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Abstract

We study biplane graphs drawn on a finite planar point set S in general position. This
is the family of geometric graphs whose vertex set is S and can be decomposed into two
plane graphs. We show that two maximal biplane graphs—in the sense that no edge can
be added while staying biplane—may differ in the number of edges, and we provide an
efficient algorithm for adding edges to a biplane graph to make it maximal. We also study
extremal properties of maximal biplane graphs such as the maximum number of edges and
the largest maximum connectivity over n-element point sets.

1 Introduction

In a geometric graph G = (V,E), the vertices are distinct points in the plane in general
position, and the edges are straight line segments between pairs of vertices. A plane graph
is a geometric graph in which no two edges cross. Every (abstract) graph has a realization
as a geometric graph (by simply mapping the vertices into distinct points in the plane, no
three of which are collinear), and every planar graph can be realized as a plane graph by
Fáry’s theorem [13]. The number of n-vertex labeled planar graphs is at least 27.22n ·n! [15].
However, there are only 2O(n) plane graphs on any given set of n points in the plane [2, 22].

We consider a generalization of plane graphs. A geometric graph G = (V,E) is k-plane
for some k ∈ N if it admits a partition of its edges E = E1 ·∪ . . . ·∪ Ek such that G1 =
(V,E1), . . . , Gk = (V,Ek) are each plane graphs. Let S be a planar point set in general
position, that is, no three points in S are collinear. Denote by Gk(S) the family of k-plane
graphs with vertex set S. With this terminology, G1(S) is the family of plane graphs with
vertex set S, and G2(S) is the family of 2-plane graphs (also known as biplane graphs) with
vertex set S.

In this and a companion paper [14], we study G2(S) and contrast combinatorial properties
between plane graphs G1(S) and biplane graphs G2(S). Plane graphs have limitations in
achieving some desirable properties, such as high connectivity, as it is known that every plane
graph H has a vertex with degree at most 5, hence κ(H) ≤ λ(H) ≤ δ(H) ≤ 5 (we use standard
graph theory notation as in [8]). It is natural to expect that significantly better values can
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be obtained if the larger family G2(S) is used. This is precisely the topic we explore in these
papers, mostly focusing on graph size and vertex connectivity.

One reason for the study of the family G2(S), instead of the most general family Gk(S),
is that testing when a geometric graph is k-plane can be done in O(n log n) time for k = 2,
but it is NP-Complete for any k ≥ 3 [12]. On the other hand, to imagine biplane graphs we
can suppose that the plane has two sides, with the vertices of a graph being on both sides but
each edge on only one side. In this way, biplane graphs can model some physical networks, as,
for example, printed circuit boards (PCB). (A PCB consists of several electrical components
embedded into a board, connected by noncrossing tracks, which can be printed on either side
of the board.)

Related concepts. Note that the above generalization of plane graphs is reminiscent to, al-
though more restrictive than, the notion of thickness, geometric thickness, and book thickness,
which are defined for abstract graphs [6, 9]. We recall their definitions for ease of comparison.
The thickness of an (abstract) graph G = (V,E) is the smallest k ∈ N such that G admits
an edge partition E = E1 ·∪ . . . ·∪ Ek with the property that G1 = (V,E1), . . . , Gk = (V,Ek)
are each planar graphs. The geometric thickness of an (abstract) graph G = (V,E) is the
smallest k ∈ N such that G admits an edge partition E = E1 ·∪ . . . ·∪ Ek satisfying that
G1 = (V,E1), . . . , Gk = (V,Ek) can be simultaneously embedded as plane graphs where the
vertex set is mapped to a common labeled point set. The book thickness is a restricted version
of the geometric thickness where G1, . . . , Gk are simultaneously embedded on a point set in
convex position.

Notice that every k-plane graph, if interpreted as an abstract graph, has geometric thick-
ness at most k, but in addition we are given a specific embedding in the plane in which the
decomposition into k plane layers is possible. In other words, the term k-plane graph refers
to a geometric object, a drawing, while having geometric thickness k is a property of the un-
derlying abstract graph. For example, the cycle C4 has geometric thickness 1, but a drawing
connecting the points (0, 0), (1, 1), (1, 0), (0, 1) in this cyclic order with straight-line segments
would have a crossing and be 2-plane.

For disambiguation, we also mention two additional notions, which are commonly used in
the graph drawing community, but have little to do with our subject. An (abstract) graph is
called k-planar if it has a drawing in the plane (where the edges are Jordan arcs) such that each
edge crosses at most k other edges. It is already NP-hard to recognize 1-planar graphs [19].
The other notion worth mentioning is 1-plane, which is used for a specific geometric drawing
of a 1-planar graph [11] in which edges are crossed at most once. Note that these two notions
have a different meaning from the definition of k-plane graphs introduced above.

Prior work and organization of the paper. Our main focus is the study of the largest
possible graphs for a fixed point set. This involves the concepts of maximum (graphs with the
largest possible number of edges) and maximal graphs (i.e., graphs in which the addition of
any edge would break the biplane property). In Section 2 we formally define both concepts,
and study several fundamental properties. Among other results, we show that two maximal
biplane graphs on the same point set do not necessarily have the same number of edges. In
particular, this implies that the maximum and maximal properties of biplane graphs are not
equivalent (as opposed to the case of planar graphs).

Algorithmic issues are studied in Section 3. First, we present an algorithm for determining
whether a given geometric graph is biplane or not. We then show how to augment a biplane
graph with new edges to a maximal biplane graph. This result is a variant of the fundamental
problem of graph augmentation, where one would like to add new edges, ideally as few as
possible, to a given graph in such a way that some desired property is achieved. There has
been extensive work on augmenting a disconnected plane graph to a connected one (see [17]
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for a recent survey) or on achieving good connectivity properties [1, 3, 4, 21, 23].
In Section 4, we study the maximum vertex connectivity that can be attained for the

graphs in G2(S) over all n-element point sets S in general position. Similar extremal problems
have been considered for graphs of thickness or geometric thickness two [6, 18].

In the companion paper [14] we consider several problems on augmenting plane graphs to
biplane supergraphs with higher connectivity, including the case in which the input is only
a point set S and the goal is to construct a good biplane graph on S. These problems are
closely related to the results we present here, and have also received substantial attention for
the case of plane graphs.

