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Abstract

Given a tournament T , let h(T ) be the smallest integer k such that ev-
ery arc-coloring of T with k or more colors produces at least one out-directed
spanning tree of T with no pair of arcs with the same color. In this paper we
give the exact value of h(T ).
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1 Introduction

Given a graph G and an edge-coloring of G, a subgraph H of G is said to be hete-

rochromatic if no pair of edges of H have the same color. Problems concerning the
existence of heterochromatic subgraphs with a specific property in edge-colorings of a
host graph are known as anti-Ramsey problems (see, for instance, [1, 4, 5, 7, 9, 11]).
Typically, the host graph G is a complete graph or some graph with a particular
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structure, and the property which defines the set of heterochromatic subgraphs in
consideration is that they are isomorphic to a given graph H or that they are sub-
graphs of G with a general property like, for example, being edge-cuts or spanning
trees of G (see [2, 3, 6, 8, 10]).

A tournament is a digraph D = (V (D), A(D)) such that for every pair {x, y} ⊆
V (D), either xy ∈ A(D) or yx ∈ A(D) but not both. A spanning tree S of a
tournament T is an out-directed spanning tree of T if there is a root vertex r of S
such that for each vertex u ∈ V (S), the unique r− u path in S is directed from r to
u.

In this paper, the host graphs are tournaments, and the property that defines the
set of heterochromatic subgraphs in consideration is that of being an out-directed
spanning tree of the corresponding tournament.

Let T = (V (T ), A(T )) be a tournament. An arc-coloring of T is a function
Γ : A(T ) → C, where C is a set of “colors”; if |Γ[A(T )]| = k we say that Γ is a
k-arc-coloring of T . A subdigraph H of T is said to be heterochromatic if no pair
of arcs of H have the same color. We define h(T ) as the smallest integer k such
that every k-arc-coloring of T produces at least one heterochromatic-out directed
spanning tree of T . Our main result is the following theorem:

Theorem 1. Let T be a tournament of order n ≥ 3. Then h(T ) =
(

n

2

)

− δ−3 (T ) + 2,
where δ−3 (T ) = min{d−T (x) + d−T (y) + d−T (w) : {x, y, w} ⊆ V (T )}. Moreover, if

the arcs of T are colored with h(T ) − 1 colors, and there is no heterochromatic

out-directed spanning tree of T , then there is a triple {x, y, w} ⊆ V (T ) such that

δ−3 (T ) = d−T (x) + d−T (y) + d−T (w), all the in-arcs of x, y, and w receive the same color

and each of the remaining arcs of T receives a new different color.

2 Notation and Preliminary Results

Let D = (V (D), A(D)) be a digraph and x be a vertex of D. We denote by N+
D(x) =

{v ∈ V (D) : xv ∈ A(D)} and N−
D(x) = {v ∈ V (D) : vx ∈ A(D)} the sets of

out-neighbors and of in-neighbors of x in D, respectively. Likewise, we denote by
d+D(x) = |N+

D(x)| and d−D(x) = |N−
D(x)| the ex-degree and the in-degree of x in D,

respectively.
For every Q ⊆ V (D), let F+

D (Q) = {zw ∈ A(D) : z ∈ Q and w ∈ V (D) \ Q},
F−
D (Q) = {wz : z ∈ Q and w ∈ V (D) \ Q} and FD(Q) = F+

D (Q) ∪ F−
D (Q). Given

x ∈ V (D) the sets F+
D ({x}), F−

D ({x}) and FD({x}) are called the set of ex-arcs, the
set of in-arcs and the set of arcs of x, respectively. For Q,R ⊆ V (D), we denote by
(Q → R) the set {xy ∈ A(D) : x ∈ Q and y ∈ R}.

2



Let Γ : A(D) → C be an arc-coloring of D. We denote by C(x) the set of colors
that appear only on arcs of D incident to x, and by c(x) the number of colors in
C(x). A color i ∈ C is a ΓD-singular color if |Γ−1(i)| = 1.

