2}$ is also a vertex-cut of G. For $i=1,2$, let $\left|V\left(G_{i}^{\prime}\right)\right|=\left|V_{i}^{\prime}\right|$. So $\left|V_{1} \cup V_{2}\right| \geq\left|V_{1}^{\prime} \cup V_{2}^{\prime}\right|=|S|$, by the minimality of $|S|$. Recall that G is not isomorphic to any of the graphs in the following families:
(i) $\left(K_{1} \sqcup K_{3}\right)+\left(K_{m} \sqcup K_{q}\right)$ with $m+q \geq 4$;
(ii) $\left(K_{2} \sqcup K_{2}\right)+\left(K_{1} \sqcup K_{m}\right)$ with $m \geq 3$;
(iii) $\left(K_{2} \sqcup K_{3}\right)+\left(K_{1} \sqcup K_{m}\right)$ with $m \geq 3$;
(iv) $\left(K_{3} \sqcup K_{3}\right)+\left(K_{1} \sqcup K_{m}\right)$ with $m \geq 3$.

Assume first that $\min \left\{\left|V_{1}\right|,\left|V_{2}\right|,\left|V_{1}^{\prime}\right|,\left|V_{2}^{\prime}\right|\right\} \geq 2$. In specifying the end vertices, we let $P_{1}^{2}=x_{1} P_{1}^{2} y_{1}, P_{2}^{2}=x_{2} P_{2}^{2} y_{2}, P_{11}^{2}=x_{11} P_{11}^{2} y_{11}$, and $P_{12}^{2}=x_{21} P_{12}^{2} y_{21}$ be the hamiltonian path square of $G_{1}, G_{2}, G_{1}^{\prime}$ and G_{2}^{\prime}, respectively. Then as $G=\left(G_{1}^{\prime} \sqcup G_{2}^{\prime}\right)+\left(G_{1} \sqcup G_{2}\right)$, we know $x_{1} P_{1}^{2} y_{1} x_{11} P_{11}^{2} y_{11} x_{2} P_{2}^{2} y_{2} x_{21} P_{12}^{2} y_{21} x_{1}$ is an H^{2} of G. So assume, without loss of generality, that $\left|V_{1}\right|=1$. Then as G is not isomorphic to any graphs in (i) and $\left|V_{1} \cup V_{2}\right| \geq\left|V_{1}^{\prime} \cup V_{2}^{\prime}\right|=|S| \geq 4$, we have that $\left|V_{2}\right| \geq 4$. So, $G_{1} \sqcup G_{2} \cong K_{1} \sqcup K_{m}$ for some $m \geq 4$. Also, as G is not isomorphic to any graphs in (i)-(iv), $G_{1}^{\prime} \sqcup G_{2}^{\prime} \not \neq K_{1} \sqcup K_{3}, K_{2} \sqcup K_{2}, K_{2} \sqcup K_{3}, K_{3} \sqcup K_{3}$. This indicates that $\max \left\{\left|V_{1}^{\prime}\right|,\left|V_{2}^{\prime}\right|\right\} \geq 4$. We may assume, without loss of generality, that $\left|V_{1}^{\prime}\right| \geq 4$. Let $P_{2}^{2}=x_{21} x_{22} \cdots x_{2, s-1} x_{2 s}(s \geq 4)$ be the hamiltonian path square of G_{2} specified earlier, $P_{11}^{2}=x_{11} x_{12} \cdots x_{1, t-1} x_{1 t}(t \geq 4)$ be a hamiltonian path square of G_{1}^{\prime}, and let P_{12}^{2} be a hamiltonian path square of G_{2}^{\prime}. Then $x_{11} x_{12} P_{1}^{2} x_{13} x_{14} P_{11}^{2} x_{1, t-1} x_{1 t} x_{21} x_{22} P_{12}^{2} x_{23} x_{24} P_{2}^{2} x_{2, s-1} x_{2 s} x_{11}$ is an H^{2} of G.

The proof of Theorem 1.3 is then complete.

Acknowledgements: The authors wish to thank the two anonymous referees for their helpful comments.

References

[1] Pascal Moussa Bedrossian. Forbidden subgraph and minimum degree conditions for hamiltonicity. ProQuest LLC, Ann Arbor, MI, 1991. Thesis (Ph.D.)Memphis State University.
[2] Phong Châu, Louis DeBiasio, and H. A. Kierstead. Pósa's conjecture for graphs of order at least 2×10^{8}. Random Structures Algorithms, 39(4):507525, 2011.
[3] D. Duffus, M. S. Jacobson, and R. J. Gould. Forbidden subgraphs and the Hamiltonian theme. In The theory and applications of graphs (Kalamazoo, Mich., 1980), pages 297-316. Wiley, New York, 1981.
[4] P. Erdős. Problem 9. In Theory of Graphs and Its Applications, Proceedings of the Symposium held in Smolenice in June 1963 (Ed. M. Fiedler), page 159. Prague, Czechoslovakia: Publishing House of the Czechoslovak Academy of Sciences, 1964.
[5] Genghua Fan and Roland Häggkvist. The square of a Hamiltonian cycle. SIAM J. Discrete Math., 7(2):203-212, 1994.
[6] Genghua Fan and H. A. Kierstead. The square of paths and cycles. J. Combin. Theory Ser. B, 63(1):55-64, 1995.
[7] Genghua Fan and H. A. Kierstead. Hamiltonian square-paths. J. Combin. Theory Ser. B, 67(2):167-182, 1996.
[8] Ralph J. Faudree and Ronald J. Gould. Characterizing forbidden pairs for Hamiltonian properties. Discrete Math., 173(1-3):45-60, 1997.
[9] Michael Ferrara, Silke Gehrke, Ronald Gould, Colton Magnant, and Jeffrey Powell. Pancyclicity of 4 -connected \{claw, generalized bull\}-free graphs. Discrete Math., 313(4):460-467, 2013.
[10] Michael Ferrara, Timothy Morris, and Paul Wenger. Pancyclicity of 4connected, claw-free, P_{10}-free graphs. J. Graph Theory, 71(4):435-447, 2012.
[11] Silke Gehrke. Hamiltonicity and pancyclicity of 4-connected, claw- and netfree graphs. ProQuest LLC, Ann Arbor, MI, 2009. Thesis (Ph.D.)-Emory University.
[12] János Komlós, Gábor N. Sárközy, and Endre Szemerédi. On the square of a Hamiltonian cycle in dense graphs. In Proceedings of the Seventh International Conference on Random Structures and Algorithms (Atlanta, GA, 1995), volume 9, pages 193-211, 1996.
[13] Ian Levitt, Gábor N. Sárközy, and Endre Szemerédi. How to avoid using the regularity lemma: Pósa's conjecture revisited. Discrete Math., 310(3):630641, 2010.
[14] P. Seymour. Problem section. In Combinatorics: Proceedings of the British Combinatorial Conference 1973, T.P. McDonough and V.C. Mavron, Eds., pages 201-202. Cambridge University Press, 1974.

