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Abstract

We call an edge colouring of a graph G a rainbow colouring if every
pair of vertices is joined by a rainbow path, i.e., a path where no two
edges have the same colour. The minimum number of colours required
for a rainbow colouring of the edges of G is called the rainbow con-
nection number (or rainbow connectivity) rc(G) of G. We investigate
sharp thresholds in the Erdős–Rényi random graph for the property
“rc(G) 6 r” where r is a fixed integer. It is known that for r = 2,
rainbow connection number 2 and diameter 2 happen essentially at
the same time in random graphs. For r > 3, we conjecture that this is
not the case, propose an alternative threshold, and prove that this is
an upper bound for the threshold for rainbow connection number r.

1 Introduction

The rainbow connection number is a measure of the connectivity of a graph
introduced in 2008 by Chartrand, Johns, McKeon and Zhang [3], which has
recently attracted the attention of a number of researchers (see [9]).

An edge colouring of a graph G is called a rainbow colouring if every pair
of vertices is joined by a rainbow path, i.e., a path where no two edges have
the same colour. The minimum number of colours required for a rainbow
colouring of the edges of G is called the rainbow connection number (or
rainbow connectivity) rc(G) of G.

In this paper we investigate the rainbow connection numbers of random
graphs. As usual, we say that an event E = E(n) holds with high probability
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(whp) if limn→∞ P(E) = 1. For two functions f, g : N → R, we write
f = O(g) if there are constants C and n0 such that |f(n)| 6 Cg(n) for all
n > n0, and f = o(g) if f(n)/g(n) → 0 as n → ∞. Furthermore, we say
f = Θ(g) if f = O(g) and g = O(f). Finally, we write f = O∗(g) if there are
constants C and n0 such that |f(n)| 6 (log n)Cg(n) for all n > n0, where
log n denotes the natural logarithm.

Recall that the Erdős–Rényi random graph with edge probability p =
p(n), denoted by G ∼ G(n, p), is a graph with n vertices where each of the(
n
2

)
possible edges is included with probability p, independently of the others.

A sequence p∗ = p∗(n) is called a sharp threshold for a graph property P if
for all constants c < 1, C > 1, if p(n) < cp∗(n) then whp G(n, p) /∈ P, and
if p(n) > Cp∗(n) then whp G(n, p) ∈ P. Recall that for a (weak) threshold,
the conditions assume p = o(p∗) and p∗ = o(p), respectively. We also use
the non-standard notion of a semisharp threshold, which only requires the
existence of some constants c, C > 0 such that the properties above hold.

We are interested in the graph property

Rr = {G : rc(G) 6 r}

of having rainbow connection number at most r. Caro, Lev, Roditty, Tuza

and Yuster [2] showed that
√

logn
n is a semisharp threshold for R2, and

He and Liang [6] proved that for general r > 2, (logn)1/r

n1−1/r is a semi-sharp
threshold for Rr. As observed by Friedgut [5], a coarse threshold can only
occur near rational powers of n. From Theorem 1.4 in [5], if the semi-
sharp threshold for Rr were not sharp, there would be a sequence (nk) and

p(nk) = Θ

(
(lognk)

1/r

n
1−1/r
k

)
such that b1n

α
k 6 p(nk) 6 b2n

α
k for some constants

b1, b2 ∈ R and α ∈ Q, a contradiction. Hence, a sharp threshold for the
property Rr exists.

Bollobás [1] showed that for any fixed r > 2, (2 logn)1/r

n1−1/r is a sharp thresh-
old for the graph property

Dr = {G : diam(G) 6 r}

of having diameter at most r. In particular, Rr and Dr have the same
weak threshold. It is an easy observation that for any connected graph G,

rc(G) > diam(G), and therefore (2 logn)1/r

n1−1/r is a lower bound for the sharp
threshold of Rr.