For any vertex x ∈ V (D) and any arc wy ∈ A(D), we denote by D−x and D−wy
the digraphs obtained from D by deleting the vertex x and the arc wy, respectively.
For an arc zy /∈ A(D), D+ zy is the digraph obtained from D by adding the arc zy.

We say that a vertex z ∈ V (D) is reachable from a vertex x in D if there is a
directed path in D from x to z.

Let δ−3 (D) = min{d−D(x) + d−D(y) + d−D(w) : {x, y, w} ⊆ V (D)}.

Lemma 1. Let T be a tournament of order n ≥ 3. Then

h(T ) ≥

(

n

2

)

− δ−3 (T ) + 2.

Proof. Let {x, y, w} ⊆ V (T ) such that d−T (x)+ d−T (y)+ d−T (w) = δ−3 (T ) and color the
arcs of T with

(

n

2

)

− δ−3 (T ) + 1 colors in the following way: all the in-arcs of x, y and
w receive the same color, say color black, and the remaining

(

n

2

)

− δ−3 (T ) arcs receive
(

n

2

)

− δ−3 (T ) new colors.
Given an out-directed spanning tree S of T we can assume, without loss of gen-

erality, that neither x nor y is the root of S, and therefore d−S (x) = d−S (y) = 1. From
here we see that S has at least two black arcs, thus S is not heterochromatic and
the lemma follows.

3 Proof of Theorem 1

Lemma 1 gives the lower bound for h(T ) in Theorem 1. The proof of the upper bound
and of the remainder of the theorem is by induction on n. For better readability, we
break down the proof into several lemmas.

It is not hard to see that if T is a tournament of order 3, and Γ is and arc-
coloring of T with no heterochromatic out-directed spanning tree, then Γ uses 1 =
(

3
2

)

− δ−3 (T ) + 1 color. It is also clear that V (T ) = {x, y, z} is such that d−T (x) +
d−T (y) + d−T (z) = δ−3 (T ) = 3 and that the three in-arcs of x, y and z receive the same
color. This shows that Theorem 1 holds for tournaments of order 3.

Let T be a tournament of order n ≥ 4. For the rest of the proof we assume as
inductive hypothesis that Theorem 1 holds for every tournament of order m, with
3 ≤ m < n.

Let Γ be an arc-coloring of T which uses h(T ) − 1 colors and produces no het-
erochromatic out-directed spanning trees of T . Observe that by Lemma 1, h(T ) ≥
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(

n

2

)

− δ−3 (T )+2 and therefore the number of colors in Γ[A(T )] (from now on Γ[T ] for
short) is at least

(

n

2

)

− δ−3 (T ) + 1.
A vertex x of T is of type 1 if there is an in-arc e of x such that Γ(e) ∈ C(x); of

type 2 if none of the in-arcs of x receive a color in C(x) and there are at least two
in-arcs of x which receive different colors; and of type 3 if none of the in-arcs of x
receive a color in C(x) and all the in-arcs of x receive the same color.

The next three lemmas will show some properties of the vertices of type 1 and
2, and that there are at most n − 2 vertices of type 1. With these at hand, we will
return to the proof of Theorem 1.

Lemma 2. If x is a vertex of T of type 1, then c(x) ≥ n− 4.

Proof. Since x is of type 1, there is an arc yx ∈ A(T ) such that Γ(yx) ∈ C(x).
Since Γ(yx) 6∈ Γ[T − x], the tournament T − x has no heterochromatic out-directed
spanning tree S, otherwise S+yx would be a heterochromatic out-directed spanning
tree of T , which is not possible. Therefore, by our induction hypothesis, the number
of colors appearing in Γ[T − x] is at most

(

n−1
2

)

− δ−3 (T − x) + 1. Thus

c(x) ≥

(

n

2

)

− δ−3 (T )+1−

((

n− 1

2

)

− δ−3 (T −x)+1

)

= n−1+ δ−3 (T −x)− δ−3 (T ).

