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A GENERALIZATION OF THE PROBLEM

OF MARIUSZ MESZKA

ANITA PASOTTI AND MARCO ANTONIO PELLEGRINI

Abstract. Mariusz Meszka has conjectured that given a prime p = 2n + 1
and a list L containing n positive integers not exceeding n there exists a
near 1-factor in Kp whose list of edge-lengths is L. In this paper we propose
a generalization of this problem to the case in which p is an odd integer not
necessarily prime. In particular, we give a necessary condition for the existence
of such a near 1-factor for any odd integer p. We show that this condition is
also sufficient for any list L whose underlying set S has size 1, 2, or n. Then
we prove that the conjecture is true if S = {1, 2, t} for any positive integer
t not coprime with the order p of the complete graph. Also, we give partial
results when t and p are coprime. Finally, we present a complete solution for
t ≤ 11.

1. Introduction

Throughout this paper Kv will denote the complete graph on {0, 1, . . . , v − 1}
for any positive integer v. For the basic terminology on graphs we refer to [17].
Following [12], we define the length ℓ(x, y) of an edge [x, y] of Kv as

ℓ(x, y) = min(|x− y|, v − |x− y|).

If Γ is any subgraph of Kv, then the list of edge-lengths of Γ is the multiset ℓ(Γ) of
the lengths (taken with their respective multiplicities) of all the edges of Γ. The set
of the edges of Γ will be denoted by E(Γ). Also, by δ(Γ) we will mean the multiset

δ(Γ) = {|x− y| : [x, y] ∈ E(Γ)}.

Clearly, if all the elements of δ(Γ) do not exceed v−1
2 it results δ(Γ) = ℓ(Γ). For

our convenience, if a list L consists of a1 1′s, a2 2′s, . . . , at t′s, we will write
L = {1a1, 2a2 , . . . , tat}, whose underlying set is the set {1, 2, . . . , t}.

The following conjecture [5, 18] is due to Marco Buratti (2007, communication
to Alex Rosa).

Conjecture (Buratti). For any prime p = 2n + 1 and any list L of 2n positive
integers not exceeding n, there exists a Hamiltonian path H of Kp with ℓ(H) = L.

In [12] Peter Horak and Alex Rosa generalized Buratti’s conjecture. Such a
generalization has been restated in a easier form in [13] as follows.

Conjecture (Horak and Rosa). Let L be a list of v − 1 positive integers not ex-
ceeding ⌊ v

2⌋. Then there exists a Hamiltonian path H of Kv such that ℓ(H) = L if,
and only if, the following condition holds:

(1)
for any divisor d of v, the number of multiples of d

appearing in L does not exceed v − d.
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Following [13], by BHR(L) we will denote the above conjecture for a given list L.
Some partial results have been obtained about this problem, see [7, 9, 12, 13, 14],
but the conjecture is still wide open.
Recently, Mariusz Meszka formulated a very similar conjecture concerning near 1-
factors. We recall that a near 1-factor of K2n+1 is a subgraph of K2n+1 consisting
in n disjoint edges and one isolated vertex, while a 1-factor of K2n is a subgraph
of K2n consisting in n disjoint edges.

Conjecture (Meszka). For any prime p = 2n + 1 and any list L of n positive
integers not exceeding n, there exists a near 1-factor F of Kp with ℓ(F ) = L.

To best of our knowledge, all the results on the problem proposed by Meszka
are contained in [15], where Rosa proved that the conjecture is true when the
elements of the list are {1, 2, 3} or {1, 2, 3, 4} or {1, 2, 3, 4, 5}. Also he proved that
the conjecture is true when the list L contains a sufficient number of 1’s, in detail,

if L = {1a1 , 2a2 , . . . , nan} with a1 ≥ n2

2 . Moreover, with the aid of a computer, we
have verified the validity of Meszka’s conjecture for all primes p ≤ 23.

Working on this conjecture it is easy to see that the assumption p prime is not
necessary, as it happens for Buratti’s one. Indeed we found another condition which
is necessary and which led us to propose our conjecture.

Conjecture. Let v = 2n+1 be an odd integer and L be a list of n positive integers
not exceeding n. Then there exists a near 1-factor F of Kv such that ℓ(F ) = L if,
and only if, the following condition holds:

(2)
for any divisor d of v, the number of multiples of d

appearing in L does not exceed v−d
2 .

With the acronym MPP, which stands for Meszka-Pasotti-Pellegrini, we will de-
note this more general conjecture. In particular MPP(L) will denote the conjecture
for a given list L. Clearly, if v is a prime then our conjecture reduces to Meszka’s
one. With the aid of a computer, we have verified its validity for all odd integers
v ≤ 23. We point out that in the statement, the actual conjecture is the sufficiency.
In fact we can prove that condition (2) is necessary.

Proposition 1. The list L of edge-lengths of any near 1-factor of Kv satisfies
condition (2).

Proof. Let F be a near 1-factor of Kv with ℓ(F ) = L and let d be a divisor of v.
Denote by D the sublist of L containing all the multiples of d appearing in L, hence
we have to prove that |D| ≤ v−d

2 . Note that if the length of an edge is a multiple
of d, the vertices of such an edge have to be in the same residue class modulo d
and that F has exactly v

d
vertices in each residue class modulo d. Also, v

d
is an odd

number and this implies that with the elements of each residue class modulo d we

can construct at most
v
d
−1

2 edges whose length is in D. Since there are exactly d

residue classes modulo d we have at most v−d
2 edges whose length is in D, namely

|D| ≤ v−d
2 . �

Before giving the main result of this paper we would like to show some connec-
tions between MPP-problem and graph decompositions, as done for BHR-problem
in [13]. For a general background on graph decompositions see [3]. Reasoning in
the same way as we have done in [13] for the BHR-problem, one can easily obtain
that MPP(L) can be reformulated in the following way.
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Conjecture. A Cayley multigraph Cay[Zv : Λ] admits a cyclic decomposition into
near 1-factors if and only if Λ = L ∪ −L with L satisfying condition (2).