In [7], we showed that for r = 2, the hitting times of the properties
R2 and D2 coincide whp, so in particular these properties have the same
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sharp threshold. It is a natural question to ask whether this result may
be extended to r > 3. However, it seems that the situation for r > 3 is
fundamentally different from the case r = 2, and the methods used in [7] do
not carry over to the general case. In fact, there are good reasons to believe
that the following may be the true sharp threshold for Rr where r > 3.

Conjecture 1. Fix an integer r > 3, set C = rr−2

(r−2)! , and let

p(n) =
(C log n)1/r

n1−1/r
. (1)

Then p(n) is a sharp threshold for the graph property Rr.
In one direction, there is a heuristic argument that (1) is a lower bound

for the sharp threshold for Rr. Let ε > 0 and p = (C(1−ε) logn)1/r

n1−1/r , and
colour the edges of G ∼ G(n, p) with r colours independently and uni-
formly at random. For a given pair of vertices v, w, the expected number of
rainbow paths joining them is about r!

rrn
r−1pr = (1 − ε)

(
1− 1

r

)
log n, and

the probability that v and w are not joined by any rainbow path is about

n−(1−ε)(1−
1
r ). The expected number of pairs of vertices not joined by any

rainbow path is therefore Θ
(
n1+

1
r
+ε(1− 1

r )
)

. Assuming that these events be-

have roughly independently for different pairs of vertices, we would expect
the overall probability of the random colouring being a rainbow colouring to

be about exp
(
−Θ

(
n1+

1
r
+ε(1− 1

r )
))

. Conditional on G having O∗
(
n1+

1
r

)
edges, which holds with very high probability, there are exp

(
O∗
(
n1+

1
r

))
possible edge colourings. The probability that there exists at least one rain-
bow colouring is then bounded by the total number of colourings multiplied
with the probability that a random colouring is a rainbow colouring, which
tends to 0.

The best known upper bound for the sharp threshold of the property Rr
is (220r logn)1/r

n1−1/r , which was shown in the proof of the semi-sharp threshold in
[6]. We will establish the other direction of Conjecture 1 in this article, i.e.,
we will prove the following result.

Theorem 2. Fix an integer r > 3 and ε > 0. Set p = p(n) = (C(1+ε) logn)1/r

n1−1/r ,
and let G ∼ G(n, p). Then whp, rc(G) = r.

2 Proof of Theorem 2

Let G = (V,E) ∼ G(n, p). The basic idea of the proof is as follows. First
we colour the edges of G independently and uniformly at random using r
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colours. We call a pair of vertices dangerous if it is joined by at most K
rainbow paths of length r in this colouring, where K is a constant which
will be defined later.

For each dangerous pair, we will select one path joining it and change the
colours of the edges to make it a rainbow path, which will yield a rainbow
colouring. To see that this is possible without any conflicts and that this
does not rainbow-disconnect the pairs that previously had many rainbow
paths, we need to study the structure of the graph and its dangerous pairs.

The proof is organised as follows. In Section 2.1 some of the known
bounds needed for our later work will be reviewed. Section 2.2 contains
general observations on the distribution of edges of each colour and paths of
length r in the randomly coloured graph. The heart of the proof is Section
2.3, where the key lemma is proved. This lemma ensures that when we later
select a path of length r for every dangerous pair of vertices and recolour it to
make it a rainbow path, it is possible to do so without using any edges from
a path that was previously assigned to another dangerous pair of vertices.
Finally, in Section 2.4, the recolouring procedure will be described in detail
and it will be shown that we can indeed find a rainbow r-colouring of the
edges of G with this strategy.

2.1 Preliminaries

We will need a number of bounds for the tail of binomial distributions, which
are derived from the well-known Chernoff bounds ([4], see also [8, p.26]):

Lemma 3. Let X be distributed binomially with parameters n and p, and
let 0 < x < 1.

(i) If x > p, then P(X > nx) 6

[( p
x

)x ( 1−p
1−x

)1−x]n
.

(ii) If x 6 p, then P(X 6 nx) 6

[( p
x

)x ( 1−p
1−x

)1−x]n
.

The following corollary of the Chernoff bounds is given in Theorem 2.1
in [8].