Now just observe that δ−3 (T )− δ−3 (T − x) ≤ 3 and therefore c(x) ≥ n− 4.

Lemma 3. If x is a vertex of T of type 2, then d+T (x) ≥ c(x) = n− 4.

Proof. By definition of type 2, none of the colors of the in-arcs of x is in C(x), so all
the colors from C(x) appear on the out-arcs of x and therefore d+T (x) ≥ c(x). Also
by definition, there are vertices y1, y2 ∈ N−

T (x) such that c1 = Γ(y1x) 6= Γ(y2x) = c2
with c1, c2 6∈ C(x).

Let Γ′ be an arc-coloring of T −x obtained from Γ by recoloring the arcs of color
c2 with color c1.

Suppose T −x has an out-directed spanning tree S which is heterochromatic with
respect to Γ′. Clearly S is also heterochromatic with respect to Γ and it is such that
either color c1 or color c2 does not appear in Γ[S]. Thus, either S + y1x or S + y2x
is a heterochromatic out-directed spanning tree of T with respect to Γ, which is not
possible. Therefore T − x has no heterochromatic out-directed spanning tree with
respect to Γ′. By our induction hypothesis, there are at most

(

n−1
2

)

− δ−3 (T − x) + 1

colors in Γ′[T − x]. It follows at most
(

n−1
2

)

− δ−3 (T − x) + 2 colors of Γ are used in
T − x which implies

c(x) ≥

(

n

2

)

−δ−3 (T )+1−

((

n− 1

2

)

−δ−3 (T−x)+2

)

= n−2−δ−3 (T )+δ−3 (T−x) ≥ n−5.
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If c(x) = n − 5, each of the following must happen: i) δ−3 (T )− δ−3 (T − x) = 3;
ii) |Γ[T − x]| =

(

n−1
2

)

− δ−3 (T − x) + 2; iii) |Γ′[T − x]| =
(

n−1
2

)

− δ−3 (T − x) + 1 and
iv) T − x has no heterochromatic out-directed spanning tree with respect to Γ′.

By induction h(T − x) =
(

n−1
2

)

− δ−3 (T − x) + 2 and therefore, according to iii),
Γ′ is an arc-coloring of T − x with h(T − x)− 1 colors. Also by induction, there is a
triple {x1, x2, x3} ⊆ V (T −x) such that δ−3 (T −x) = d−T−x(x1)+d−T−x(x2)+d−T−x(x3),
all the in-arcs of x1, x2, and x3 have the same color in Γ′ and each of the remaining
arcs of T − x has a singular color in Γ′.

Recall that there are arcs in T − x with colors c1 and c2, since c1, c2 6∈ C(x).
Therefore c1 is the non-singular color in Γ′ and all the in-arcs of x1, x2, and x3 have
color c1 in Γ′. This implies that all the in-arcs of x1, x2, and x3 have color c1 or color
c2 in Γ; and each of the remaining arcs of T − x has a singular color in Γ.

By i), δ−3 (T )− δ−3 (T − x) = 3 and this implies {x1, x2, x3} ⊆ N+
T (x). Therefore

{y1, y2} ⊆ V (T ) \ {x, x1, x2, x3} and N+
T (x) ⊆ V (T ) \ {x, y1, y2}. Since c(x) = n− 5,

it follows that there is at least one vertex z ∈ {x1, x2, x3} such that Γ(xz) ∈ C(x).
Without loss of generality assume z = x1.
Case 1. {Γ(xx1),Γ(xx2),Γ(xx3)} ∩ C(x) = Γ(xx1).
The ex-arcs of x with the other (n − 6) colors of C(x) appear in (x → [V (T ) \
{x, x1, x2, x3}]). Thus N