2 Fundamental Properties of Maximal Biplane Graphs

A (geometric) graph G = (V,E) is maximal (or edge-maximal) in a family of graphs F if there
is no graph G′ = (V,E′) in F such that E ⊂ E′. We are mostly concerned with problems
related to finding a biplane graph of high connectivity or high vertex degree in G2(S) for a
given point set S. Since the addition of new edges does not decrease the vertex connectivity,
we can restrict our attention to maximal graphs in G2(S).

Recall that a maximal plane graph in G1(S) is a triangulation, that is, a plane graph where
all bounded faces are triangles, and the boundary of the outer face is the convex hull ch(S).
It is well known that any two triangulations on the same point set have the same number
of edges. Moreover, any triangulation is also maximal (i.e., the addition of any edge to a
triangulation will result in a nonplane graph). We note that these properties do not hold for
biplane graphs: there exist point sets S for which not all maximal graphs in G2(S) have the
same number of edges (see an example in Figure 1). In particular, this implies that not every
maximal biplane graph is maximum.

Figure 1: Two maximal biplane graphs on the same point set. The left graph is a maximum
biplane graph with 18 edges, whereas the right one is maximal with 17 edges.

In the following, we show that every maximal biplane graph is the union of two maximal
plane graphs.

Lemma 1. If G = (S,E) is a maximal biplane graph in G2(S), then there are two triangula-
tions T ′ = (S,E′) and T ′′ = (S,E′′) such that E = E′ ∪ E′′.

Proof. By definition, G = (S,E) has an edge partition E = E1 ·∪E2, where G1 = (S,E1) and
G2 = (S,E2) are plane graphs. Augment G1 and G2, independently, to maximal plane graphs
T ′ = (S,E′) and T ′′ = (S,E′′); thus T ′ and T ′′ are triangulations. By construction, we have
E ⊂ E′ ∪E′′. The geometric graph (S,E′ ∪E′′) is biplane by definition. Hence E = E′ ∪E′′,
otherwise G would not be maximal.

The two triangulations, T ′ = (S,E′) and T ′′ = (S,E′′), share some edges. The edges of
the convex hull ch(S) are always part of both triangulations, but T ′ and T ′′ may also share
some interior edges. There is a simple characterization of shared edges in terms of edge flips.
An edge e in a triangulation is flippable if the union of the two adjacent faces (triangles) is a
convex quadrilateral.
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Lemma 2. Let G = (S,E) be a maximal biplane graph in G2(S) such that E = E′∪E′′, where
T ′ = (S,E′) and T ′′ = (S,E′′) are two triangulations. No edge of E′∩E′′ is flippable in neither
T ′ nor T ′′. Furthermore, every maximal biplane graph with n ≥ 4 vertices is 3-connected.

Proof. Suppose, to the contrary, that e ∈ E′∩E′′ is flippable in T ′ (the case that e is flippable
in T ′′ is analogous). We can modify T ′ by flipping edge e. Specifically, let f be the other
diagonal of the convex quadrilateral formed by the two faces of T ′ adjacent to e, and define a
new triangulation T ′′′ = (S,E′′′) with E′′′ = (E′ \ {e}) ∪ {f}. It is clear that (S,E′′ ∪ E′′′) is
biplane, and it contains edge f and all edges in E (including e ∈ E′′). Hence it is a biplane
graph strictly larger than G, contradicting the maximality of G. Three-connectivity follows
from the fact that a separating chord in a triangulation is always flippable.

We now study the smallest and largest number of edges that a maximal biplane graph may
have. It is known that every triangulation in G1(S) has 3n− h− 3 edges, where n = |S| ≥ 3
and h ≥ 3 is the number of vertices of the convex hull ch(S). By Lemma 1, a maximal biplane
graph G ∈ G2(S) is the union of two triangulations, T ′ and T ′′, that share the convex hull
edges. Thus, it follows that G has at most 6n− 3h− 6 ≤ 6n− 15 edges. Hutchinson et al. [18]
improved this bound by showing that, for n ≥ 8, every biplane graph in G2(S) has at most
6n − 18 edges. In particular, when h = 3 the triangulations T ′ and T ′′ will share at least 3
interior edges. In the remainder of this section we establish lower bounds in terms of n and h
for the number of edges in a maximal graph and in a maximum graph in G2(S).

Theorem 1. Let S be a set of n ≥ 3 points in the plane such that ch(S) has h vertices. Then
every maximal graph in G2(S) has at least max(7n2 −h−5, 3n−6) edges. Moreover, this bound
is tight when h = n.

Proof. Let T1 = (S,E1) be an arbitrary triangulation of S, with 3n− h− 3 edges. Hoffmann
et al. [16] proved that every triangulation of S contains at least max(n2 − 2, h − 3) flippable
edges.

Now, let G = (S,E) be a maximal biplane graph in G2(S), and suppose that T1 = (S,E1)
and T2 = (S,E2) are two triangulations such that E = E1 ∪ E2. By Lemma 2, every edge
in E1 ∩ E2 is flippable in neither T1 nor T2. Thus all flippable edges that are in E1 must
be in E1 \ E2. Hence, |E1 \ E2| ≥ max(n2 − 2, h − 3), and so |E| = |E2| + |E1 \ E2| ≥
3n− h− 3 + max(n2 − 2, h− 3) ≥ max(7n2 − h− 5, 3n− 6).

When h = n, we show that the lower bound max(7n2 − h− 5, 3n− 6) = 3n− 6 is the best
possible. Indeed, every biplane graph on a set of n points in convex position is planar as an
abstract graph (Lemma 1(i) of [14]), hence it has at most 3n− 6 edges.

Theorem 2. Let S be a set of n ≥ 3 points in the plane such that ch(S) has h vertices. Then
every maximum graph in G2(S) has at least 4n − h − 6 edges if h ≥ 4 or n = 3; and at least
4n− h− 7 edges if h = 3 and n > 3. Moreover, these bounds are tight.

Proof. Lower bounds. We proceed by induction on n. The base case is n = h, where the
union of two triangulations of a convex n-gon gives a biplane graph with n + 2(n − 3) =
3n− 6 = 4n− h− 6 edges. In this case, the claim follows directly from Theorem 1.