Corollary 4. Let X be distributed binomially with parameters n and p, and
let ϕ(x) = (1 + x) log(1 + x) − x for x > −1 and ϕ(x) = −∞ otherwise.
Then for all t > 0,

P(X 6 np− t) 6 exp

(
−npϕ

(
− t

np

))
.
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In many applications it suffices to use the following more convenient
bound (see Corollary 2.3 in [8]).

Corollary 5. Let X be distributed binomially with parameters n and p. If
0 < ε 6 3

2 , then

P (|X − np| > εnp) 6 2e−ε
2np/3.

The following consequence of the Chernoff bounds can be obtained by
applying Lemma 3 to Xi with xi = k

ni
(full details are given in [7]).

Corollary 6. Let (ni)i∈N be a sequence of integers, and let (pi)i∈N be a
sequence of probabilities. Let Xi ∼ Bin(ni, pi), and let k ∈ N be constant.
Suppose that µi := nipi →∞ as i→∞. Then

P(Xi 6 k) = O(µki e
−µi).

We will also need the following easy observation on the probability of a
union of events.

Lemma 7. Let Ai, i = 1, . . . , k, be events in a probability space (Ω,F ,P).
Then

∑
i

P (Ai)−
∑
i

∑
j<i

P(Ai ∩Aj) 6 P

(⋃
i

Ai

)
6
∑
i

P (Ai) .

2.2 General observations

For the rest of the paper, define p = p(n) as in Theorem 2, let G ∼ G(n, p)
and colour the edges of G independently and uniformly at random using r
colours.

Lemma 8. Let δ > 0 be constant, let W ⊂ V be a set of vertices with |W | ∼
n, and let v ∈ V . Then for every colour, with probability 1−o

(
exp

(
−n1/r

))
,

there are at least 1−δ
r np and at most 1+δ

r np edges between v and W of the
given colour.

5



Proof. The number of such edges is distributed binomially with parameters
|W | (or |W | − 1 if v ∈W ) and p/r. Since |W |p/r ∼ ((1 + ε)Cn log n)1/r /r,
the probability that there are fewer than 1−δ

r np or more than 1+δ
r np such

edges is o
(
exp

(
−n1/r

))
by Corollary 5.

For k ∈ N, we call a path of length k in G a k-path, so a k-path is of the
form x0x1 . . . xk where the xi are distinct vertices. We call a collection of
paths in the graph independent if no two of them share any inner vertices.

Lemma 9. There is a constant c > 0 such that whp every pair of vertices
in G is joined by at least c log n independent r-paths.

Proof. Fix two distinct vertices v and w. We shall explore the (r − 1)-
neighbourhood of v step-by-step, and apply Lemma 8 at each step with a
suitable δ > 0 to see that the sets we discover have the right size. Let δ > 0
be such that (1− δ)(1 + ε)1/r = (1 + ε

2)1/r.
We start by considering all edges between v and W1 = V \ {v, w}. By

Lemma 8, with probability 1− o
(
exp

(
−n1/r

))
there are between (1− δ)np

and (1 + δ)np edges between v and W1. Condition on this, and denote by
N1 the set of vertices in W1 which are adjacent to v.

Next, let W2 = W1 \ N1, and consider the edges between N1 and W2.
Note that by our condition on the size of N1, |W2| ∼ n. Furthermore, the
edges between N1 and W2 are disjoint from and therefore independent of
the edges we have considered so far. We go through the vertices z in N1

one after the other, revealing the edges present. However, we disregard
any edges to vertices which are adjacent to another vertex in N1 which was
considered earlier, so that the edges revealed form a tree. Applying Lemma 8
at each step, we can see that with probability 1 − |N1|o

(
exp

(
−n1/r

))
=

1− o
(
exp

(
−n1/2r

))
, at each step there are between (1− δ)np and (1 + δ)np

edges.
Denote by N2 the set of vertices in W2 adjacent to a vertex in N1, and let

W3 = W2\N2. We now proceed in the same way and explore the neighbours
in W3 of all vertices in N2 disjointly, conditional on the neighbourhoods so
far having the right sizes for all vertices according to Lemma 8.