For reader convenience we recall the definition of a Cayley multigraph. A list
Ω of elements of an additive group G is said to be symmetric if 0 /∈ Ω and the
multiplicities of g and −g in Ω coincide for any g ∈ G. If Ω does not have repeated
elements then one can consider the Cayley graph on G with connection set Ω,
denoted Cay[G : Ω], whose vertex-set is G and in which [x, y] is an edge if and only
if x− y ∈ Ω. Cayley graphs have a great importance in combinatorics and they are
precisely the graphs admitting an automorphism group acting sharply transitively
on the vertex-set (see, e.g., [11]). If, more generally, the symmetric list Ω has
repeated elements one can consider the Cayley multigraph on G with connection
multiset Ω, also denoted Cay[G : Ω] and with vertex-set G, where the multiplicity
of an edge [x, y] is the multiplicity of x− y in Ω (see, e.g., [6]).

In the next sections of this paper we prove some results concerning the MPP-
problem that we can summarize in the following theorem.

Theorem 2. Let L be a list of n positive integers not exceeding n and let v =
2n + 1. Then, MPP(L) holds whenever the underlying set S of L satisfies one of
the following conditions:

(1) |S| = 1, 2 or n;
(2) S = {1, 2, t}, where t ≥ 3 is not coprime with v.

Furthermore, MPP(L) holds if L = {1a, 2b, tc} with a+ b ≥ ⌊ t−1
2 ⌋.

The proof of Theorem 2 will follow from Propositions 11, 14, 16 and 18.
If S = {1, 2, t} and gcd(v, t) = 1, we also present some partial results for the

cases not covered by Theorem 2. In particular, we give a complete solution for
t ≤ 11.

2. Linear realizations and their relationship with Skolem sequences

A cyclic realization of a list L of n positive integers not exceeding n is a near
1-factor F of K2n+1 such that ℓ(F ) = L. For example, given L = {12, 43, 6} the
near 1-factor F = {[0, 4], [1, 2], [5, 12], [6, 10], [7, 11], [8, 9]} ∪ {3} of K13 is a cyclic
realization of L. Clearly if a list L admits a cyclic realization we can say that
MPP(L) is true.
A linear realization of a list L with n positive integers not exceeding 2n is a near
1-factor F of K2n+1 such that δ(F ) = L. It is quite immediate that if the elements
of L do not exceed n a linear realization of L is nothing but a cyclic realization,
namely a near 1-factor F of K2n+1 with δ(F ) = ℓ(F ) = L. Following [15], we will
say that a linear realization of a list L is almost perfect or perfect if the isolated
vertex of the near 1-factor is 2n− 1 or 2n, respectively.
It is important to underline that there is a strong relationship between (almost)
perfect linear realizations and Skolem sequences. We point out that Skolem se-
quences and their generalizations (see, e.g., [1]) have revealed to be very useful in
the construction of several kinds of combinatorial designs (see, for example, the
survey [10] and the references therein as well as [2, 4, 19]). In order to present this
connection we recall the basic definitions, see [16]. A Skolem sequence of order n is
a sequence S = (s1, s2, . . . , s2n) of 2n integers satisfying the following conditions:

(1) for every k ∈ {1, 2, . . . , n} there exist exactly two elements si, sj ∈ S such
that si = sj = k;
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(2) if si = sj = k with i < j, then j − i = k.

It is worth to observe that a Skolem sequence can also be written as a collec-
tion of ordered pairs {(ai, bi) : 1 ≤ i ≤ n, bi − ai = i} with

