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Abstract

Gallai’s colouring theorem states that if the edges of a complete graph are 3-coloured,
with each colour class forming a connected (spanning) subgraph, then there is a triangle that
has all 3 colours. What happens for more colours: if we k-colour the edges of the complete
graph, with each colour class connected, how many of the

(

k

3

)

triples of colours must appear
as triangles?

In this note we show that the ‘obvious’ conjecture, namely that there are always at least
(

k−1

2

)

triples, is not correct. We determine the minimum asymptotically. This answers a
question of Johnson. We also give some results about the analogous problem for hypergraphs,
and we make a conjecture that we believe is the ‘right’ generalisation of Gallai’s theorem to
hypergraphs.

1 Introduction

Gallai’s colouring theorem (see [6] or [13]) states that if we 3-colour the edges of Kn, the com-
plete graph on n vertices, in such a way that each colour class forms a connected spanning
subgraph, then there exists a triangle that is multicoloured, meaning that no two of its edges
have the same colour.

What happens if we have 4 colours? Let us call a colouring of Kn connected if each colour
class forms a connected spanning subgraph. So suppose that we have a connected 4-colouring
of Kn: of the 4 possible triples of colours, how many must appear as the colour set of a multi-
coloured triangle? It is easy to see that we must have at least 3 triples. Indeed, if no triangle
is coloured as 123 or 124 then, viewing the 4-colouring as a 3-colouring with colours 1, 2 and ‘3
or 4’, we would contradict Gallai’s theorem. And it is also immediate that we cannot guarantee
all 4 triples (at least if n is large): just take colour classes 1, 2 and 3 to be paths that are
‘completely unrelated’ (i.e., the union of them does not contain a triangle), and let colour class
4 be everything else. This does not have any triangle with colours 123.

Johnson [12] asked: what happens if we have more colours? So suppose that we have a connected
k-colouring of Kn. What is the least number of triples that must appear as the colour sets of
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multicoloured triangles (perhaps for n large)? There is an obvious guess, namely that we repeat
the above: so we let k − 1 of the colour classes be paths, which are completely unrelated, and
the other colour class be everything else. This gives

(

k−1
2

)

triples. Is this the right answer?

Surprisingly, it turns out that one can do significantly better than this. In Section 2, we give a
simple construction to show that the true answer is about 1

3k
2.

In Section 3, we turn our attention to the corresponding question for hypergraphs. We concen-
trate on the 3-uniform case. Perhaps the first attempt to find an analogue of Gallai’s theorem
would be to ask: if we 4-colour the set of all 3-sets from an n-set, in such a way that each
colour class is connected (in some sense or other), must there be a 4-set that is multicoloured
(i.e. whose 3-sets receive all 4 colours)? There are several different ways to define ‘connected’,
but it turns out, as we will see, that even for the strongest notion of connectedness the answer
is that we need not have such a 4-set. However, if we return to 3-colourings, and ask for a 4-set
whose 3-sets receive all 3 colours, then we do not know what happens. We make various related
conjectures, about this case and the r-uniform case.

We remark that Gallai’s theorem has been the starting point for a considerable amount of
work. For example, Ball, Pultr, and Vojtěchovský [2] considered a special class of Gallai graphs,
those where each triangle spans precisely two colours, and Gyárfás, Sarközy, Sebő and Selkow [8]
considered Ramsey-type results for Gallai colourings. See also [5, 7, 9, 10] for related results.

We write [k] = {1, 2, . . . , k}. In a k-colouring, we usually use colours from [k]. We also of-
ten refer to ‘different multicoloured triangles’ for multicoloured triangles having different colour
sets.

2 Multicoloured triangles in coloured complete graphs

In this section, we consider f(k), the minimum number of triples that can appear as the colour
sets of multicoloured triangles in a connected k-colouring of Kn, for any n. (We remark in
passing that one might also ask for the minimum provided n is sufficiently large - but in fact,
as we will see later in the section, this is the same notion.)

We start with an easy lower bound of f(k): any connected k-colouring of Kn must contain

at least k(k−2)
3 different multicoloured triangles. This is a consequence of Gallai’s theorem and

the following simple lemma.