We continue in this way until we have explored the entire (r − 1)-
neighbourhood Nr−1 of the vertex v in W1. Note that if all neighbourhoods
have the right size, in total O

(
(np)r−1

)
= o(n) vertices are revealed, so we

can apply Lemma 8 at each step. With probability 1 − o(exp
(
−n1/2r

)
),

we now have a tree with at least ((1− δ)np)r−1 =
(
(1 + ε

2)Cn log n
)(r−1)/r

leaves. We can group the leaves together depending on which of the edges in-
cident with v their path to v contains (i.e., which vertex in N1 they originate
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from) — each group has size at least
(
(1 + ε

2)Cn log n
)(r−2)/r

, and there are

at least
((

1 + ε
2

)
Cn log n

)1/r
groups. The edges between w and the leaves

of the tree are independent from the edges that have been explored before.
The probability that w has a neighbour in a given vertex group is therefore
at least

1−(1− p)((1+
ε
2)Cn logn)

(r−2)/r

> 1− exp

(
−p
((

1 +
ε

2

)
Cn log n

)(r−2)/r)
> 1− exp

(
−
((

1 +
ε

2

)
C log n

)(r−1)/r
n−1/r

)
∼
((

1 +
ε

2

)
C log n

)(r−1)/r
n−1/r,

using the fact that 1− x 6 exp(−x) for all x ∈ R and that 1− exp(−x) ∼ x
as x → 0. These events are independent for the different vertex groups, so
the number of groups with at least one edge to w is distributed binomially. If
we pick one edge from each such vertex group, this gives independent paths

from v to w by construction. Since there are at least
(
(1 + ε

2)Cn log n
)1/r

vertex groups, the expected number of such paths is at least (1 + ε
3)C log n

if n is large enough. Note that ϕ(x)→ 1 as x↘ −1, where ϕ is the function

defined in Corollary 4. Therefore, since r > 3 and C = rr−2

(r−2)! > 2, if we
pick c > 0 small enough, the probability that there are fewer than c log n
independent r-paths joining v and w is o(n−2) by Corollary 4.

2.3 The main lemma

Let

L =

⌈
17r

ε(r − 1)

⌉
,K = rL, and S = 2Lr2 + 2.

Call a pair of vertices dangerous if it is joined by at most K independent
rainbow r-paths in the random colouring. The following lemma will form
the main part of the proof.

Lemma 10. For a pair {v, w} of vertices, denote by Av,w the event shown
in Figure 1: There are L independent r-paths P1, . . . , PL joining v and w,
and L r-paths Q1, . . . , QL such that, writing {xi, yi} for the end vertices of
Qi, the following conditions hold:

i) For each i, Pi contains an edge ei that is also on Qi.

ii) The pairs {xi, yi}, i = 1, . . . , L, and {v, w} are distinct.
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v w

e1

e2

eL

x1

x2

xL

y1

y2

yL

P1

P2

PL

Q1

Q2

QL

..
.

..
.

Figure 1: The event Av,w. Dashed lines show dangerous pairs. The paths Pi only
meet at v and w, while the paths Qi may share vertices with each other and with
the paths Pi. The pairs {xi, yi} are distinct, but not necessarily disjoint.

iii) All pairs {xi, yi}, i = 1, . . . , L, are dangerous.

Then whp Av,w does not hold for any pair {v, w} of vertices.

The idea of the proof is the following. For one pair {xi, yi} as in the
lemma, the expected number of rainbow r-paths joining xi and yi is roughly
r!
rrn

r−1pr = r!
rrC(1 + ε) log n = r−1

r (1 + ε) log n. Since the rainbow paths
behave roughly binomially, the probability that {xi, yi} is dangerous is about

n−
r−1
r

(1+ε)(log n)K by Corollary 6.
Therefore, given v and w, the probability that there is one path Pi

containing an edge ei which also lies on an r-path joining a dangerous pair
{xi, yi} is about

O∗
(
n2r−2p2r−1n−

r−1
r

(1+ε)
)

= O∗(n−ε
r−1
r ).