⋃n

i=1{ai, bi} =
{0, 1, . . . , 2n − 1}. For instance, the Skolem sequence S = (1, 1, 3, 4, 5, 3, 2, 4, 2, 5)
of order 5 can be seen as the set {(0, 1), (6, 8), (2, 5), (3, 7), (4, 9)}. Hence we can
conclude that a Skolem sequence is equivalent to a perfect linear realization of a
set. For example, S′ = (1, 1, 3, 4, 5, 3, 2, 4, 2, 5, 0), obtained from S adding 0 at the
end, is a perfect linear realization of the set {1, 2, 3, 4, 5}. Also, a hooked Skolem
sequence of order n is a sequence HS = (s0, s1, . . . , s2n) of 2n+1 integers satisfying
above conditions (1) and (2) and such that s2n−1 = 0. So we have that a hooked
Skolem sequence is an almost perfect linear realization of a set.
Hence, we can say that MPP-problem can be view as a generalization of Skolem se-
quences and we propose the following more general definition. Let L = {1a1 , 2a2 , . . . ,
nan} be a list on the set {1, 2, . . . , n} and let k be an element of the set {1, 2, . . . , 2n+
1}. We call k-extended Skolem sequence of L any sequence S = (s0, s1, . . . , s2n) for
which it is possible to partition {1, 2, . . . , 2n + 1} \ {k} into a set T of n ordered
pairs (x, y) with x < y such that the set Ti := {(x, y) ∈ T | sx = sy = y − x = i}
has size ai for 1 ≤ i ≤ n. It is clear that a linear realization of L is a k-extended
Skolem sequence of L for a suitable k. Also, it is perfect or almost perfect when
k = 2n or 2n − 1, respectively. In these cases, in view of the classical definitions
given above of Skolem sequences, one may speak of an ordinary or hooked Skolem
sequence of L, respectively. For example, given L1 = {1, 3, 62} the near 1-factor
F1 = {[0, 6], [1, 7], [3, 4], [5, 8]} ∪ {2} of K9 is a linear realization of L1. The corre-
sponding 2-extended Skolem sequence is S1 = (61, 62, 0, 1, 1, 3, 61, 62, 3), where we
use 61 and 62 to distinguish the same length 6 belonging to distinct pairs. Take
now the near 1-factor F2 = {[0, 3], [1, 4], [2, 6]} ∪ {5} of K7, it is an almost perfect
realization of L2 = {32, 4} and it is easy to see that the corresponding hooked
Skolem sequence is S2 = (31, 32, 4, 31, 32, 0, 4).
Clearly a list L can admit both a not perfect linear realization and a perfect linear
realization. For instance F3 = {[0, 6], [1, 7], [2, 5], [3, 4]}∪{8} is a perfect linear real-
ization of the above list L1 = {1, 3, 62}, which corresponds to the Skolem sequence
S3 = (61, 62, 3, 1, 1, 3, 61, 62, 0). It is easy to see that if there exists a perfect linear
realization of a list L, then there exists a 1-factor F of K2|L| such that δ(F ) = L.

For convenience, in the following, by rL, apL and pL we will denote a linear
realization, an almost perfect linear realization and a perfect linear realization of
L, respectively.

Given two lists L1 and L2 it is possible to obtain a linear realization of the list
L1 ∪L2 composing the linear realizations of L1 and L2. We have to point out that
it is not always possible to compose two linear realizations, since the existence of
the composition depends on the properties of the two realizations as shown in the
following lemma, see [15]. When the composition exists it will be denoted by “+”.

Lemma 3. Given two lists L1 and L2 we have:

(1) pL1 + pL2 = p(L1 ∪ L2);
(2) pL1 + apL2 = ap(L1 ∪ L2);
(3) apL1 + apL2 = p(L1 ∪ L2);
(4) pL1 + rL2 = r(L1 ∪ L2).
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Proof. (1) (2) (3) These items have been proved by Rosa, see [15].
(4) Let |L1| = w and |L2| = z. Let S1 = (ℓ1, ℓ2, . . . , ℓ2w, 0) be the sequence
corresponding to a perfect linear realization of L1 and let S2 = (ℓ̄1, ℓ̄2, . . . , ℓ̄i, 0,
ℓ̄i+1, . . . , ℓ̄2z) be the sequence corresponding to a linear realization of L2. Then
S = (ℓ1, ℓ2, . . . , ℓ2w, ℓ̄1, ℓ̄2, . . . , ℓ̄i, 0, ℓ̄i+1, . . . , ℓ̄2z) is the sequence corresponding to
a linear realization of L1 ∪ L2. �

Example 4. Consider the previous linear realizations of the lists L1 = {1, 3, 62}
and L2 = {32, 4}. Using Lemma 3 one gets a perfect realization of {12, 32, 64},
an almost perfect realization of {1, 33, 4, 62}, a perfect realization of {34, 42} and
a linear realization of {12, 32, 64}. Indeed, p{12, 32, 64} = pL1 + pL1 can be ob-
tained using twice the sequence S3 to get the sequence (61, 62, 31, 11, 11, 31, 61,
62, 63, 64, 32, 12, 12, 32, 63, 64, 0). Using the sequences S3 and S2 one gets the se-
quence (61, 62, 31, 1, 1, 31, 61, 62, 32, 33, 4, 32, 33, 0, 4), corresponding to ap{1, 33, 4,
62} = pL1 + apL2. Now, using twice the sequence S2, one gets the sequence
(31, 32, 41, 31, 32, 42, 41, 33, 34, 42, 33, 34, 0) corresponding to p{3

4, 42} = apL2+apL2.
Finally, using the sequences S3 and S1, one gets the sequence (61, 62, 31, 11, 11, 31, 61,
62, 63, 64, 0, 12, 12, 32, 63, 64, 32), corresponding to r{12, 32, 64} = pL1 + rL1.

Given a list L and a positive integer q, by q · pL we will mean the perfect linear
realization pL+ pL+ . . .+ pL

︸ ︷︷ ︸

q times

.

In view of the above lemma we will look for linear realizations possibly (almost)
perfect.

Corollary 5. There exists a perfect linear realization of L = {(2i + 1)ai | i =
0, . . . , n, ∀n ∈ N, ai ≥ aj if i < j}.

Proof. Given an odd integer 2k+1, it is immediate that Sk = (2k+1, 2k− 1, 2k−
3, . . . , 9, 7, 5, 3, 1, 1, 3, 5, 7, 9, . . . , 2k − 3, 2k − 1, 2k + 1, 0) corresponds to a perfect
linear realization of the list Lk = {1, 3, 5, . . . , 2k − 1, 2k + 1}. Hence, by Lemma 3

a linear realization of L is pL = an · pLn +
∑n−1

i=0 (ai − ai+1) · pLi. �

Lemma 6 (A. Rosa, [15]). The list {xx} admits a perfect linear realization for each
x ≥ 1.

Lemma 7. The list L = {xx−1} admits a linear realization for each x ≥ 1. If
x = 2, such a realization is almost perfect.