Lemma 2.1. Let A be a family of subsets of size 3 of [k] such that whenever we partition [k]
into three non-empty subsets, [k] = R1 ∪ R2 ∪ R3, there exists an A ∈ A with A ∩ Ri 6= ∅ for

i = 1, 2, 3. Then |A| ≥ k(k−2)
3 .

Proof. We show that each element of [k] is in at least k − 2 sets of A (whence |A| ≥ k(k−2)
3

by double counting). If we fix an element i ∈ [k] and consider the graph where the edges are
induced by the sets containing i, then by the condition in the lemma, it is easy to see that this
is a connected graph on k − 1 vertices and so must have at least k − 2 edges.
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For an alternative proof, note that, partitioning [k] into {1} ∪ {2} ∪ {3, . . . , k}, there must be a
set A1 in A containing {1, 2} and wlog A1 = {1, 2, 3}. Then partitioning [k] into {1} ∪ {2, 3} ∪
{4, . . . , k}, there must be another set A2 in A containing {1, 2 or 3} and wlog A2 = {1, 2 or 3, 4}.
Continuing to partition [k] into {1}∪{2, 3, 4}∪{5, . . . , k}, {1}∪{2, 3, 4, 5}∪{6, . . . , k}, . . . , {1}∪
{2, . . . , k − 1} ∪ {k}, we can see that there are at least k − 2 sets in A containing 1.

Corollary 2.2. f(k) ≥ k(k−2)
3 .

Proof. Suppose now that we have a connected k-colouring of Kn. The subgraph spanned by
colours in R is connected for any subset R of [k]. If we partition [k] into three non-empty subsets
R1 ∪ R2 ∪ R3, Gallai’s theorem says that there must exist a multicoloured triangle with colour
set intersecting R1, R2 and R3. The family of colour sets of multicoloured triangles now satisfies
the condition in Lemma 2.1 and hence has size at least k(k−2)

3 .

We remark that, in the proof of Lemma 2.1, we only considered partitions with a singleton as a
class. One might hope to improve this to get a better lower bound on f(k), but the bound in
Lemma 2.1 is in fact best possible by an inductive construction shown by Diao, Liu, Rautenbach,
and Zhao [3]. (See the remark after the next result for an explicit construction.)

From the above lemma and the paths colouring discussed in the Introduction, we have k(k−2)
3 ≤

f(k) ≤ (k−1)(k−2)
2 . For the case k = 5, this gives f(5) = 5 or 6, and it is natural to believe that

the paths colouring would be the best, suggesting f(5) = 6. But surprisingly, this is not the
case. And in fact this paths colouring is not right in general, not even asymptotically. Indeed,
we will give another colouring to improve the upper bound of f(5) and in general f(k).

To be able to have a connected 5-colouring of Kn, we need each subgraph to have at least
n− 1 edges, implying that the minimal complete graph to have a connected 5-colouring is K10,
with each colour class forming a tree. However, by going up to K11, we are able to find a
colouring with more symmetry, which turns out to give fewer multicoloured triangles. This is
the case k = 5 of the following result.

Proposition 2.3. Let n = 2k + 1 be prime. Then there is a connected k-colouring of Kn with
precisely k(k−2)

3 multicoloured triangles.

Proof. Let V (Kn) = {0, 1, 2, . . . , n − 1}. We can partition the edge set of Kn into k disjoint
spanning cycles Ci, i = 1, 2, . . . , k, where E(Vi) = {{ai, (a + 1)i} : a = 0, 1, 2, . . . , n − 1}. Here,
we use multiplication and addition mod n. We now colour each Ci with a different colour. This
colouring is definitely connected as each colour class spans a cycle. It is also not hard to check
that each colour is in precisely k − 2 different multicoloured triangles. Hence the size of the
family of colour sets of multicoloured triangles is exactly k(k−2)

3 .

We remark that for the case when 2k + 1 is prime, the family of colour sets of multicoloured
triangles in the above colouring provides an explicit (non-inductive) construction attaining the
bound in Lemma 2.1.