Therefore, if we can show that these events do not depend on each other too
much for different Pi, then we would expect that the overall probability that

there are L such paths is about O∗
(
n−Lε

r−1
r

)
. If L is chosen large enough,

this will then be o(n−2), completing the proof of the lemma.
A formal proof of this idea requires some care.
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Proof of Lemma 10. Fix distinct vertices v and w. Consider a possible con-
figuration of vertices and edges for the paths Pi, Qi, edges ei and pairs
{xi, yi} as in conditions (i) and (ii) of Av,w. Denote by k the number of
vertices in the configuration other than v and w, and let l be the number of
edges in the configuration. Then k 6 2(r−1)L, as the configuration consists
of L r-paths Pi with endpoints v and w, and L r-paths Qi which each share
at least two vertices with a path Pi.

Note that the configuration is connected, and if we remove one edge on
all but one path Pi, it is still connected as there is still one v-w path left.
Since a connected graph with m vertices has at least m− 1 edges, it follows
that l − (L− 1) > (k + 2)− 1, so l > k + L. Therefore,

nkpl 6 (np)kpL 6 (np)2(r−1)LpL = n2(r−1)Lp(2r−1)L. (2)

Now condition on a specific such configuration being present in G. Let W
denote the set of vertices involved in the configuration, including v and w,
and let V ′ = V \W . Then |W | = k + 2 6 2Lr, and |V ′| ∼ n. The edges
betweenW and V ′ and within V ′ are disjoint from and therefore independent
from the edges involved in the configuration.

Let s =
⌊
r−1
2

⌋
, and let D be the set of all vertices xi and yi from the

configuration. We now explore the s-neighbourhoods Γs(z) of the vertices
z ∈ D within V ′. We want to find disjoint subsets of Γs(z) such that
all elements are joined to z by a rainbow s-path and all such paths are
independent, except if they come from the same neighbour of z. We do this
as in the proof of Lemma 9 — first explore the neighbours of z1 ∈ D in V ′,
then explore their neighbours in V ′ and so on, then proceed with the next
vertex z2 ∈ D, and so on. As before, at each step, we disregard edges to
vertices that have been explored already. Unlike in the proof of Lemma 9,
at each step we only check for new neighbours joined by edges with colours
not appearing on the path from z to the current vertex. We group together
vertices that come from the same edge incident with some z ∈ D. This gives
disjoint subsets Rj(z) of V ′ for every z ∈ D, 1 6 j 6 jz, where the Rj(z)
are the vertex groups which come from the same neighbour of z, as shown
in Figure 2. Let R(z) =

⋃
16j6jz Rj(z). Then by definition, the following

properties hold:

i) For every z1, z2, 1 6 j1 6 jz1 and 1 6 j2 6 jz2 , if z1 6= z2 or if j1 6= j2
then the sets Rj1(z1) and Rj2(z2) are disjoint.

ii) For every z ∈ D, every vertex z′ ∈ R(z) is joined to z by a rainbow
s-path Pz′ with all inner vertices in V ′.
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z

..
.

..
.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

R(z)

R1(z)

R2(z)

Rjz(z)

Figure 2: The tree of depth s obtained by the exploration of the rainbow s-
neighbourhood of z. The paths from the root z to the leaves are rainbow paths.
We have one such tree for each z ∈ D; these trees are disjoint.

iii) For every z1, z2, j1, j2 and z′1 ∈ Rj1(z1), z
′
2 ∈ Rj2(z2), if z1 6= z2 or if

j1 6= j2, then the paths Pz′1 and Pz′2 do not share any inner vertices.