Proof. The near 1-factor F = {[i, i+ x] | 0 ≤ i ≤ x− 2} ∪ {x− 1} of K2x−1 is such
that δ(F ) = L. If x = 2 the statement immediately follows. �

Corollary 8. If there exists a linear realization of a list L = {ℓa1

1 , ℓa2

2 , . . . , ℓan
n } then

there exists a linear realization of the list L′ = {ℓa1+k1ℓ1
1 , ℓa2+k2ℓ2

2 , . . . , ℓan+knℓn
n }

for any k1, k2, . . . , kn ∈ N. Also, if the realization of L is (almost) perfect, the
realization of L′ has the same property.

Proof. Let rL be a linear realization of L. By Lemma 6 there exists p{ℓℓii } for any

ℓi ∈ L. A linear realization of L′ is rL′ =
∑n

i=1 ki · p{ℓ
ℓi
i } + rL, see Lemma 3

(4). If rL is almost perfect or perfect the thesis follows from Lemma 3 (2) and (1),
respectively. �
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Example 9. Consider, as above, L1 = {1, 3, 62} and pL1 corresponding to the
sequence S3 = (61, 62, 3, 1, 1, 3, 61, 62, 0). Then, for instance, p{1, 24, 34, 62} = 2 ·
p{22} + p{33} + pL1 exists and can be obtained taking the sequence (21, 22, 21,
22, 23, 24, 23, 24, 31, 32, 33, 31, 32, 33, 61, 62, 34, 1, 1, 34, 61, 62, 0).

3. First cases

Let L be a list of n positive integers not exceeding n and let S be its underlying
set. We start investigating MPP(L) in the following cases: |S| = 1, 2 and n.

Remark 10. Let F be a near 1-factor of K2n+1 with ℓ(F ) = {xa1

1 , xa2

2 , . . . , xat

t }.
Let y be an integer coprime with 2n+ 1 and let ri be the remainder of the division
of yxi by 2n+ 1. Define ℓi = ri if 1 ≤ ri ≤ n and ℓi = 2n+ 1 − ri if n < ri ≤ 2n.
Then, multiplying each vertex of F by y, it is possible to obtain a near 1-factor F ′

of K2n+1 such that ℓ(F ′) = {ℓa1

1 , ℓa2

2 , . . . , ℓat

t }.

If |S| = 1, all the edges have the same length. If this length is 1 it is immediate
to see that F = {[2i, 2i+1] | i = 0, . . . , n− 1}∪ {2n} is a near 1-factor F of K2n+1

such that ℓ(F ) = {1n}. Let now S = {x} with 2 ≤ x ≤ n. By Proposition 1 we
have to consider only the case gcd(x, 2n+ 1) = 1. By Remark 10, multiplying the
vertices of F by x, we obtain a near 1-factor F ′ of K2n+1 such that ℓ(F ′) = {xn}.
Hence we can conclude that MPP({xn}) is true for any positive integers n and any
positive integer x not exceeding n.

If |S| = n, namely if L = S = {1, 2, 3, . . . , n}, a near 1-factor of K2n+1 such
that ℓ(F ) = L is, up to translations, a starter of Z2n+1. In fact, a starter in the
odd order abelian group G (written additively), where |G| = 2n + 1, is a set of
unordered pairs R = {{ri, ti} | 1 ≤ i ≤ n} that satisfies:

(1) {ri | 1 ≤ i ≤ n} ∪ {ti | 1 ≤ i ≤ n} = G \ {0}
(2) {±(ri − ti) | 1 ≤ i ≤ n} = G \ {0}.

Hence MPP({1, 2, 3, . . . , n}) is always true for any positive integer n, in fact it is
sufficient to take F = {[i, 2n−1− i] | i = 0, . . . , n−1}∪{2n}, namely, the so-called
patterned starter of Z2n+1, see [8].

So, we proved the following.

Proposition 11. Let L be a list of n elements not exceeding n with underlying set
S. Then, MPP(L) holds if either |S| = 1 or |S| = n.

Now, we consider the case |S| = 2, i.e. L = {xa, yb}, where 0 < x < y ≤ a+b = n.
Observe that by Proposition 1 we have to consider only the case gcd(x, y, 2n+1) = 1.
We start considering the case x = 1.

Lemma 12. There exists a linear realization of any list L = {1a, yb} whenever

a ≥ ⌊ y−1
2 ⌋.

Proof. Set v = 2(a + b) + 1 and write b = qy + r, where 0 ≤ r < y. Firstly, we
consider the following sequences. If y − r is even, take

S1 = (y1, y2, . . . , yr, 11, 11, 12, 12, . . . , 1 y−r

2

, 1 y−r

2

, y1, y2, . . . , yr, 0)

and if y − r is odd, take

S2 = (y1, y2, . . . , yr, 11, 11, 12, 12, . . . , 1 y−r−1

2

, 1 y−r−1

2

, 0, y1, y2, . . . , yr).
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Clearly S1 and S2 are linear realizations of L′ = {1⌊
y−r

2
⌋, yr}. Also, observe that S1

is perfect, while S2 is almost perfect if r = 1. Next we apply Lemma 3, obtaining

rL = p{1a−⌊ y−r

2
⌋}+ q · p{yy}+ rL′. �

Corollary 13. Given L = {1a, 2b}, then there exists a linear realization of L for
any a, b ≥ 1.