The colouring in Proposition 2.3 works for n = 2k + 1 - what about colourings for other values
of n? For a smaller value of n, we note that the minimal complete graph to have a connected
k-colouring is K2k. So we can take the coloured K2k+1 in the Lemma 2.3 and delete a vertex
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from it. Very fortunately, each colour class stays connected. For larger values of n, the following
simple lemma shows that the above colouring is in fact enough to attain the lower bound of
f(k), for each n ≥ 2k.

Lemma 2.4. Suppose that there is a connected k-colouring of Km with l different multicoloured
triangles. Then, for any n ≥ m, there is a connected k-colouring of Kn with l different multi-
coloured triangles.

Proof. Let c′ be the above colouring of Km. Partition the vertices of Kn into m non-empty
vertex classes, V1 ∪ V2 ∪ . . . ∪ Vm. For ui ∈ Vi and vj ∈ Vj, we define a colouring c for Kn as
follows.

c(uivj) =

{

c′(ij) if i 6= j,

c′(12) if i = j.

It is easy to see that c is a connected k-colouring of Kn and any multicoloured triangle must have
all three vertices from distinct vertex classes. Hence the family of coloured sets of multicoloured
triangles of c is exactly the same as the family of colour sets of multicoloured triangles of c′.

Combining Proposition 2.3, Lemma 2.4 and the discussion after Proposition 2.3, when 2k + 1
is prime we have a connected k-colouring of Kn for any n ≥ 2k with exactly k(k−2)

3 differ-
ent multicoloured triangles. Together with the lower bound on f(k), this gives the following
corollary.

Corollary 2.5. f(k) = k(k−2)
3 when 2k + 1 is a prime.

When 2k+1 is not prime, we do not know an explicit connected k-colouring attaining the lower
bound. Instead, we give an inductive colouring where the number of different multicoloured
triangles is close to the lower bound in Corollary 2.2.

The following technical lemma states that if a k-coloured complete graph satisfies certain con-
ditions, we can extend this colouring to a larger complete graph by adding an extra colour
without creating too many new multicoloured triangles. Indeed, only the minimum number (cf.
Lemma 2.1) of multicoloured triangles will be created, that is, k− 1 of them involving this new
colour.

Lemma 2.6. Let c be a connected k-colouring of Kn with the following properties.

• There are exactly l different multicoloured triangles.

• There are exactly k − 2 different multicoloured triangles using colour k.

• The subgraph spanned by colour k is a cycle.

• The edges vivi+2 have the same colour for all i ∈ [n]. (The subscripts are taken mod n, so
vn+1 = v1 and vn+2 = v2.)

Then, there exists a connected (k + 1)-colouring c′ of K2n with the following properties.

• There are exactly l + k − 1 different multicoloured triangles.

• There are exactly k − 1 different multicoloured triangles using colour k + 1.

4



• The subgraph spanned by colour k + 1 is a cycle.

• The edges v′iv
′
i+2 have the same colour for all i ∈ [2n]. (The subscripts are taken mod 2n,

so v2n+1 = v1 and v2n+2 = v2.)

Proof. Suppose V (Kn) = {v1, v2, . . . , vn} and the subgraph spanned by colour k has edges
v1v2, v2v3, . . . , vnv1.

Let V (K2n) = {x1, x2, . . . , xn, y1, y2, . . . , yn}. We define c′ on K2n as follows.

c′(xixj) = c(vivj),

c′(yiyj) = c(vivj),

c′(xiyj) =

{

c(vivj) if j /∈ {i, i + 1},

k + 1 otherwise.

Here we use addition mod n, so xn+1 = x1 and yn+1 = y1.

For each i ∈ [k], the subgraph spanned by colour i in c′ is two copies of the subgraph spanned
by colour i in c with at least one edge joining them and so connected in K2n. The subgraph
spanned by colour k + 1 is just a spanning cycle of K2n and so also connected. Hence, c′ is a
connected k + 1-colouring of K2n.