Suppose now that n > h, and that the claim holds for every set of n − 1 points whose
convex hull has h vertices. Let s ∈ S be a rightmost point in the interior of ch(S), and let
S′ = S \ {s}. Let G′ = (S′, E′) be a maximum biplane graph on S′. By induction, G′ has
at least 4(n − 1) − h − 6 edges if h ≥ 4 or n − 1 = 3; and at least 4(n − 1) − h − 7 edges if
h = 3 and n − 1 > 3. By Lemma 1, G′ is the union of two triangulations T ′

1 = (S′, E′
1) and

T ′
2 = (S′, E′

2).
We construct a biplane graph G = (S,E) by augmenting G′ with the new vertex s and

some incident edges. If h = 3 and n = 4, then G′ is a triangle, and s can only be joined to
the 3 vertices of G′. Hence G has 6 = 4n− h− 7 edges, as required.
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Figure 2: Two point sets with convex hulls of size h = 3 (left) and h = 6 (right), where the
maximum biplane graph has 4n− h− 7 and 4n− h− 6 edges, respectively.

If h ≥ 4 or n ≥ 5, we join s to at least 4 vertices of G′. Point s lies in the interior of
a triangle ∆′ of T ′

1, and a triangle ∆′′ of T ′
2. We can augment T ′

1 and T ′
2 each with 3 new

edges that join s to the corners of ∆′ and ∆′′, respectively, to obtain two new triangulations
T ′′
1 and T ′′

2 . If ∆′ and ∆′′ together have at least 4 distinct vertices, then the induction step is
complete.

It remains to consider the case in which ∆′ and ∆′′ together have only 3 distinct vertices,
i.e., ∆′ = ∆′′. Since h ≥ 4 or n ≥ 5, T ′′

1 cannot be the wheel triangulation. Recall that, by
construction, we know that there is no interior point that is to the right of s. In particular,
the rightmost vertex of ∆′ must be a vertex of ch(S). It follows that one of the edges of ∆′ is
flippable in T ′′

1 (proof of this claim is given in Property 3 of [14]). Thus, by flipping this edge
in T ′′

1 we introduce an additional edge which (together with the three edges from s) allows us
to augment G′ as desired.
Tightness. We show that there are point sets that attain the above lower bounds for all
h, n ∈ N, 3 ≤ h ≤ n. For h = 3 and n > 3, our construction S consists of three vertices of a
triangle ∆ = (v1, v2, v3) and n− 3 points in the interior of ∆, lying on a circular arc between
v2 and v3 (Figure 2, left). Every maximal graph in G2(S) contains the edges between v1 and
the other n − 1 vertices, since none of these edges can be crossed by other edges. The n − 1
points in S \ {v1} are in convex position, and admit a biplane graph with 3(n− 1)− 6 edges
by Theorem 1. The total number of edges is at most n− 1 + (3n− 9) = 4n− 10 = 4n− h− 7.

For n = 3, we can simply take a triangle. For h ≥ 4, our construction of S consists of
the vertices of a convex h-gon (v1, . . . , vh), and n − h points in the interior of the triangle
∆ = (v1, v2, vh) lying on a circular arc between v2 and vh such that v1v3 separates all interior
points from the vertices v4, . . . , vh (Figure 2, right). Every maximal graph in G2(S) contains
the h hull edges, the n − h edges between v1 and the interior vertices, and the n − h edges
of the path (v2, vh+1, . . . , vn), since none of these edges can be crossed by other edges. These
2n− h edges are part of every triangulation contained in a maximal biplane graph in G2(S).

By Lemma 1, there exist two triangulations TR = (S,R) and TB = (S,B) such that
E = R∪B. Every triangulation on n points, h of which lie on the hull, has |R| = |B| = 3n−h−3
edges. As noted above, we have |R∩B| ≥ 2n−h. We conclude that |E| = |R|+ |B|−|R∩B| ≤
2(3n− h− 3)− (2n− h) = 4n− h− 6.

3 Constructing Maximal Biplane Graphs

We now consider computational aspects related to biplane graphs. The most fundamental
algorithmic question is recognition, thus we start by showing how to determine if a given
graph is biplane.

Lemma 3. Given a geometric graph G = (S,E) with n vertices and m edges, there is an
O(n log n)-time algorithm that tests whether G is biplane and produces, if possible, a partition
E = E1 ·∪ E2 such that both (S,E1) and (S,E2) are plane graphs.
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(a) (b)

Figure 3: (a): A biplane graph with three types of edges: only in red triangulation (dotted),
only in blue triangulation (dashed), and in both (solid). (b): Subdivision created by purple
edges.

Proof. By the result of Hutchinson et al. [18], we know that if m > 6n−18 and n ≥ 8, then G
cannot be biplane. The case n < 8 can be solved by brute force, thus from now on we assume
that m ≤ 6n− 18 and n ≥ 8. Let GX be the intersection graph of the open line segments in
E, that is, the nodes of GX correspond to the edges of G, and two nodes are adjacent in GX if
and only if the corresponding edges cross. An edge partition E = E1 ·∪E2, where G1 = (S,E1)
and G2 = (S,E2) are plane graphs, corresponds to a bipartition of GX . Given a set of m line
segments in the plane, an O(m logm)-time algorithm by Eppstein [12] returns either an odd
cycle in the intersection graph GX or a 2-coloring of the segments such that segments of the
same color are disjoint.1 Recall that m ∈ O(n), thus overall the algorithm runs in O(n log n)
time.

Another natural algorithmic question is how to augment a given biplane graph to a maximal
one. That is, given G ∈ G2(S), can we find a maximal graph G′ ∈ G2(S) such that G ⊆ G′?
It is easy to augment a plane graph G ∈ G1(S) to a triangulation: we can augment G with
all edges of the convex hull ch(S), and then triangulate each bounded face independently.
However, it is not obvious how to augment two layers E = E1∪E2 into maximal plane graphs
independently. That is, the converse of Lemma 1 is not true: if T ′ = (S,E′) and T ′′ = (S,E′′)
are triangulations, then G = (S,E′ ∪ E′′) is not necessarily maximal biplane.