Proof. We apply Lemma 12, with y = 2 and so ⌊ y−1
2 ⌋ = 0. Observe that if b is

even, we have found a perfect realization of L. If b is odd, our realization is almost
perfect. �

It follows from previous corollary that, given a list L = {1a, 2b} there exists a
near 1-factor F of Kv, where v = 2(a+ b) + 1, such that δ(F ) = L whose isolated
vertex is v − 2 if b is odd, v − 1 if b is even. In the following, we will denote by
F + g, g ∈ N, the graph obtained from F by replacing each vertex x of F with
x + g. Clearly, F + g is a near 1-factor of the complete graph whose vertex set is
{g, 1+ g, . . . , 2(a+ b) + g} such that δ(F + g) = L. This remark will be very useful
in the next section.

Now we are ready to deal with the general case of two distinct edge lengths.

Proposition 14. MPP({xa, yb}) holds for any a, b, x, y > 0.

Proof. Let L = {xa, yb} with x, y ≤ a+ b and let v = 2(a+ b)+ 1. We have to split
the proof in four cases. But firstly it is important to observe that if a ≥ b then
a ≥ ⌊ y−1

2 ⌋, since y ≤ a+ b.

Case 1. gcd(x, v) = gcd(y, v) = 1. If a ≥ b we multiply the elements of L by x−1

and if a < b, we multiply by y−1. In both cases, we obtain a list L′ with underlying
set S′ = {1, z} and z ≤ a + b. So, L′ satisfies the assumption of Lemma 12 and
hence, there exists a near 1-factor F ′ such that ℓ(F ′) = L′. By Remark 10, there
exists a near 1-factor F of Kv such that ℓ(F ) = L.

Case 2. gcd(v, y) = d2 > 1 and a ≤ (d2−1)v
2d2

. Clearly it has to be gcd(x, d2) = 1.

Also by Proposition 1, a ≥ d2−1
2 .

We write the vertices of Kv, namely the integers 0, 1, . . . , v − 1, within a matrix
M of d2 rows and

v
d2

columns, where the element mi,j is (i−1)x+(j−1)y modulo v,
for i = 1, . . . , d2 and j = 1, . . . , v

d2

. It is not hard to see that all the integersmi,j are

distinct. In fact if, by way of contradiction, mi,j = mh,k, then (i− 1)x+(j− 1)y ≡
(h − 1)x + (k − 1)y (mod v). In particular, this means that ix ≡ hx (mod d2),
namely d2 | (i − h)x. Since gcd(x, d2) = 1, it follows that d2 | (i− h) and so i = h,
since i, h ≤ d2. Hence, (j − 1)y ≡ (k − 1)y (mod v). Then, v | (j − k)y and so
v
d2

| (j − k) y
d2

. We obtain that v
d2

| (j − k), i.e. j = k, since j, k ≤ v
d2

.
Now, we construct the edges for the required near 1-factor using exactly once

all but one the elements of the matrix M as vertices. Consider the following d2−1
2

edges of length x: [m2i+1,1,m2i+2,1] for i = 0, . . . , d2−3
2 .

If a− d2−1
2 is even, let a− d2−1

2 = ( v
d2

−1)q+r with 0 ≤ r < v
d2

−1, note that r is

even. We take the following edges of length x: [m2i+1,j ,m2i+2,j ] for i = 0, . . . , q−1
and j = 2, . . . , v

d2

(if q > 0) and [m2q+1,j ,m2q+2,j ] for j = 2, . . . , r + 1. It is easy
to see that, since r is even, there are an even number of elements which are not
used to construct the above edges, in each row of M except for the last one. Hence
we construct the b edges of length y connecting pairs of adjacent elements in each
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rows. Since a ≤ (d2−1)v
2d2

we have a sufficient number of edges of length y. In such
a way we obtain a near 1-factor of Kv whose isolated vertex is md2,1.

If a− d2−1
2 is odd, we construct the following edge of length x. Observing that

md2,1 + x = (d2 − 1)x + x = d2x is an element of the first row, say m1,k, we can

take the edge [md2,1,m1,k]. Hence we have to construct other a − d2+1
2 edges of

length x. Since a− d2+1
2 is even, let a− d2+1

2 = ( v
d2

− 1)q + r with 0 ≤ r < v
d2

− 1,

note that r is even. We take the following edges of length x: [m2i,j ,m2i+1,j ] for
i = 1, . . . , q and j = 2, . . . , v

d2

(if q > 0) and [m2q+2,j ,m2q+3,j ] for j = 2, . . . , r + 1.
It is easy to see that, since r is even, there are an even number of elements, which
are not used to construct the above edges, in each row of M except for the first
one. Hence, we can construct the edges of length y as in the previous case.

Case 3. gcd(v, y) = d2 > 1, a > (d2−1)v
2d2

, gcd(x, v) = 1. By the assumption on a, it

follows that a > b. In fact we have a > (d2−1)v
2d2

= d2−1
d2

v
2 ≥ 2

3
v
2 = v

3 = 2(a+b)+1
3 and

so a > 2b+ 1 > b. Hence we can proceed analogously to Case 1, applying Remark
10 and Lemma 12.