The number of multicoloured triangles not using colour k + 1 is exactly l. The number of
multicoloured triangles using colour k + 1 but not colour k is the same as the number of multi-
coloured triangles using colour k in c, that is k− 2. And finally, there is only one multicoloured
triangle using both colours k and k + 1. In total, there are l + k − 2 + 1 = l + k − 1 different
multicoloured triangles in c′ and the number of different multicoloured triangles using colour
k + 1 is precisely k − 1, proving the lemma.

From Corollary 2.5, we know the exact values of f(k) for infinitely many k. Applying Lemma 2.6
to the explicit colourings in Lemma 2.3, we have good upper bounds for f(k) for all k’s between

consecutive primes. Finally, to obtain the limit of f(k)
k2

, we need to know the gaps between
consecutive primes. It is known (see e.g. [11, 1]) that there exists a constant α < 1 such
that pn+1 − pn < pαn for sufficiently large n, where pn is the nth prime. This determines f(k)
asymptotically.

Theorem 2.7. f(k) = k2

3

(

1 + o(1)
)

.

We have shown that f(k) = k(k−2)
3 for infinitely many k’s, but what is the exact value of f(k) in

general? We believe that a colouring attaining the lower bound in Corollary 2.2 always exists,
but we have been unable to prove this.

Conjecture 2.8. f(k) =
⌈

k(k−2)
3

⌉

for all k ≥ 3.

3 Multicoloured 4-sets in coloured complete 3-graphs

In this section, we wish to find analogues of these results for hypergraphs. We will focus on the
case of 3-uniform hypergraphs (or 3-graphs for short).
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An analogue of Gallai’s theorem for 3-graphs would be the following statement. Suppose we
connectedly (in some sense of connectedness) 4-colour the edges of the complete 3-graph on n

vertices, K
(3)
n , then must there exist a multicoloured 4-set (that is, a K

(3)
4 with all its edges

having different colours)?

The notion of connectedness in hypergraphs can be generalised in a natural way from the con-
nectedness of 2-graphs. If we view connectedness as a ‘1-set property’, then this would just be
pointwise connectedness (although some authors call this ‘connectedness’, see e.g. [4]), that is to
say a 3-graph is pointwise connected when there is a path between every pair of vertices, where

a path is a sequence of intersecting 3-edges. We say a colouring of K
(3)
n is a pointwise connected

colouring if the subgraph spanned by each of the colours is pointwise connected on n vertices.

It is easy to see that if we take a ‘cycles’ colouring, analogous to the paths colouring from
the Introduction, where we take colour classes 1, 2, and 3 to be completely unrelated spanning
cycles, and class 4 to be everything else, then this does not contain a multicoloured 4-set. For

example, let n be prime and let V (K
(3)
n ) = {0, 1, 2, . . . , n−1}. We partition the edge set of K

(3)
n ,

E(K
(3)
n ) into A ∪ B ∪ C ∪ D, where

A = {012, 123, . . . , (n− 2)(n − 1)0, (n − 1)01},

B = {024, 246, . . . , (n− 4)(n − 2)0, (n − 2)02},

C = {036, 369, . . . , (n− 6)(n − 3)0, (n − 3)03},

D = E(K(3)
n ) \ (A ∪ B ∪ C).

If we colour the edges in each of these sets differently, then each colour spans a pointwise con-
nected subgraph. It is also easy to check that there is no multicoloured 4-set.

Note that the above example can be generalised to a k-colouring of the complete 3-graph in

the obvious way. This is to say, there is a pointwise connected k-colouring of K
(3)
n such that it

contains no multicoloured 4-set.

What if we view connectedness as a 2-set property instead? That is to say, a 3-graph is con-
nected when there is a strong path, that is, a path where each of the intersection sizes is precisely
two, between every pair of 2-sets. (Note that this is a stronger notion than being a covering,
where we say a 3-graph is a covering if every 2-set is in some edge. In fact, it is the strongest
possible notion of connectness for 3-uniform hypergraphs, apart from topological notions such
as spanning a disc.) Formally, and from now onwards, we say a 3-graph H is connected if for any
{u, v}, {u′, v′} in V (H)(2) there is a strong path P = {E1, E2, . . . , Ek} inH such that {u, v} ⊂ E1

and {u′, v′} ⊂ Ek. And similarly, we say a coloured K
(3)
n is connected if the subgraph spanned

by each of the colours is connected on the n vertices.