We can use Lemma 3 to greedily augment G into a maximal biplane graph: consider all
O(n2) edges of the complement of G successively, and augment the graph with each new edge
as long as the augmented graph remains biplane. Since each test takes O(n log n) time, we
obtain an algorithm that runs in O(n3 log n)-time. In the following we provide an alternative
faster method that exploits the geometric properties of maximal biplane graphs.

By definition, any graph G ∈ G2(S) decomposes into two plane graphs. We greedily
augment the two plane graphs into triangulations. Let TR = (S,R) and TB = (S,B) be
the obtained triangulations, and G′ = (S,R ∪ B). By construction, we have G ⊆ G′ and
G′ ∈ G2(S). Now we classify the edges of G′ as red if they appear only in R, blue if they
appear only in B, or purple if they appear in both R and B (see Figure 3(a)). Let P = R∩B
denote the set of purple edges.

If a purple edge is flippable in TR or TB, then we can flip it in one triangulation and
retain it in the other, thereby increasing the total number of edges by one (and decreasing the
number of purple edges by one). Intuitively, our algorithm aims to minimize the number of
purple edges (thus having the maximum number of edges overall).

A natural approach would be to flip purple edges whenever they are flippable in either
TR or TB. However, as mentioned before, the decomposition E = B ∪ R is not unique: it
is possible that a purple edge is not flippable in either triangulation, but there is a different

1We note that Eppstein’s algorithm does not explicitly construct the intersection graph GX , which may
have Ω(m2) edges.
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decomposition E = R′∪B′ that admits a flippable edge in R′∩B′. To overcome this difficulty,
we introduce the concept of a colorblind flippable edge.

Consider the plane graph (S, P ) formed by all purple edges. The purple graph (S, P ) is a
subgraph of both triangulations, TR and TB, and contains all convex hull edges. Each bounded
face of (S, P ) is a weakly simple polygon (possibly with holes), see Figure 3(b). Denote by
F1, . . . ,Fk the bounded faces of the purple graph (S, P ).

Let e ∈ P be a purple edge that is not an edge of the convex hull. We say that e is
colorblind flippable (with respect to R and B) if it is flippable in the triangulation TR or TB,
or e is adjacent to two different faces of (S, P ), and is adjacent to a red triangle in TR and a
blue triangle in TB forming a convex quadrilateral. With this definition we can obtain a local
characterization of maximal biplane graphs. We also use the term colorblind flippability to
refer to the condition of an edge as being colorblind flippable.

Naturally, the fact that an edge is red or blue depends on the choice of TR and TB. How-
ever, the same does not hold for purple edges. Regardless of the choice of the triangulations,
an edge of G is purple if and only if it is not crossed by any other edge of G: if it is crossed,
then it cannot appear in both triangulations. Otherwise, its insertion cannot break the pla-
narity property of either triangulation (which implies that it was in both triangulations by
maximality). Thus, the fact that an edge is purple does not depend on the choice of the trian-
gulations. In fact, we show (Corollary 1) that the colorblind flippability of a purple edge does
not depend on the choice of the triangulations, either. More importantly, this observation
yields the following characterization of maximal biplane graphs by a local property.

Theorem 3. Let G = (S,E) be a biplane graph, and let TR = (S,R) and TB = (S,B) be two
triangulations such that E = R∪B. Then G is a maximal biplane graph if and only if no edge
e ∈ R ∩B is colorblind flippable with respect to R and B.

Before proving Theorem 3, we establish a helpful result (Lemma 4). Recall that a bounded
face F of the purple plane graph (S, P ) is a weakly simple polygon, possibly with holes. A
chord of F is an internal diagonal of F (connecting two vertices through the interior of F).
Denote by RF (resp., BF ) the set of chords of F in R (resp., in B). Note that RF and BF
define two triangulations of F which, by definition, satisfy RF ∩ BF = ∅. By exchanging the
triangulations RF and BF , we obtain a new decomposition E = R′∪B′ into R′ = (R\RF )∪BF
and B′ = (B \ BF ) ∪ RF . We show that all decompositions of E into two triangulations can
be obtained by such exchanges in some faces of (S, P ).

Lemma 4. Let F be a weakly simple polygon possibly with holes, and let RF and BF be two
disjoint sets of chords, each of which forms a triangulation of the interior of F . Then the
intersection graph GF of the open line segments RF ∪BF is connected.

Proof. For an edge e ∈ RF ∪ BF , denote by v(e) the corresponding node in the intersection
graph GF . The chords RF and BF form two distinct triangulations of F , which we call red
and blue triangulations of F . We prove that if e, e′ ∈ BF are edges of a triangle ∆ in the blue
triangulation, then GF contains a path between the nodes v(e) and v(e′). It follows that all
blue chords in BF must be in the same connected component of GF , since the dual graph
of the blue triangulation is connected. Analogously, all red chords in RF are in the same
connected component of GF . Since every red edge crosses a blue edge (and vice versa), GF is
connected.

To prove that GF contains a path between the nodes v(e) and v(e′), we consider two
situations, see Figure 4. If a red chord er ∈ RF intersects both e and e′, then there is a path
of length 2 from v(e) to v(e′) in GF . Otherwise, there exists a red edge er ∈ RF that crosses
e and a red edge e′r ∈ RF that crosses e′ (recall that non-purple edges are crossed by at least
one edge of the opposite color). Since er and e′r do not cross each other, neither of them can
be incident to any vertex of ∆. Hence, both er and e′r must cross the third edge, e′′, of ∆. In
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particular, this implies that e′′ ∈ BF , and there are paths of length 2 from v(e) to v(e′′) and
from v(e′′) to v(e′). Thus, v(e) and v(e′) are connected in GF by a path of length at most
4.

e

e′

e

e′

er

e′′e′′

u

Figure 4: e, e′ ∈ BF are edges of a triangle ∆ of the blue triangulation. Left: a red edge er
crosses both e and e′. Right: no red edge crosses both e and e′. Then, there is a red edge that
crosses e and e′′, and another red edge that crosses e′ and e′′.