Case 4. gcd(v, y) = d2 > 1, a > (d2−1)v
2d2

, gcd(x, v) = d1 > 1. Note that in this case

b ≤ (d1−1)v
2d1

. In fact, if, by way of contradiction, we have b > (d1−1)v
2d1

it results

v − 1

2
= a+b >

(d1 − 1)v

2d1
+

(d2 − 1)v

2d2
=

v

2

(d1 − 1

d1
+

d2 − 1

d2

)

≥
v

2

(2

3
+

2

3

)

=
2v

3
>

v − 1

2
,

which clearly is a contradiction. Hence we can apply the same process of Case 2,
interchanging x with y. �

Example 15. Take now L = {69, 1013}. Here v = 45, d1 = gcd(6, 45) = 3,
d2 = gcd(10, 45) = 5. Note that we are in Case 2 of Proposition 14, and that

a− d2−1
2 = 9− 2 = 7 is odd. Firstly, we construct the matrix

M =









0 10 20 30 40 5 15 25 35
6 16 26 36 1 11 21 31 41
12 22 32 42 7 17 27 37 2
18 28 38 3 13 23 33 43 8
24 34 44 9 19 29 39 4 14









.

Reasoning as in the proof of previous proposition we obtain the following edges of
lengths 6: [0, 6], [12, 18], [24, 30], [16, 22], [26, 32], [36, 42], [1, 7], [11, 17], [21, 27]. The
elements used to construct these edges are highlighted in bold in the matrix M .
Now, we can construct the following edges of length 10: [10, 20], [40, 5], [15, 25], [31,
41], [37, 2], [28, 38], [3, 13], [23, 33], [43, 8], [34, 44], [9, 19], [29, 39], [4, 14]. So, the iso-
lated vertex is 35.

4. Near 1-factors with edge lengths 1, 2, t

In this section we investigate MPP(L) where L = {1a, 2b, tc} for any integer
t > 2. Clearly, in view of the results of the previous section, we can assume
a, b, c ≥ 1.

Proposition 16. Let L = {1a, 2b, tc} with a+b ≥ ⌊ t−1
2 ⌋. Then there exists a linear

realization of L.
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Proof. Let c = tq + r with 0 ≤ r ≤ t − 1. If r = 0 the statement follows from
Lemmas 3 and 6 and Corollary 13. So we can assume r ≥ 1. Since a + b ≥ ⌊ t−1

2 ⌋

then a + b ≥ ⌊ t−r
2 ⌋. We start constructing a linear realization of L′ = {1a, 2b, tr}

and we have to distinguish four cases according to the congruence class of t − r
modulo 4.

Case 1. t− r ≡ 0 (mod 4).
If b ≥ t−r

2 , we consider the sequence S = (t1, t2, . . . , tr, 21, 22, 21, 22, . . . , 2 t−r
2

−1,

2 t−r
2

, 2 t−r
2

−1, 2 t−r
2

, t1, t2, . . . , tr, 0) which is a perfect realization of L′′ = {2
t−r
2 , tr}.

Next, consider rL′ = pL′′ + r{1a, 2b−
t−r
2 }.

Now, assume b < t−r
2 . If b is even, the sequence S = (t1, t2, . . . , tr, 21, 22, 21,

22, . . . , 2b−1, 2b, 2b−1, 2b, 11, 11, . . . , 1 t−r−2b
2

, 1 t−r−2b
2

, t1, t2, . . . , tr, 0) is a perfect lin-

ear realization of L′′ = {1
t−r−2b

2 , 2b, tr}. In this case pL′ = pL′′ + p{1a−
t−r−2b

2 }. If
b is odd, the sequence S = (t1, t2, . . . , tr, 21, 22, 21, 22, . . . , 2b−2, 2b−1, 2b−2, 2b−1, 11,
11, . . . , 1 t−r−2b

2
+1, 1 t−r−2b

2
+1, t1, t2, . . . , tr, 0) is a perfect linear realization of L′′ =

{1
t−r−2b

2
+1, 2b−1, tr}. Hence, apL′ = pL′′ + ap{1a−

t−r−2b
2

−1, 2}.

Case 2. t− r ≡ 1 (mod 4).
Suppose b even. If b ≥ t−r−1

2 the sequence S = (t1, t2, . . . , tr, 21, 22, 21, 22, . . . , 2 t−r−3

2

,

2 t−r−1

2

, 2 t−r−3

2

, 2 t−r−1

2

, 0, t1, t2, . . . , tr) is a linear realization of L′′ = {2
t−r−1

2 , tr}

and rL′ = p{1a, 2b−
t−r−1

2 }+rL′′. If b < t−r−1
2 , the sequence S = (t1, t2, . . . , tr, 21, 22,

21, 22, . . . , 2b−1, 2b, 2b−1, 2b, 11, 11, . . . , 1 t−r−2b−1

2

, 1 t−r−2b−1

2

, 0, t1, t2, . . . , tr) is a lin-

ear realization of L′′ = {1
t−r−2b−1

2 , 2b, tr}. In this case, rL′ = p{1a−
t−r−2b−1

2 }+ rL′′.
Suppose now b odd. If b ≥ t−r−1

2 the sequence S = (t1, t2, . . . , tr, 11, 11, 21, 22,

21, 22, . . . , 2 t−r−3

2

, 0, 2 t−r−3

2

, t1, t2, . . . , tr) is a linear realization of L′′ = {1, 2
t−r−3

2 ,

tr}. Hence rL′ = p{1a−1, 2b−
t−r−3

2 } + rL′′. If b < t−r−1
2 the sequence S =

(t1, t2, . . . , tr, 21, 22, 21, 22, . . . , 2b, 0, 2b, 11, 11, . . . , 1 t−r−2b−1

2

, 1 t−r−2b−1

2

, t1, t2, . . . , tr)

is a linear realization of L′′ = {1
t−r−2b−1

2 , 2b, tr}. In this case, we obtain rL =

p{1a−
t−r−2b−1

2 }+ rL′′.