−
T (x) = {y1, y2} and δ−T (x) = 2. Since δ−3 (T )−δ−3 (T−x) = 3,

it follows that δ−3 (T ) = d−T (x1) + d−T (x2) + d−T (x3) and therefore δ−T (xi) ≤ 2 for
i = 1, 2, 3. Since {x1, x2, x3} ⊆ N+

T (x), it follows that {x1, x2, x3} induces a directed
cycle with length 3 in T (with colors c1 and c2), and V (T )\{x, x1, x2, x3} ⊆ N+(xi) for

i = 1, 2, 3, where each of the arcs in
(

{x1, x2, x3} → [V (T ) \ {x, x1, x2, x3}]
)

receives

a ΓT−x-singular color (none of them a color in C(x)). Therefore, the tournament
H induced by V (T ) \ {x, x1} is a heterochromatic tournament in which either c1 or
c2 appear, but not both. Thus, in H there is a hamiltonian heterochromatic path
P where, without loss of generality, color c1 does not appear. Therefore E(P ) ∪
{y2x} ∪ {xx1} induces a heterochromatic out-directed spanning tree of T which is
not possible.
Case 2. |{Γ(xx1),Γ(xx2),Γ(xx3)} ∩ C(x)| ≥ 2.
Suppose Γ(xx2) ∈ C(x) and Γ(xx1) 6= Γ(xx2). Consider the tournament H induced
by V (T )\{x, x1, x2} and let P be a hamiltonian path in H . Except for the in-arcs of
x3, which receive color c1 or c2, all the other arcs in H receive ΓT−x-singular colors.
Thus P is a heterochromatic path in which either color c1 or color c2 appear, but not
both. Without loss of generality, suppose color c1 does not appear in P . In this case
E(P ) ∪ {y2x} ∪ {xx1, xx2} induces a heterochromatic out-directed spanning tree of
T which again is not possible.

From Case 1 and Case 2, it follows that c(x) ≥ n − 4. Suppose c(x) ≥ n − 3.
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Since d+T (x) ≥ c(x) and Γ(y1x),Γ(y2x) 6∈ C(x), all the ex-arcs of x receive different
colors and all of them lie in C(x). Since Γ(y1x) = c1 6= c2 = Γ(y2x) and the
color of the arc with endpoints y1 and y2 is not in C(x), it is not hard to see that
either F+

T ({x})∪{y1x, y1y2} or F+
T ({x})∪{y1y2, y2x} induces a heterochromatic out-

directed spanning tree of T which is not possible. Therefore c(x) = n−4 and Lemma
3 follows.

Lemma 4. There are at most n− 2 vertices of T of type 1.

Proof. Suppose there are at least n − 1 vertices of type 1. Let D be a spanning
subdigraph of T with the minimum number of connected components whose arc set
is obtained as follows: choose a set A with n − 1 vertices of type 1, and for each
vertex x ∈ A, choose one in-arc of x with a color in C(x).

Clearly D is heterochromatic. Since there are no heterochromatic out-directed
spanning trees of T , D is not connected. Let D1, D2, . . . , Dr be the connected com-
ponents of D. Since D has n vertices and n− 1 arcs and the maximum in-degree of
D is 1, it is not hard to see that one connected component, say D1, is an out-directed
tree, while, for i = 2, 3, . . . , r, component Di contains exactly one directed cycle Ci

such that D − e is an outdirected tree for each edge e of Ci. Let z1 be the root of
D1 and notice that A = V (T ) \ {z1}.

Claim 1. Let x ∈ V (C2) , y ∈
⋃

j 6=2

V (Cj) ∪ {z1} and e be the arc with endpoints

{x, y}. If Γ(e) ∈ C(x) then e is an ex-arc of x and Γ(e) is not a ΓT -singular color.