With this notion of connectedness for 3-graphs, one might hope to have a direct analogue of
Gallai’s theorem. However, it turns out that the analogous statement is again false. We will
first focus on general k-colourings, and will comment on the particular case of k = 4 afterwards.
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The idea is to inductively blow up a coloured complete 3-graph that contains no multicoloured
4-set and add a new colour to it without creating any multicoloured 4-set.

Theorem 3.1. Let k ≥ 1. Then there is a connected k-colouring of K
(3)
n , for some sufficiently

large n, with no multicoloured 4-set.

Proof. The case k = 1 is trivial. Suppose c is a connected k-colouring of K
(3)
n with no multi-

coloured 4-set. We show that we can (k+1)-colour K
(3)
n2 such that it is connected and does not

contain any multicoloured 4-set.

Let V
(

K
(3)
n2

)

= V1 ∪ V2 ∪ . . . ∪ Vn, where Vi = {vij : 1 ≤ j ≤ n}. We define the (k + 1)-
colouring c′ as follows.

c′(vixvjyvlz) =











c(ijl) if i, j, l all distinct,

c(xyz) if i, j, l not all distinct and x, y, z all distinct,

k + 1 otherwise.

We claim that c′ is a connected colouring of K
(3)
n2 . We need to check that the subgraph

spanned by colour s ∈ [k + 1], Hs is connected. We shall check that for every pair of 2-
sets, {vix, vjy}, {vpz , vqt}, there is always a strong path in Hs between them. We will do the case
when s ∈ [k]. The case s = k + 1 is similar and hence is left for the reader.

If all the four vertices are from different blocks or they are all from the same block, it is clear
that there is such a path, induced from colouring c. Suppose now that they are from three
different blocks. There are two cases for this, that is, when i = j, p 6= q, i /∈ {p, q} and when
i = p, j 6= q, i /∈ {j, q}. For the former case, there must be an edge of colour s, E = {vix, viy, vru}
with r /∈ {i, p, q} and with the path between {vix, vru} and {vpz, vqt}, induced from colouring c,
we have the required path. For the latter case, since there is a path of colour s in the colouring
c between {i, j} and {i, q}, this induces a path in Hs joining {vix, vjy} and {viz, vqt}. The case
when the four vertices are in two different blocks is similar. Hence, c′ is indeed a connected
colouring.

Now, we claim that c′ does not span a multicoloured 4-set. Let {vix, vjy, vpz, vqt} be a 4-set. If
i, j, p, q or x, y, z, t are all distinct, then the colour of the 4-set is the same as a 4-set induced by

c on K
(3)
n , which is not multicoloured. Suppose now that they are in three different blocks, that

is, i = j, p 6= q, i /∈ {p, q}, then c′(vixvpzvqt) = c′(vjyvpzvqt) = c(ipq), hence not multicoloured. If
they are from two different blocks, there are two cases to consider, that is, when j = p = q, x = y
and when i = j, p = q, x = z. For the former case, we have c′(vixvpzvqt) = c′(vjyvpzvqt) = c(xzt),
hence not multicoloured. For the latter case, we have c′(vixvjyvqt) = c′(vjyvpzvqt) = c(xyt), also
not multicoloured.

We have now exhibited a (k + 1)-colouring of K
(3)
n2 such that it is connected and contains no

multicoloured 4-set. This completes the proof of the theorem.

The theorem above says that we can connectedly 4-colour the complete 3-graph to avoid any
multicoloured 4-set In how small a complete 3-graph can this be done? For example, the above
colouring requires n, the number of vertices, to be about 38 = 6561.
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We now show that one may take n = 17, by giving an explicit connected 4-colouring of K
(3)
17

with no multicoloured 4-set. We suspect that the value of 17 is optimal.

Proposition 3.2. There is a connected 4-colouring of K
(3)
17 with no multicoloured 4-set.