Case 3. t− r ≡ 2 (mod 4).
If b ≥ t−r−2

2 , the sequence S = (t1, t2, . . . , tr, 11, 11, 21, 22, 21, 22, . . . , 2 t−r
2

−2, 2 t−r
2

−1,

2 t−r
2

−2, 2 t−r
2

−1, t1, t2, . . . , tr, 0) is a perfect linear realization of L′′ = {1, 2
t−r
2

−1, tr}.

Hence, rL = pL′′ + r{1a−1, 2b−
t−r
2

+1}.
Assume now b < t−r−2

2 . If b is even, we take the sequence S = (t1, t2, . . . , tr, 21,
22, 21, 22, . . . , 2b−1, 2b, 2b−1, 2b, 11, 11, . . . , 1 t−r−2b

2

, 1 t−r−2b
2

, t1, t2, . . . , tr, 0), that is

a perfect linear realization of L′′ = {1
t−r−2b

2 , 2b, tr}. In this case, pL′ = pL′′ +

p{1a−
t−r−2b

2 }. If b is odd, we take the sequence S = (t1, t2, . . . , tr, 21, 22, 21, 22,
. . . , 2b−2, 2b−1, 2b−2, 2b−1, 11, 11, . . . , 1 t−r−2b

2
+1, 1 t−r−2b

2
+1, t1, t2, . . . , tr, 0), that is a

perfect linear realization of L′ = {1
t−r−2b

2
+1, 2b−1, tr}. So, apL′ = pL′′+ap{1a−

t−r−2b
2

−1,
2}.

Case 4. t− r ≡ 3 (mod 4).
Suppose b even. If b ≥ t−r−1

2 the sequence S = (t1, t2, . . . , tr, 11, 11, 21, 22, 21, 22,
. . . , 2 t−r−5

2

, 2 t−r−3

2

, 2 t−r−5

2

, 2 t−r−3

2

, 0, t1, t2, . . . , tr) is a linear realization of L′′ =
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{1, 2
t−r−3

2 , tr}. In this case, rL′ = p{1a−1, 2b−
t−r−3

2 } + rL′′. If b < t−r−1
2 the

sequence S = (t1, t2, . . . , tr, 21, 22, 21, 22, . . . , 2b−1, 2b, 2b−1, 2b, 11, 11, . . . , 1 t−r−2b−1

2

,

1 t−r−2b−1

2

, 0, t1, t2, . . . , tr) is a linear realization of L′′ = {1
t−r−2b−1

2 , 2b, tr}. So, we

have rL′ = p{1a−
t−r−2b−1

2 }+ rL′′.
Suppose now b odd. If b ≥ t−r−1

2 the sequence S = (t1, t2, . . . , tr, 21, 22, 21, 22,

. . . , 2 t−r−1

2

, 0, 2 t−r−1

2

, t1, t2, . . . , tr) is a linear realization of L′′ = {2
t−r−1

2 , tr}. Here,

rL′ = p{1a, 2b−
t−r−1

2 } + rL′′. If b < t−r−1
2 the sequence S = (t1, t2, . . . , tr,

21, 22, 21, 22, . . . , 2b, 0, 2b, 11, 11, . . . , 1 t−r−2b−1

2

, 1 t−r−2b−1

2

, t1, t2, . . . , tr) is a linear re-

alization of L′′ = {1
t−r−2b−1

2 , 2b, tr}. Hence, rL′ = p{1a−
t−r−2b−1

2 }+ rL′′ is a linear
realization of L′ = {1a, 2b, tr}.
Now in order to obtain the thesis it is sufficient to note that rL = q ·p{tt}+ rL′. �

Example 17. Let L = {14, 22, 1226}. Since 4 + 2 > ⌊ 12−1
2 ⌋ we are in the hy-

pothesis of previous proposition. Note that in this case q = 2 and r = 2, hence
t − r = 12 − 2 ≡ 2 (mod 4) so we are in Case 3. Also b = 2 < 4 = t−r−2

2 , so,

since b is even, we take the following perfect linear realization of L′ = {13, 22, 122}:
S = (121, 122, 21, 22, 21, 22, 11, 11, 12, 12, 13, 13, 121, 121, 0). Now a perfect linear re-
alization of L is given by 2 · p{1212}+ p{11}+ pL′.

Proposition 18. MPP(L) holds for any L = {1a, 2b, tc}, with gcd(t, v) = d > 1,
where v = 2(a+ b+ c) + 1.

Proof. Clearly, t ≤ v−1
2 and by Proposition 1 we can assume a+ b ≥ d−1

2 . Also, in

view of Proposition 16 we can assume a+b < ⌊ t−1
2 ⌋ which implies c > v−1

2 −⌊ t−1
2 ⌋,

hence we have also c ≥ v+d
2d . In fact, if, by way of contradiction, v−1

2 −⌊ t−1
2 ⌋ < v+d

2d

we have v−1
2 − v+d

2d < ⌊ t−1
2 ⌋ ≤ v−3

4 , since t ≤ v−1
2 . Namely v−1

2 < v
d
, which cannot

be since d ≥ 3.
Now, let M = (mi,j) be the d × v

d
matrix whose elements are so defined, for

i = 1, . . . , d and j = 1, . . . , v
d
:

mi,j =







(i − 1) + (j − 1)t (mod v) if i ≡ 0, 1 (mod 4)
i + (j − 1)t (mod v) if i ≡ 2 (mod 4)
(i − 2) + (j − 1)t (mod v) if i ≡ 3 (mod 4).