Applying Lemma 8 at each step of our exploration with δ > 0 such that

(1− δ)(1 + ε)1/r >
(
1 + ε

2

)1/r
and (1 + δ)(1 + ε)1/r 6 (1 + 2ε)1/r, we see that

with probability 1− o(n−2Lr), the following additional properties hold:

iv) For all z ∈ D,
(
C
(
1 + ε

2

)
n log n

)1/r
6 jz 6 (C (1 + 2ε)n log n)1/r.

v) For all z ∈ D and 1 6 j 6 jz, |Rj(z)| = O∗
(
n

s−1
r

)
.

vi) For every subset S of the r available colours such that |S| = s and for
all z ∈ D there are at least

s!

rs

(
C
(

1 +
ε

2

)
n log n

)s/r
and at most

s!

rs
(C (1 + 2ε)n log n)s/r

10



vertices z′ ∈ R(z) such that the colours appearing on Pz′ are exactly
the colours in S.

Assume (i) – (vi) from now on. Then |R| = O((n log n)s/r) = o(n), so
|V ′ \ R| ∼ n.

Case 1: r is odd. In this case s =
⌊
r−1
2

⌋
= r−1

2 . For every subset S of
colours of size s, there are

(
r−s
s

)
= s + 1 sets of colours of size s disjoint

from S. Therefore, for every vertex u1 in some set R(xi) there are at least

(s+ 1)
s!

rs

(
C
(

1 +
ε

2

)
n log n

)s/r
vertices u2 in R(yi) such that an edge u1u2 of the correct colour would
complete a rainbow r-path from xi to yi.

Therefore, there are at least(
r

s

)
(s+1)

(s!)2

r2s

(
C
(

1 +
ε

2

)
n log n

)2s/r
=

r!

rr−1

(
C
(

1 +
ε

2

)
n log n

)(r−1)/r
potential edges between R(xi) and R(yi) such that each one would com-
plete a rainbow path from xi to yi. Each of these edges is present and has
the correct colour for a rainbow path with probability 1

rp, independently
from the edges that have been revealed so far. Therefore, the number of
such edges is distributed binomially with mean at least

r!

rr
C
(

1 +
ε

2

)
log n =

r − 1

r

(
1 +

ε

2

)
log n.

If we denote by Ei the event that there are at most 2SK edges of the correct
colour between R(xi) and R(yi) to complete a rainbow path between xi
and yi, then by Corollary 6,

P(Ei) = O∗
(
n−(1+ ε

2) r−1
r

)
.

The events Ei are independent for different pairs {xi, yi} since the pairs
{xi, yi} are distinct and all sets R(xi), R(yi) are disjoint. Hence,

P

 ⋂
16i6L

Ei

 = O∗
(
n−L(1+ ε

2) r−1
r

)
= O

(
n−L(1+ ε

4) r−1
r

)
. (3)

For every z ∈ D and 1 6 j 6 jz, let Bz
j denote the event that there are at

least S edges between Rj(z) and R \Rj(z). Then

P(Bz
j ) 6 (|Rj(z)||R|p)S = O∗

(
nS(s−1)/rnSs/rpS

)
= O∗

(
n−S/r

)
,

11



as |Rj(z)| = O∗
(
n(s−1)/r

)
and |R| = O∗

(
ns/r

)
. Therefore, letting B =⋃

(z,j):16j6jz B
z
j ,

P (B) = O∗
(
n1/rn−S/r

)
= o(n−2Lr), (4)

by choice of S.

If B does not hold but Ei does for some 1 6 i 6 L, then in particular
the pair {xi, yi} is not dangerous. This is because we have at least 2SK
edges of the correct colour between R(xi) and R(yi) to complete a rainbow
path between xi and yi, but there are at most S such edges from each
particular vertex groupRj(xi) orRj(yi), so we can successively pickK such
edges between pairwise distinct vertex groups Rj(xi) or Rj(yi), yielding K
independent rainbow paths between xi and yi by property (iii).

Therefore, if all L pairs {xi, yi} are dangerous, then B ∪
⋂

16i6LEi holds.
Hence, by (3) and (4), the probability that all L pairs {xi, yi} are dangerous
is bounded by

O
(
n−L(r−1)(1+

ε
4)/r

)
+ o(n−2Lr).