For each bounded face F of (S, P ), by Lemma 4, the intersection graph GF is bipartite
and connected, therefore there is only one way of partitioning the edges of RF ∪BF into two
plane graphs. Consequently, if any edge in RF changes its color, then all edges in RF ∪ BF
must also change their colors. We are now ready to prove Theorem 3.

Proof of Theorem 3. Let G = (S,E) be a biplane graph and let E = R∪B such that (S,R) and
(S,B) are two triangulations of S. Denote the faces of the purple graph (S, P ) by F1, . . . ,Fk.

Suppose that there is an edge e ∈ E colorblind flippable with respect to R and B. We
show that G cannot be a maximal biplane graph. Clearly, if e is flippable in R or B, then we
can flip it in one triangulation and retain it in the other, thereby increasing the total number
of edges by one. Otherwise, let Fi and Fj be the faces of the purple graph (S, P ) adjacent to
e, and suppose without loss of generality that e is adjacent to a red triangle in RFi and a blue
triangle in BFj that form a convex quadrilateral. Then we can obtain a new decomposition
E = R′ ∪ B′ with R′ = (R \ RFi) ∪ BFi and B′ = (B \ BFi) ∪ RFi . By flipping e in the
triangulation R′, and retaining it in B′, the total number of edges increases by one.

Suppose now that G = (S,E) is not a maximal biplane graph. We show that there is a
colorblind flippable edge in E (with respect to R and B). Recall that R = RF1 ∪ . . .∪RFk

∪P
and B = BF1 ∪ . . . ∪ BFk

∪ P , where P is the set of purple edges. Since G is not maximal,
G can be augmented to a larger biplane graph Gmax = (S,Emax) such that E ⊂ Emax. Let
(S,Rmax), (S,Bmax) be two triangulations such that Emax = Rmax ∪ Bmax. Note that, even
though Emax contains E, it is possible that R 6⊆ Rmax and B 6⊆ Bmax.

Since there is only one way of partitioning RFi ∪ BFi into two plane graphs, each RFi

and BFi must be completely contained in either Rmax or Bmax. That is, we have Rmax =
C1∪ . . .∪Ck∪Rk+1 and Bmax = C1∪ . . .∪Ck∪Bk+1, where {Ci, Ci} = {RFi , BFi}, and Rk+1

and Bk+1 are two additional sets that complete Rmax and Bmax to a triangulation, respectively.
Consider now the triangulations R′ = C1 ∪ . . . ∪ Ck ∪ P , and B′ = C1 ∪ . . . ∪ Ck ∪ P .

By construction, we have E = R′ ∪ B′, hence this is another decomposition of E into two
triangulations. Note that R′ and Rmax share all edges in C1 ∪ . . . ∪ Ck.

Consider all triangulations on S that contain the edges C1 ∪ . . . ∪ Ck (i.e., these edges
are constrained), including R′ and Rmax. It is known [20] that between any two constrained
triangulations on the same point set, there is a sequence of edge flips (of unconstrained edges)
that transform one into the other. In particular, there is a sequence of flips that transforms
R′ into Rmax, flipping only unconstrained edges. The first edge flipped in the sequence is in
P , implying that P contains at least one flippable edge with respect to R′. With respect to
the original decomposition E = R∪B, this edge is colorblind flippable with respect to R and
B, as required.
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Corollary 1. Let G = (S,E) be a biplane graph such that E can be decomposed into two
triangulations. Let (R,B) and (R′, B′) be any two such decompositions (i.e., E = R ∪ B =
R′ ∪ B′). A purple edge is colorblind flippable with respect to R and B if and only if it is
colorblind flippable with respect to R′ and B′.

Before presenting our algorithm, we show that when we flip one edge we cannot alter the
colorblind flippability of any other edges that are “far” away.

Lemma 5. The flip of an edge e can only change the colorblind flippability of edges in the
triangles that contain e.

Proof. The fact that an edge e′ is colorblind flippable only depends on the two triangles that
are adjacent to e′ in R and B (more precisely, on the up to four different combinations of
adjacent triangles). Thus, flipping e cannot affect the colorblind flippability of e′ if e′ is not
part of one of the four triangles containing e. Moreover, by flipping e we reduce the number
of purple edges by one.

We now describe an algorithm to augment a given biplane graph G = (S,E) to a maximal
biplane graph.

Algorithm MAXIMAL:

1. Compute (using Lemma 3) a decomposition E = R ∪B such that (S,R) and (S,B) are
plane graphs.

2. Augment (S,R) to a red triangulation TR, and (S,B) to a blue triangulation TB.

3. Find the purple edges P = TB ∩ TR, and compute the faces of the purple plane graph
(S, P ). For every purple face, compute the set of red (resp., blue) diagonals and create
a standard union-find data structure for these sets of diagonals.

4. Put all purple edges in a priority queue Q.

5. For all e ∈ Q: if e is not colorblind flippable, then do nothing, otherwise insert a flipped
counterpart of e as a new edge and update the purple face decomposition as follows. If
e is flippable in TR or TB, then the new edge is part of one triangulation, e remains in
the other one, and all other edges keep their original color; if e is flippable in the union
of a red and a blue triangle that lie in two different purple faces, then all chords in one
of the faces adjacent to e in the purple graph change their color. After this recoloration,
e becomes flippable in one of the two triangulations, and the algorithm proceeds as in
the previous case. In all cases remove e from Q.

6. After each flip, reinsert into Q the purple edges that now become colorblind flippable.
(By Lemma 5, up to four other purple edges can be affected by the flip).

7. The algorithm ends when Q is empty.

Theorem 4. Given a biplane graph (S,E) ∈ G2(S) the above algorithm computes a maximal
graph (S,Emax) ∈ G2(S) such that E ⊆ Emax in O(n log n) time.

Proof. The algorithm terminates because after each flip the number of purple edges decreases
by one. Since it terminates with a graph containing no colorblind flippable edges, by Theo-
rem 3, the obtained graph is maximal. Thus, it remains to show that the algorithm runs in
O(n log n) time. By Lemma 3, it takes O(n log n) time to produce the initial decomposition
E = R∪B. We can complete both layers into triangulations in O(n log n) time. We assume the
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triangulations are represented in a data structure allowing constant-time navigation between
edges and adjacent faces (such as a doubly connected edge list). Classification of the edges
into red, blue, and purple, as well as creating the face-decomposition of the purple graph, can
be done in O(n log n) time. For each purple edge, we store its two adjacent red triangles and
two adjacent blue triangles. Hence, we can check whether a purple edge e ∈ P is colorblind
flippable (with respect to R and B) in constant time.