Proof. We would like to have a very symmetric colouring, and indeed we will have that any two

of our colour classes are isomorphic 3-graphs. Let the vertices of K
(3)
17 be {v0, v1, . . . , v16}. We

define the distance of two vertices, vi, vj to be min{|i − j|, 17 − |i − j|}. For each edge vivjvk,
its ‘type’ is a 3-tuple consisting the three distances of the three pairs of vertices. For example,
we say the edge v1v2v4 is of type (1, 2, 3) (or simply type 123 in short).

All edges of a given type will receive the same colour. Note that there are 8 special types
of edges with a repeated distance, namely type 112, type 224, . . . , type 881. So each colour class
should contain 2 of those and 4 other types of edges.

We are now ready to give a 4-colouring without multicoloured 4-set. Let C be a set of types of
edges, namely C = {112, 336, 145, 235, 347, 458}. For a positive integer k, we write kC = {k×C :
C ∈ C}, where k× (a, b, c) = (ka (mod 17), kb (mod 17), kc (mod 17)). (Here, we view x as the
same as 17− x.)

One can check that C ∪ 2C ∪ 4C ∪ 8C partitions the types of edge in K
(3)
17 . Now we can colour

each of the edges of K
(3)
17 by one of four different colours depending on which set its type lies in.

To check this colouring is indeed connected on K
(3)
17 , we can check that in the subgraph spannned

by each colour, there is a strong path from {v0, v1} to every other pair of vertices. For example,
from {v0, v1} to {v5, v9}, we have the path {v0v1v2, v0v2v5, v2v5v9} in the subgraph spanned by
the colour in correspondence to C. Note that we only need to check for the case C, as the four
subgraphs spanned by the four colours are isomorphic. The rest of the cases are similar.

Suppose now that there is a multicoloured 4-set and one of the edges are from the special
types. We may assume that this 4-set is {v0, v1, v2, vx}. It is enough to consider the cases when
3 ≤ x ≤ 9, and in each of these cases the 4-set is not multicoloured. So a multicoloured 4-set
cannot have any special type edge. Suppose now that one of the edges is of type 145; again we
may assume that the 4-set is {v0, v1, v5, vx}. For each value of x, we again claim that the 4-set
is not multicoloured. For example, when x = 6, the edge v0v1v5 and the edge v1v5v6 have the
same colour, and hence not multicoloured. All the remaining cases are similar, and so there is
no multicoloured 4-set in this colouring.

From the above, it seems that there is no direct analogue of Gallai’s theorem in 3-uniform hy-
pergraphs. But perhaps this is because a multicoloured 4-set is too much to ask for, and maybe
we should look for a 3-coloured 4-set instead?

In each of the colourings of K
(3)
n without any multicoloured 4-set we had, there are many

4-sets that have three different edge colours. We say such 4-sets are tricoloured. On the other

hand, any non-trivial colouring of K
(3)
n using at least two colours contains a 4-set that has at

least two different edge colours.
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So it is natural to ask: given some connectedness condition on the k-colouring of K
(3)
n , must

it always contain a tricoloured 4-set? From the colourings we have on K
(3)
n that avoid multi-

coloured 4-sets, one might hope that, for any connectedness condition we apply, such a colouring
must contain a tricoloured 4-set.

Surprisingly, this is not entirely correct. Indeed, suppose we weaken the condition of con-
nectedness of 3-graphs we had before by only requiring the presence of a path (and not a strong
path) between every pair of 2-sets - note that this is exactly the condition of being a covering,

as defined earlier. We now give a covering k-colouring of K
(3)
n (again, this means that every

colour class is a covering) without any tricoloured 4-set. This colouring is very similar to the
one in Theorem 3.1, but rather easier as we have a weaker notion of connectedness.

Lemma 3.3. Let k ≥ 1. Then there is a covering k-colouring of K
(3)
n , for some sufficiently

large n, with no tricoloured 4-set.

Proof. The case k = 1 is trivial. Suppose c is a covering k-colouring of K
(3)
n with no tricoloured

4-set. We want to (k + 1)-colour K
(3)
n2 such that it is a covering and does not contain any tri-

coloured 4-set.