Case 2: r is even.

In this case s =
⌊
r−1
2

⌋
= r

2 − 1. Let u ∈ V ′ \R. Given a vertex u1 in some
R(xi), there are at least(

r − s
s

)
s!

rs

(
C
(

1 +
ε

2

)
n log n

)s/r
and at most (

r − s
s

)
s!

rs
(C (1 + 2ε)n log n)s/r

vertices u2 in R(yi) such that adding edges u1u and uu2 of appropriate
colours would complete a rainbow r-path from xi to yi via u1, u and u2.
Therefore, there are at least(
r

s

)(
r − s
s

)
s!2

r2s

(
C
(

1 +
ε

2

)
n log n

)2s/r
=

r!

2rr−2

(
C
(

1 +
ε

2

)
n log n

) r−2
r

(5)
and at most

r!

2rr−2
(C (1 + 2ε)n log n)

r−2
r (6)

pairs of vertices u1 ∈ R(xi), u2 ∈ R(yi) such that edges u1u and uu2 of
appropriate colours would complete a rainbow path from xi to yi. For one

12



such pair {u1, u2} and u ∈ V ′ \ R, denote by Mu1,u2
u the event that the

edges u1u and uu2 are present and have one of the two possible colour
combinations. Then

P(Mu1,u2
u ) =

2

r2
p2. (7)

Moreover, if the events Mu1,u2
u and M

u′1,u
′
2

u hold for different pairs {u1, u2}
and {u′1, u′2}, then u is adjacent to three or more distinct vertices from
{u1, u2, u′1, u′2}, so

P
(
Mu1,u2
u ∩Mu′1,u

′
2

u

)
= O(p3). (8)

For a vertex u ∈ V ′ \R, denote by Fu the event that u is the middle vertex
of any path as above for any 1 6 i 6 L. Then by Lemma 7 and (5), (6),
(7), (8),

P(Fu) > L
r!

rr

(
C
(

1 +
ε

2

)
n log n

) r−2
r
p2 −O∗

(
n

2(r−2)
r

)
O
(
p3
)

> L
r − 1

r

(
1 +

ε

2

)
n−1 log n−O∗

(
n−1−

1
r

)
∼ Lr − 1

r

(
1 +

ε

2

)
n−1 log n.

The events Fu are independent for different u ∈ V ′ \ R. Thus, since |V ′ \
R| ∼ n, the number of events Fu that hold is distributed binomially with
mean asymptotically at least

L
r − 1

r

(
1 +

ε

2

)
log n.

By Corollary 6, the probability of the event F that at most 2KLS of the
events Fu hold is

P(F ) = O∗
(
n−(1+o(1))L

r−1
r (1+ ε

2)
)

= O
(
n−L

r−1
r (1+ ε

4)
)
. (9)

For every z ∈ D and 1 6 j 6 jz, denote by B̃z
j the event that there are

at least S independent 2-paths from (not necessarily distinct) vertices in
Rj(z) to (not necessarily distinct) vertices in R with middle vertices in
V ′ \ R. Then, since |Rj(z)| = O∗

(
n(s−1)/r

)
and |R| = O∗

(
ns/r

)
,

P(B̃z
j ) 6

(
|Rj(z)| |V | |R| p2

)S
= O∗

((
n

s−1
r

+1+ s
r p2
)S)

= O∗
(
n−S/r

)
.
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Therefore, if we let B̃ =
⋃

(z,j):16j6jz B̃
z
j , then

P(B̃) = O∗
(
n1/rn−S/r

)
= o(n−2Lr), (10)

by choice of S.