Suppose Γ(e) ∈ C(x). If e is an in-arc of x, the digraph (D − wx) + e, with
wx ∈ A(C2) ⊆ A(D), has fewer connected components than D and can be obtained
in the same way as D by choosing in C(x) the edge e instead of wx, which is a
contradiction. Hence e is an ex-arc of x, and therefore an in-arc of y. Let us suppose
Γ(e) is a ΓT -singular color. Thus Γ(e) ∈ C(y) and y is of type 1. On the one hand,
if y ∈ V (Cj) for some j 6= 2, in an analogous way as with the vertex x, we reach a
contradiction. On the other hand, if y = z1 the digraph (D−wx)+e (which has fewer
connected components than D) can be obtained in the same way as D by choosing
the set A′ = (A \ {x}) ∪ {z} as the set of n− 1 vertices of type 1 and choosing the
edge e in C(z1) instead of the edge wx in C(x), which is a contradiction. From here,
Claim 1 follows.

Let x ∈ V (C2). Since c(x) = n− 4 it follows there are at least n− 7 arcs incident
to x with ΓT -singular colors. Thus, by Claim 1 it follows that |{z1}∪

⋃

j 6=2

V (Cj)| ≤ 6

and therefore r ≤ 3. Let us suppose r = 2 and let e be the arc with endpoints
{z1, x}. The color Γ(e) must appear in D, otherwise D + e is a heterochromatic

6



digraph containing an out-directed spanning tree of T which is a contradiction. By
the choice of the arcs of D, Γ(e) ∈ C(x) and there is an arc wx ∈ A(C2) with color
Γ(e), but then (D − wx) + e is a heterochromatic out-directed spanning tree of T
which is a contradiction. Thus r = 3. Since c(x) = n − 4 and |{z1} ∪ V (C3)| ≥ 4,
there is a color c ∈ C(x) which only appears in arcs incident to x and with the other
endpoint in V (C3) ∪ {z1} . By Claim 1, these arcs are ex-arcs of x and there are at
least two of them, since c is not a ΓT -singular color. Thus there is y ∈ V (C3) such
that Γ(xy) = c. Let w ∈ V (C2)\{x} and let e be the arc with endpoints {z1, w}. The
color Γ(e) must appear in D+xy, otherwise D+{xy, e} is a heterochromatic digraph
containing an out-directed spanning tree of T which is a contradiction. Thus, by the
choice of the arcs of D and since Γ(xy) ∈ C(x), Γ(e) ∈ C(w) and there is an arc
ww′ ∈ A(C2) with color Γ(e), but then (D − ww′) + {xy, e} is a heterochromatic
digraph containing an out-directed spanning tree of T which is a contradiction. This
ends the proof of Lemma 4.

Now we return to the proof of Theorem 1. First we will show that there is an arc
x1x2 ∈ A(T ) and a vertex x3 ∈ V (T ) \ {x1, x2} such that the spanning subdigraph
D of T with set of arcs

A(D) =
(

A(T ) \
3
⋃

i=1

F−
T ({xi})

)

∪ {x1x2}

is an heterochromatic spanning subdigraph of T with h(T ) − 1 arcs. Observe that
these will imply that

h(T )− 1 = |A(D)| =

(

n

2

)

−
(

d−T (x1) + d−T (x2) + d−T (x3)
)

+ 1 ≤

(

n

2

)

− δ−3 (T ) + 1

which will prove the first part of the theorem.
Recall that if v is a vertex of T of type 3, then all the in-arcs of v recieve the

same color. For each such vertex v we denote by cv the color assigned to every in-arc
of v.

Now we will choose a pair of vertices {x, y} in the following way: By Lemma 4
there are at least two vertices that are not of type 1. If there are at least two vertices
of type 3, choose x and y to be vertices of type 3 such that cx = cy if possible,
otherwise chose any two vertices of type 3. If there is exactly one vertex of type 3,
choose it together with any vertex of type 2. Otherwise choose x and y to be vertices
of type 2.