Let V
(

K
(3)
n2

)

= V1 ∪ V2 ∪ . . . ∪ Vn, where Vi = {vij : 1 ≤ j ≤ n}. We define the (k + 1)-
colouring c′ as follows.

c′(vixvjyvlz) =











c(ijl) if i, j, l all distinct,

c(xyz) if i = j = l,

k + 1 otherwise.

As in the proof of Theorem 3.1, it is not hard to check that c′ is in fact a covering (k+1)-colouring

of K
(3)
n2 without any tricoloured 4-set.

Despite the above colouring with no tricoloured 4-set, we still believe that every connected k-

coloured K
(3)
n must contain an tricoloured 4-set. This is our conjectured extension of Gallai’s

theorem.

Conjecture 3.4. For all sufficiently large n, every connected 3-colouring of K
(3)
n must contain

a tricoloured 4-set.

4 Further remarks and questions

We remarked after Proposition 2.3 that of course K2r is the minimal complete graph to have
a connected k-colouring, because a connected 2-graph on n vertices must have at least n − 1
edges. In order to determine the minimal complete 3-graph having a connected k-colouring, we
need to know the minimal number of edges of a connected 3-graph on n vertices. We have the
following simple result.

Lemma 4.1. Let Hn be a connected 3-graph on n vertices. Then
∣

∣E(Hn)
∣

∣ ≥
⌊

1
2

(

n
2

)⌋

. Moreover,
this bound can be obtained.
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Proof. To show the lower bound, we construct a connected 2-graph Gn on
(

n
2

)

vertices from Hn.
Let the vertex set of Gn indexed by the 2-sets of vetices of Hn. For each edge vivjvk in Hn, we
add three edges (vivj)(vivk), (vivj)(vjvk) and (vivk)(vjvk) to Gn. By the connectedness of Hn,
we can see that Gn is connected. In fact, if we delete one of the three edges added to Gn from
each edge vivjvk in Hn, Gn remains connected.

By construction, Gn has 2
∣

∣E(Hn)
∣

∣ edges and together with the fact that Gn being connected
implies that it has at least

(

n
2

)

− 1 edges, implying Hn must have at least
⌊

1
2

(

n
2

)⌋

edges.

For the upper bound, we show by inductive constructions that there is a connected 3-graph
on n vertices with

⌊

1
2

(

n
2

)⌋

edges.

We first deal with the case when n is even. Given Hn with V (Hn) = {x1, . . . , xk, y1, . . . , yk}, we
construct Hn+4 as follows.

V (Hn+4) := V (Hn) ∪ {a, b, c, d},

E(Hn+4) := E(Hn) ∪ {axiyi : 1 ≤ i ≤ k} ∪ {bxiyi : 1 ≤ i ≤ k − 1} ∪

{cxiyi : 1 ≤ i ≤ k} ∪ {dxiyi : 1 ≤ i ≤ k} ∪ {abxk, abc, acd, bdyk}.

It is not hard to check that Hn+4 is connected if Hn is connected. We need two base cases, that
is, when n = 2, 4. For n = 2, we can simply take H2 to be the empty 3-graph on two vertices
and for n = 4, we can take H4 to be the complete 3-graph on four vertices taking away an edge.
Now |E(Hn+4)| = |E(Hn)|+ 2n + 3 =

⌊

1
2

(

n
2

)⌋

+ 2n + 3 =
⌊

1
2

(

n+4
2

)⌋

.

We can now construct a connected 3-graph on n + 1 vertices from one on n vertices, with
n being even. Given Hn with V (Hn) = {x1, . . . , xk, y1, . . . , yk}, we construct Hn+1 as follows.

V (Hn+1) := V (Hn) ∪ {a},

E(Hn+1) := E(Hn) ∪ {axiyi} : 1 ≤ i ≤ k}.

It is straightforward to check that Hn+1 is indeed connected and |E(Hn+1)| = |E(Hn)| +
n
2 =

⌊

1
2

(

n
2

)⌋

+ n
2 =

⌊

1
2

(

n+1
2

)⌋

.