The second phase consists of checking all purple edges and trying to flip them. The
algorithm maintains all purple edges in a priority queue. Note that when a purple edge is
flipped, its two adjacent faces in the purple graph merge. We maintain the set of red and blue
chords of the purple graph in a standard union-find data structure, so we can find which face
a chord belongs to and merge two faces in O(log n) amortized time. In this way, processing
each purple edge takes O(log n) amortized time. In addition to updating the face structure,
we must check the flippability of up to four more purple edges each time an edge is added into
G. We charge this extra cost to the added edge.

Since the number of edges in a biplane graph is bounded by 6n − 18, by Lemma 1, the
number of edges we will check is also bounded by O(n). That is, after an O(n log n)-time
preprocessing, our algorithm will check the flippability of O(n) edges. Each purple edge
can be processed in O(log n) amortized time. Thus, we conclude that the algorithm runs in
O(n log n) total time.

Remark. The algorithm in Theorem 4 augments a biplane graph (S,E) drawn on a point
set S into a maximal biplane graph adding edges one-by-one. If we need an arbitrary maximal
biplane graph on S, then we can start with the empty graph (S, ∅); if we would like to generate
another maximal biplane graph, it suffices to execute the algorithm again where the initial
graph consists of a single edge not present in the previously obtained maximal graph. Finally,
observe that this procedure will construct maximal graphs, but the resulting graph need not
be maximum. Thus, it remains an open problem to efficiently compute a maximum biplane
graph on a given point set S.

4 Connectivity of Maximal Biplane Graphs

In this section we consider the following question. What is the maximum possible connectivity
of a graph in G2(S) over all n-point sets S? In other words, this section studies the problem
of finding the value

κ2(n) = max
|S|=n

max
G∈G2(S)

κ(G).

If the points in S are in convex position, then every graph in G2(S) is planar (by Lemma 1(i)
of [14]), and thus we cannot construct a 6-connected biplane graph. However, biplane graphs
may achieve higher connectivity for certain sets. As already noted, Hutchinson et al. [18]
proved that every biplane graph in G2(S) has at most 6n− 18 edges for n ≥ 8. Therefore the
sum of the vertex degrees is at most 12n− 36, and there is always a vertex of degree at most
11. Consequently, 11 is an upper bound for vertex-connectivity. In the following we show
how to construct a biplane graph with minimum vertex degree 10, and then we modify this
construction to obtain an 11-connected biplane graph. The construction combines elements
of a construction by Huntchinson et al. [18] with fullerene graphs.

Huntchinson et al. [18] constructed a biplane graph with n vertices and 6n− 20 edges (for
sufficiently large values of n). The core of their construction is a set of k2 points placed on a
k×k section of the integer grid with coordinates (i, j) for 1 ≤ i ≤ k and 1 ≤ j ≤ k. Essentially,
a vertex (i, j) is connected to vertices (i±1, j), (i, j±1), (i±1, j+1), (i±1, j−1), (i+2, j+1),
(i− 2, j− 1), (i+ 1, j− 2), and (i− 1, j+ 2) whenever they exist (see Figure 5). We say that a
vertex (i, j) is a boundary vertex if i ∈ {1, k} or j ∈ {1, k}, and an interior vertex otherwise.
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= +

Figure 5: The 10-connected biplane graph formed by two planar triangulations. Empty dots
correspond to the vertices of degree 6 in the grid. Each one must also have degree 6 in the
5-connected graph attached to its side.

The graph is the union of two lattice triangulations, as shown in Figure 5. Observe that all
interior vertices have degree 10 or higher, but the boundary vertices have lower degree: the
degree is 4 at the four corners, 6 at four neighbors of the corners and 7 at all other boundary
vertices.

Fullerenes [7] are planar 3-regular graphs with only hexagonal faces, except for precisely
12 faces that are pentagonal. It is known that a fullerene of 2k vertices can be constructed for
k = 10 or k ≥ 12. Moreover, there exist fullerenes in which pentagonal faces are sufficiently
far from each other: for example, for k ≥ 36 (and for k = 30), there exists a fullerene with 2k
vertices in which there are no two adjacent pentagonal faces [7]. The dual of such a fullerene
is a planar graph with k + 2 vertices and triangular faces, where all vertices have degree 6
except for twelve vertices of degree 5 (which are pairwise nonadjacent if no pentagonal faces
are adjacent). Since every fullerene is cyclically 5-edge-connected [10], its dual graph is 5-
connected [5]. Thus, by Lemma 1(ii) in [14], the dual graph can be represented as a biplane
graph drawn on points in convex position.

We modify the k × k grid construction of Huntchinson et al. [18] as follows. Slightly
deform the bounding box of the k × k integer grid in a way that each side becomes a reflex
curve. Note that these curves need to be sufficiently flat to maintain the intersection pattern
of the nonboundary edges (see Figure 5). Attach a 5-connected biplane graph from the class
described above (dual graph of a fullerene in which there are no two adjacent pentagonal faces)
to each side of the grid. Align the 5-connected biplane graphs along each side of the grid such
that a vertex of degree 6 in the 5-connected biplane graph is identified with a vertex of degree
6 in the grid (marked with empty dots in Figure 5). Denote by G10(k) the resulting graph: it
has k2 vertices, and is clearly biplane. Moreover, by construction, all vertices of G10(k) have
degree at least 10.

Proposition 1. For any k ≥ 40 it holds that κ(G10(k)) = 10.

Proof. We refer to the k2 points of G10(k) = (S,E) by their coordinates (i, j) (for 1 ≤ i, j ≤ k)
in the grid. For a vertex set U ⊂ S, denote by N(U) the set of neighbors of vertices in U .
Since G10(k) has vertices with degree 10, we clearly have κ(G10(k)) ≤ 10. We now argue by
contradiction that κ(G10(k)) > 9 holds.