Without loss of generality assume xy ∈ A(T ) and let c0 = Γ(xy). Let D be a
maximal heterochromatic spanning subdigraph of A(T )\F−

T [{x, y}]∪xy that contains

7



xy. Observe that the number of arcs in D is

|A(D)| = Γ[T ]− k(x, y), (1)

where k(x, y) is the number of colors that only appear in the set of arcs F−
T [{x, y}].

Claim 2. k(x, y) = 0.

Suppose k(x, y) ≥ 1 and let c1 be a color that only appears in the set of arcs
F−
T ({x, y}). Since neither x nor y are of type 1, c1 6∈ C(x) ∪ C(y), there is a pair

of arcs {zxx, zyy} ⊆ F−
T [{x, y}] (where zx and zy are not necessarily different) such

that Γ(zxx) = Γ(zyy) = c1. Since y is not of type 1 and Γ(xy) = c0 6= c1 = Γ(zyy),
it follows that y is of type 2.

Let A = {yx1, yx2, . . . , yxc(y)} be a set of ex-arcs of y, all of them with different
colors in C(y), contained in A(D). By Lemma 3, c(y) = n− 4, since y is of type 2.
Thus {xy}∪A induces a heterochromatic out-directed tree of order n− 2, with root
x and with colors in {c0} ∪ C(y).

Let {w1, w2} = V (T ) \ ({x, y}∪{xi : yxi ∈ A}). Observe that zy ∈ {w1, w2} and,
without loss of generality, assume zy = w1. Since y is of type 2, by the way x and y
were chosen, it follows that neither w1 nor w2 is of type 3. For i = 1, 2, observe that
if wi is of type 1, then there is an in-arc of wi with a color in C(wi), which does not
appear in xy ∪ A. Also notice that if w1 is of type 2, then there are two in-arcs of
w1, with different colors such that those colors are not in C(y) and that if w2 is of
type 2, then there are two in-arcs of w2, also with different colors, such that at least
one of those colors is not in C(y) (maybe yw2 ∈ A(T ) and Γ(yw2) ∈ C(y)).

In any case, there exist in-arcs e1 of w1 = zy and e2 of w2 with different colors,
none of them with color in C(y), none of them with color c1 (recall that all the arcs
of color c1 are in-arcs of x and y), and maybe one of them with color c0. Since
Γ(zxx) = c1, it follows that A ∪ {xy, zxx, e1, e2} contains a heterochromatic out-
directed spanning tree of T which is not possible and therefore, Claim 2 holds.

Since k(x, y) = 0 and |A(D)| = Γ[T ]− k(x, y), we see that the number of arcs in
D is Γ[T ] = h(T ) − 1 ≥

(

n

2

)

− δ−3 (T ) + 1. Notice that none of the in-arcs of x are
in A(D) and, except for xy, none of the in-arcs of y are in A(D). Let H ⊆ V (T )
be the set of vertices which are reachable from x by directed paths in D. Since T
has no heterochromatic out-directed spanning tree with respect to Γ, it follows that
W = V (T ) \H 6= ∅. Thus, none of the arcs in F−

T (W ) are present in D. Therefore,

|A(D)| =

(

n

2

)

− d−T (x)− d−T (y)− |F−
T (W )|+ 1− α (2)

8



with α ≥ 0 (maybe other arcs in A(T ) \
(

F−
T (W ) ∪ F−

T ({x, y})
)

do not appear in

D).
Since

|A(D)| ≥

(

n

2

)

− δ−3 (T ) + 1,

it follows from (2) that

δ−3 (T ) ≥ d−T (x) + d−T (y) + |F−
T (W )|+ α. (3)

It is not hard to see that |F−
T (W )| =

∑

z∈W

d−T (z)−
(

|W |
2

)

and therefore

d−T (x) + d−T (y) + |F−
T (W )|+ α =

∑

z∈W∪{x,y}

d−T (z)−

(

|W |

2

)

+ α. (4)

On the other hand, by an averaging argument we see that

( 3

|W |+ 2

)

∑

z∈W∪{x,y}

d−T (z) ≥ δ−3 (T )

and then, by (3) and (4),

( 3

|W |+ 2

)