In Section 3, we tried to extend Gallai’s theorem to hypergraphs. Returning to graphs, we could
also ask, what about a multicoloured Kd in a connectedly k-coloured Kn, for any d > 3? The
exact same paths colouring we had in the Introduction shows that there exists a connectedly k-
coloured Kn without any multicoloured Kd. But another question would be, how many colours
must some Kd have in a connected k-colouring of Kn? For example, if we have a connected
6-colouring of Kn, then there must exist a K4 that spans at least four colours - this is a simple
consequence of Gallai’s theorem plus the fact that every vertex is incident with edges of all
colours. In the other direction, we can take five disjoint paths on n vertices such that the
union of them contains no cycles of length at most 4 and give the paths colouring (as in the
Introduction) to deduce that every K4 spans at most four colours.

Proposition 4.2. Let 3 ≤ d ≤ k. Then there is a Kd that spans at least d colours in any
connectedly k-coloured Kn. Moreover, for all sufficiently large n, there exists a connectedly
k-coloured Kn with no Kd spanning more than d colours.
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Proof. As above, the first statement is a simple consequence from Gallai’s theorem plus the fact
that every vertex is incident with edges of all colours.

The latter statement is trivially true for d = k. For d < k, we can take k− 1 disjoint paths on n
vertices such that the union of them contains no cycles of length at most d and give the paths
colouring as the one mentioned in the introduction, that is, colour each of the spanning paths
by a different colour and the rest of the edges by another colour, say green. Suppose there is a
Kd that spans d+1 colours, then there are at least d non-green edges on these d vertices, which
implies that there is a cycle of length at most d from the union of these paths, contradicting the
assumption.

Until now we have focused on graphs and 3-uniform hypergraphs, but it is natural to seek
extensions to the case of general r-uniform hypergraphs. As before, we say that an r-graph is
connected if there is a strong path between every pair of (r − 1)-sets. Here, a strong path is a
sequence of r-edges where each consecutive pair of r-edges has intersection size precisely r − 1.

Again, we say a coloured K
(r)
n is connected if each colour class spans a connected subgraphs. It

appears that the interesting case is still for 3 colours.

Conjecture 4.3. For all sufficiently large n, if we connectedly 3-colour the edges of the complete
r-graph on n vertices, then there must exist an (r + 1)-set that uses all three colours.

A slightly weaker notion would be to use covering, where we say an r-graph is a covering if
every (r − 1)-set is in some r-edge. We say a colouring of the complete r-graph is covering if
each colour class spans a covering.

Unfortunately, as with 3-graphs (Lemma 3.3), it is again not true that every weakly connected
3-colouring of a complete 4-graph contains a 5-set that uses all three colours.

Lemma 4.4. For all sufficiently large n, there is a covering 3-colouring of K
(4)
n with no 5-set

that uses all three colours.

Proof. Suppose c is a covering red/blue colouring of K
(4)
n and d is a covering blue/green colour-

ing of K
(4)
n .

Let V
(

K
(3)
n2

)

= V1 ∪ V2 ∪ . . . ∪ Vn, where Vi = {vij : 1 ≤ j ≤ n}. We can view this as the

blow-up of K
(4)
n of colouring d with n copies of K

(4)
n of colouring c. There are three other

different types of 4-edges to be coloured. Formally, we define the 3-colouring c′ as follows.

c′(vixvjyvpzvqt) =































d(ijpq) if i, j, p, q all distinct,

c(xyzt) if i = j = p = q,

red if
∣

∣{i, j, p, q}
∣

∣ = 3,

blue if i = j, p = q, i 6= p,

green if i = j = p, q 6= i.

It is now straightforward to check that c′ is in fact a covering 3-colouring of K
(4)
n2 without any

K
(4)
5 that uses all three colours.
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It seems that the above inductive colouring works because we are lucky to have exactly three
colours, namely one to colour each of the three extra types of 4-edges to maintain the connec-

tivity of the blow-up K
(4)
n2 . In fact, we do not see how to generalise this to greater values of r,

even when we are allowed to use more colours.

Finally, returning to Theorem 3.1, it would be interesting to know what happens if the notion
of connectedness is strengthened to some topological notion of connectedness (to do with the
simplicial complex formed by the triples in each colour class): this is an idea of Thomassé [14].
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