Suppose that there is a vertex cut of size at most 9. Then there is a vertex partition
S = A ·∪ B ·∪ C such that |C| ≤ 9, A,B 6= ∅, and there is no edge between A and B. Note
that N(A) ⊆ A ∪ C and N(B) ⊆ B ∪ C. We may assume that |A| is minimal among all such
vertex partitions, and by symmetry |A| ≤ n/2 = k2/2. Since the degree of each vertex is 10
or higher, we have |A| > 1. We observe the following properties of the set A ⊂ S:

1. Set A cannot contain all the vertices on the vertical line x = i for any 1 ≤ i ≤ k.
Suppose, to the contrary, that (i, j) ∈ A for all 1 ≤ j ≤ k. Then for each j, either all
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the vertices of the line y = j are in A or there is a point of C in that line. Since |C| ≤ 9,
the latter can happen at most 9 times. Since k ≥ 18, A contains more than half of the
points of G contradicting |A| < n/2. By symmetry, A cannot contain all the vertices on
the line y = j for any 1 ≤ j ≤ k.

2. Set A cannot contain vertices in more than 9 rows; otherwise, since |C| ≤ 9, it should
completely contain at least one of these lines. Naturally, the same result is true for
columns.

3. By the pigeonhole principle (and the fact that k ≥ 40), there exists an index i0 such
that the line x = i0 contains a vertex of A, and either the four previous lines or the four
following lines contain no vertices of A (that is, either lines x = i0 − 1, x = i0 − 2, x =
i0−3, x = i0−4 or lines x = i0 +1, x = i0 +2, x = i0 +3, x = i0 +4 are empty of vertices
from A). Without loss of generality, we assume that the first case holds.

Let p ∈ A be a vertex adjacent to some q ∈ C. If q is not adjacent to any vertex of A\{p},
we say that p is a unique neighbor of q (in A). Consider the case in which a point q has a
unique neighbor p0 ∈ A. In this case, we define A′ = A\{p0}. Notice that C ′ = (C\{q})∪{p0}
is a cut set of size |C ′| = |C| that splits G10(k) into subgraphs induced by A′ and B′ = B∪{q},
contradicting the minimality of A.

Thus, we conclude that no point in C has a unique neighbor in A. Recall that, by prop-
erty 3, there is no point of A in lines x = i0 − 1, . . . , x = i0 − 4. This implies that there
cannot be a point of A in position (i0, j) for any j ≥ 3, since otherwise point (i0, j) would be
a unique neighbor of (i0 − 2, j − 1). So the points of A on the line x = i0 can only be placed
in positions (i0, 1) or (i0, 2).

Let j0 ∈ {1, 2} be the maximum index such that (i0, j0) ∈ A. Then, A must also contain
point (i0 + 1, j0 + 3), otherwise (i0, j0) would be the unique neighbor of (i0 − 1, j0 + 2). By
repeating the same argument for point (i0 + 1, j0 + 3), we see that there cannot be any point
in A in position (i0 + 1, j) for j > j0 + 3, otherwise point (i0 + 1, j) would be the unique
neighbor of (i0 − 1, j − 1); and also (i0 + 2, j0 + 6) ∈ A, otherwise (i0 + 1, 6) would be the
unique neighbor of (i0, j0 +5). By repeating this argument, we conclude that the points of the
form (i0 + `, j0 + 3`) must be in A for all ` = 0, . . . , bk/3c − 1 (in particular, i0 ≤ d2k/3e+ 1).
This contradicts property 2, which states that no more than 9 lines contain points of A.

We emphasize that G10(k) cannot be 11-connected because it has some vertices of degree
10. Thus, by removing the neighbors of any such vertex, we disconnect G10(k). In the
following, we make some local flips around the vertices of degree 10 to increase the minimum
vertex degree (and connectivity) to 11. For this purpose, we first characterize the vertices
that have degree 10 in G10(k). Consider first the vertices along the boundary of the grid and
recall that each boundary side of the k× k grid spans a fullerene. In particular, all but twelve
vertices of G10(k) have six neighbors within the same boundary side (regardless of the value of
k). The remaining twelve vertices will only have 5 neighbors within the boundary side. Note
that it is possible to choose where to place these vertices so that, for a sufficiently large k, the
vertices with 5 neighbors satisfy the following conditions: (i) they are not adjacent in G10(k),
(ii) they are sufficiently far apart from any corner (say, with at least 7 grid vertices between
one of these vertices and a corner).

The other situation in which a boundary vertex can have degree 10 is if it has 6 neighbors
within the boundary, but only 4 neighbors in the interior of the grid. This only happens to
the four vertices at positions (1, 2), (2, k), (k, k − 1) and (k − 1, 1). Note that corner vertices
have 6 neighbors on each boundary side (and 2 neighbors in the interior of the grid), thus
their degree is 14. That is, regardless of the value of k ≥ 12, each boundary side will have
12 + 1 = 13 vertices of degree 10.
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Finally, we must consider vertices in the interior of the grid that have degree 10. Note that
only those at locations (2, 2), (2, k − 1), (k − 1, 2), and (k − 1, k − 1) will have low degree. It
is straightforward to verify that any other vertex in the grid has at least 11 neighbors (if the
vertex is on one of the lines x = 2, x = k − 1, y = 2, y = k − 1), or 12 (otherwise). Thus, in
total we have 4(12+1)+4 = 56 vertices of degree 10. Four of these vertices are located around
the grid corners, while the others are spaced along the boundary of the grid. We increase the
degree of these vertices by flipping an edge in an appropriate triangulation.

. . .. . .

...

. . .

...

. . . . . .

...

. . .

...

⇒ ⇒

Figure 6: To increase the minimum vertex degree around the corner (left) or along the bound-
ary side (right), four and two flips are sufficient, respectively. In both cases, the bold red
edges are flipped into the bold blue edges. Empty dots represent the vertices that originally
had degree 10.