If neither B̃ nor F holds, then one of the pairs {xi, yi} is not dangerous.
This is because there are more than 2KLS vertices u ∈ V ′\R which are the
middle vertices of rainbow paths joining pairs {xi, yi}, so there is an index
1 6 i0 6 L such that there are more than 2KS vertices u ∈ V ′ \ R which
are the middle vertices of rainbow r-paths joining the pair {xi0 , yi0} (we
can just pick the index with the maximum number of such vertices u). If B̃
does not hold, at most S of those paths pass through any particular vertex
group Rj(xi0) or Rj(yi0). Hence, we can successively select more than
K rainbow r-paths joining {xi0 , yi0} which pass through pairwise distinct
vertex groups. These rainbow paths are independent by property (iii), so
{xi0 , yi0} is not dangerous.

Hence, if all pairs {xi, yi} are dangerous, then B̃ or F holds, which by (9)
and (10) has probability

O
(
n−L(1+ ε

4) r−1
r

)
+ o

(
n−2Lr

)
.

So in each case, conditional on a configuration of paths Pi and Qi, edges
ei and pairs {xi, yi} as in conditions (i) and (ii) of the event Av,w, the
probability that all pairs {xi, yi} are dangerous is at most

O
(
n−L(1+ ε

4) r−1
r

)
+ o

(
n−2Lr

)
.

Together with (2), it follows that the overall probability of Av,w is at most

O
(
n2(r−1)Lp(2r−1)Ln−L(1+ ε

4) r−1
r

)
+ o(n−2L) =

= O

((
n2r−2−(1+ ε

4) r−1
r p2r−1

)L)
+ o(n−2) = O

(
n−

ε(r−1)
8r

L
)

+ o(n−2)

= o(n−2),

by choice of L. So whp, there is no such pair {v, w}.
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2.4 Completing the proof

To finish the proof, we want to construct a rainbow colouring of the edges of
G from the given random colouring. By Lemmas 9 and 10, we can assume
that every pair of vertices is joined by at least c log n independent r-paths
for a constant c > 0, and that Av,w does not hold for any pair {v, w} of
vertices.

Recall that we call a pair of vertices dangerous if it is joined by at most
K independent rainbow r-paths in the original random colouring. Take an
arbitrary ordering of the dangerous pairs. We will go through them one by
one, each time selecting an r-path joining the dangerous pair, changing its
colours if necessary to make it a rainbow path, then flagging all edges on
the path to ensure they do not get recoloured later on.

Let {v, w} be the pair we consider. It is joined by at least c log n > rL
independent r-paths if n is large enough. We want to find one such path
where no edge is flagged yet.

So take a set I of rL independent r-paths joining v and w, and consider
any such path P1 in I. Either none of its edges is flagged — in this case, we
have found our path. Otherwise, it contains (at least) one edge which is also
on an r-path joining a dangerous pair other than {v, w}. For this dangerous
pair, one path of length r was flagged previously. Therefore, at most r−1 of
the other paths in I can contain edges flagged for the same dangerous pair.
Discard those paths and P1. We are left with at least r(L− 1) paths joining
v and w. Select any such path P2 and proceed in the same way as with P1:
Either P2 is completely unflagged, or we remove P2 and any other path with
edges flagged for the same dangerous pair as P2 from consideration, and are
left with at least r(L − 2) paths. We repeat this procedure until we find a
completely unflagged path. This happens at PL at the latest. Otherwise, if
PL also contains an edge flagged for a new dangerous pair, then Av,w holds,
a contradiction.

Therefore, there is a path joining {v, w} where no edge is flagged at the
time we consider {v, w}. Select this path, change its colours if necessary
to make it a rainbow path, then flag all its edges and move on to the next
dangerous pair. Repeat this procedure until all dangerous pairs have been
assigned rainbow paths.

It only remains to check that during our recolouring procedure no pre-
viously non-dangerous pair has lost all of its rainbow paths. Let {v, w} be
a pair that was not dangerous before we started recolouring. Since it was
originally joined by at least K = rL rainbow paths, by the same argument as
above for dangerous pairs, one of these paths must be completely unflagged,
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otherwise Av,w would hold. This path has retained its original colours and is
therefore still a rainbow path. So all pairs of vertices are joined by rainbow
paths now.
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