∑

z∈W∪{x,y}

d−T (z) ≥
∑

z∈W∪{x,y}

d−T (z)−

(

|W |

2

)

+ α

Therefore
(

|W |

2

)

≥
( |W | − 1

|W |+ 2

)

∑

z∈W∪{x,y}

d−T (z) + α,

but since
∑

z∈W∪{x,y}

d−T (z) ≥
(

|W |+2
2

)

, we see that

(

|W |

2

)

≥
(|W |+ 1)(|W | − 1)

2
+ α

and hence

0 ≥
|W | − 1

2
+ α. (5)

Since W 6= ∅, |W |−1
2

≥ 0 and then, from (5) it follows that |W | = 1 and α = 0. Let
{w} = W . Clearly |F−

T (W )| = d−T (w), and by (3) we see that

δ−3 (T ) ≥ d−T (x) + d−T (y) + |F−
T (W )|+ α = d−T (x) + d−T (y) + d−T (w)

9



which, by definition of δ−3 (T ) implies that

δ−3 (T ) = d−T (x) + d−T (y) + d−T (w). (6)

Since α = 0, it follows that all the arcs of T are present in D except for the
in-arcs of x, the in-arcs of w and, besides the arc xy, all the in-arcs of y. Thus

A(D) =
(

A(T ) \
⋃

z∈{x,y,w}

F−
T ({z})

)

∪ {xy}

and

|A(D)| =

(

n

2

)

− (d−(x) + d−(y) + d−(w)) + 1 =

(

n

2

)

− δ−3 (T ) + 1,

and since |A(D)| = h(T )− 1 it follows that

h(T ) =

(

n

2

)

− δ−3 (T ) + 2. (7)

From here, to end the proof of Theorem 1 just remain to show that all the in-arcs
of x, y, and w receive the same color. For this, first we will prove that all the in-arcs of
w receive color c0. Let suppose there is an arc zw ∈ A(T ) such that Γ(zw) = c3 6= c0.
Since all the colors in Γ[T ] are present in A(D), there is an arc z′w′ ∈ A(D) such that
Γ(z′w′) = c3. Notice that w

′ 6∈ {x, y, w}, since no in-arcs of x nor w are present in D

and the only in-arc of y in D has color c0. Let D
′ =

(

D \ z′w′
)

∪ zw. Observe that

both vertices z and z′ are reachable from x in both digraphs D and D′. Also notice
that D′ is a maximal heterochromatic spanning subdigraph of A(T )\F−

T [{x, y}]∪xy
that contains xy. Thus, by an analogous procedure as for D, we find that in D′

there is a vertex v such that all the arcs of T are present in D′ with exception of the
in-arcs of x, the in-arcs of v and, besides the arc xy, all the in-arcs of y. Since w′

has an in-arc missing in D′ and v 6∈ {x, y}, it follows that v = w′.
Since w 6= w′, either ww′ ∈ A(T ) or w′w ∈ A(T ). If w′w ∈ A(T ), w′w 6∈ A(D)

but w′w ∈ A(D′), and since D′ =
(

D \ z′w′
)

∪ zw it follows that zw = w′w and

w′ = z which is not possible since z is reachable from x in D′ and w′ is not reachable
from x in D′. In an analogous way, if ww′ ∈ A(T ), ww′ 6∈ A(D′) but ww′ ∈ A(D)
and then z′w′ = ww′ and w = z′, which is not possible since z′ is reachable from x
in D and w is not.

Therefore all the in-arcs of w receive color c0. Thus w is a vertex of type 3,
and, by the way the pair {x, y} were chosen, this implies that {w, x, y} is a triple of
vertices of type 3, and since c0 = cx = cw, again, by the way the pair {x, y} were
chosen, cy = cx. Therefore all the in-arcs of the triple {x, y, w} receive the same
color c0 and this ends the proof of Theorem 1.
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