In Figure 6 (left) we show the changes needed to increase the vertex degree of the vertices
at positions (k − 1, 1) and (k − 1, 2) (for clarity, only one of the triangulations is shown).
Specifically, the four edges (k − 2, 2)(k − 2, 3), (k − 2, 3)(k − 2, 4), (k − 3, 3)(k − 3, 4), (k −
3, 4)(k−3, 5) are replaced by the four edges (k−1, 1)(k−3, 4), (k−1, 2)(k−3, 5), (k−2, 2)(k−
4, 5), (k−2, 3)(k−4, 6). The construction for the other corners is analogous, although the flips
might happen in the other triangulation. The case in which the vertex of degree 10 is along
the boundary of the grid can be resolved with only 2 flips (see Figure 6, right): the edges
(i− 1, 2)(i− 1, 3), (i− 2, 3)(i− 2, 4) are flipped into the edges (i, 1)(i− 2, 4), (i− 1, 2)(i− 3, 5).
Observe that these transformations are local, thus they can be done without affecting each
other.

In all, we construct a new graph from G10(k) by replacing d = 2 · 56 = 112 edges (all of
which are parallel to the coordinate axes) with d new edges. Denote by G′

10(k) the intermediate
graph obtained after deleting these d edges, and by G11(k) the final graph after adding the d
new edges. Observe that all vertices have degree 10 or higher in G′

10(k) (and hence in G11(k)).
For every vertex set U ⊂ S, let N ′(U) denote the set of neighbors of U in G′

10(k).
By construction the minimum vertex degree is 11 in G11(S), so at least 11 vertices must

be deleted to separate a single vertex from the rest of the graph. We now show that, for
separating any larger vertex set A ⊂ S, 2 ≤ |A| ≤ |S|/2, at least 11 vertices must be deleted
in the subgraph G′

10(k) of G11(S), if k is sufficiently large. We start with the case |A| = 2.

Proposition 2. For every vertex set A ⊂ S of size |A| = 2, we have |N ′(A) \A| ≥ 11.

Proof. Let A = {v1, v2} with vi = (xi, yi) for i = 1, 2. Observe that if either v1 or v2 has
degree at least 12, the statement holds. Likewise, if |x1 − x2| > 4 or |y1 − y2| > 4, we have
that N ′(v1) and N ′(v2) do not have points from the interior of the grid in common, and thus
the claim follows.

Thus, it remains to consider the case when |x1 − x2| ≤ 4, |y1 − y2| ≤ 4, and |N(vi)| ≤ 11
for i = 1, 2. Since the degree of vi in G′

10(k) is at least 10, we only need to prove that v2 has at
least two neighbors outside of N ′(v1) other than v1 itself (or the equivalent statement for v1).
By rotating the grid if necessary, we can assume 1 ≤ y1 < y2 < k − 1. Distinguish between
the following five cases:
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1. If 1 < x2 < k, then the three vertices (x2 − 1, y2 + 1), (x2 − 1, y2 + 2), (x2 + 1, y2 + 1) ∈
N ′(v2). Observe that none of these vertices can be v1 (since we assumed that y1 < y2).
Moreover, at most one of them can be in N ′(v1) (since each point of the grid has at
most one adjacency with other vertices whose difference in the y coordinates is at least
2). Thus, we conclude that N ′(v2) \N ′(v1) contains at least two vertices.

2. If x2 = 1, then the three vertices (x2, y2 + 1), (x2 + 1, y2 + 1), (x2 + 2, y2 + 1) ∈ N ′(v2).
Using the same reasoning, we conclude that among these three vertices, at most one can
be discarded.

So far, we have considered the cases in which v2 is in the interior of the grid, or at the
left boundary. Since the grid is not symmetric, the case in which v2 is at the right boundary
cannot be treated in a similar way. Instead, we consider three more cases.

3. If x2 = k and x1 < k, then (x2 − 1, y2 + 1), (x2 − 1, y2 + 2) are in N ′(v2), and neither of
them can be in N ′(v1) ∪ {v1}.

4. If x2 = k, x1 = k, and y1 > 1, then (x1−1, y1−1), (x1−2, y1−1) are in N ′(v1)\N ′(v2).

5. If x2 = k and v1 = (k, 1), then v1 is a corner vertex, and v1 alone has 14 neighbors.

According to Proposition 2 the above result says that if we want to disconnect exactly two
vertices from G′

10(k), we must remove at least 11 vertices. A similar result holds for larger
sets as well.

Proposition 3. For any k > 491, and set A ⊂ S of size 2 ≤ |A| ≤ n/2, we have |N ′(A)\A| ≥
11.

Proof. The proof of this claim is analogous to the proof of Proposition 1. The key observation
is that only a constant number d of edges have been deleted from G10(S), and all of them are
parallel to the coordinate axes.

Suppose, to the contrary, that there is a vertex set A ⊂ S of size 2 ≤ |A| ≤ n/2 such that
|N ′(A) \A| ≤ 10. Let A be a minimal such set. By Proposition 2, we have |A| ≥ 3. Similar to
Proposition 1, when k > 3(10 + d+ 1) + 10 + d = 491, we can prove the following statements.

1. Set A cannot contain all the vertices on a line x = i (or y = j).

2. Set A cannot contain vertices in more than 10 + d rows (columns).

3. There exists an index i0 such that the line x = i0 contains a vertex of A, and either the
four previous lines or the four following lines contain no vertices of A.

We now use a reasoning analogous to the one given in Proposition 1: since A is minimal,
no vertex of C can have a unique neighbor in A. Thus, there cannot be a vertex of A in
position (i0, j) for any j ≥ 3. Now, if j0 ∈ {1, 2} is the maximum index such that (i0, j0) ∈ A,
then A must also contain vertex (i0 + 1, j0 + 3). By repeating this argument with the newly
obtained points, we conclude that the points of the form (i0 + `, j0 + 3`) must be in A, for
` = 0, . . . , k/3− 1. This contradicts the fact that no more than 10 + d lines contain points of
A.

By combining Propositions 2 and 3, the fact that the minimum vertex degree of G11(k) is
11, and that G′

10(k) ⊂ G11(k), we obtain a graph of the maximum possible connectivity.

Theorem 5. There exist infinitely many 11-connected biplane graphs, and no biplane graph
is 12-connected.
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[1] M. Abellanas, A. Garćıa, F. Hurtado, J. Tejel, and J. Urrutia, Augmenting the connec-
tivity of geometric graphs, Computational Geometry: Theory and Applications 40 (3)
(2008), 220–230.
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