It is easy to see that the elements of M are the vertices ofKv. Also, it is not hard to
check that M has at least 5 columns. In fact, v

d
is an odd number and v

d
6= 3. Indeed

if v
d
= 3 we would have t = d and hence a + b ≥ d−1

2 = t−1
2 but we are assuming

a+ b < ⌊ t−1
2 ⌋. Note that, for any i and j, mi,j+1 −mi,j = t (mod v), namely two

elements adjacent on a row form an edge of length t. Also |mi+1,j − mi,j | = 2 if
i is odd, while |mi+1,j −mi,j | = 1 if i is even. Our aim is to construct a edges of
length 1 and b edges of length 2 in such a way that the elements of M not used
to obtain these edges appear in all but one rows (say R) as an even number of
adjacent entries. In fact, if this holds, then it will be immediate to construct the
edges of length t with pairs of elements adjacent on a row. Obviously, the isolated
vertex of the near 1-factor will belong to the row R. So, it suffices to explain how
to construct the edges of length 1 and 2. Then, the reader can easily check that
the previous condition is always satisfied in the following constructions. We have
to split the proof into two cases.
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Case 1. a+ b− d−1
2 even.

By the assumptions on a, b and d it is possible to find two positive integers ã and
b̃ such that ã+ b̃ = d−1

2 , a− ã = 2α and b− b̃ = 2β, for suitable α and β. Clearly,

in general, it is possible more than one choice for the pair (ã, b̃). By Corollary 13

there exists a near 1-factor F of Kd such that δ(F ) = {1ã, 2b̃}. We start taking the
edges of F . Now we have to construct 2α edges of length 1 and 2β edges of length
2. Let 2α = (v

d
−1)q̄+ r̄ with 0 ≤ r̄ < v

d
−1, note that r̄ is even. Take the following

2α edges of length 1: [m2i,j ,m2i+1,j ] for i =
d−1
2 − q̄ + 1, . . . , d−1

2 , j = 2, . . . , v
d
(if

q̄ > 0) and [m2( d−1

2
−q̄),j ,m2( d−1

2
−q̄)+1,j ] for j = 2, . . . , r̄ + 1. Let 2β = (v

d
− 1)q̃ + r̃

with 0 ≤ r̃ < v
d
− 1, note that r̃ is even. Take the following 2β edges of length 2:

[m2i+1,j ,m2i+2,j ] for i = 0, . . . , q̃ − 1, j = 2, . . . , v
d
(if q̃ > 0) and [m2q̃+1,j ,m2q̃+2,j]

for j = v
d
− r̃ + 1, . . . , v

d
.

Since c ≥ v+d
2d , the edges so constructed involve distinct vertices of Kv. Also, since

r̄ and r̃ are even one can check that the elements of M not used to obtain these
edges appear in all but one rows as an even number of adjacent entries.

Case 2. a+ b− d−1
2 odd.

By the assumptions on a, b and d it is possible to find two positive integers ã and
b̃ such that ã + b̃ = d−1

2 , a − ã = 2α + 1 and b − b̃ = 2β, for suitable α and β.

Also in this case, it may be possible more than one choice for the pair (ã, b̃). From

Corollary 13 there exists a near 1-factor F of Kd such that δ(F ) = {1ã, 2b̃} whose
isolated vertex is in {d− 2, d− 1}, namely in {md−1,1,md,1}. We start taking the
edges of F . Next, we take the edges of length 2. Let 2β = (v

d
− 1)q̄ + r̄ with

0 ≤ r̄ < v
d
− 1, note that r̄ is even. We consider the edges [m2i+1,j ,m2i+2,j ], for

i = 0, . . . , q̄ − 1 and j = 2, . . . , v
d
(if q̄ > 0), and the edges [m2q̄+1,j,m2q̄+2,j], for

j = v
d
− r̄ + 1, . . . , v

d
.

Now, we take the edges of length 1. Firstly we take the edge [md−1,3,md,3]. Next
we distinguish two cases. If 2α ≤ v

d
− 3 we take the edges [md−1,j,md,j] for j =

4, . . . , 2α+3. If 2α > v
d
−3, let 2α−(v

d
−3) = (v

d
−1)q̃+r̃ with 0 ≤ r̃ < v

d
−1, note that

r̃ is even. We consider the edges [md−1,j,md,j] for j = 4, . . . , v
d
, [md−2i,j ,md−2i−1,j],

for i = 1, . . . , q̃ and j = 2, . . . , v
d
(if q̃ > 0), and [md−2q̃−2,j,md−2q̃−3,j ], for j =

2, . . . , r̃ + 1. Since c ≥ v+d
2d , the edges so constructed involved distinct vertices of

Kv. The isolated vertex is in {md−1,2,md,2}. �

Example 19. Let L = {13, 22, 2119}. Hence, we have v = 49, d = 7 and a + b −
d−1
2 = 3 + 2 − 3 = 2 is even. So we are in Case 1 of Proposition 18. We start

constructing the 7× 7 matrix M :

M =













0 21 42 14 35 7 28

2 23 44 16 37 9 30

1 22 43 15 36 8 29
3 24 45 17 38 10 31
4 25 46 18 39 11 32
6 27 48 20 41 13 34
5 26 47 19 40 12 33













.

Note that in this case we have more than one choice for ã and b̃, in fact we can
choose (ã, b̃) = (3, 0) or (1, 2). In this example we choose ã = 3 and b̃ = 0. So

we take F = {[2, 1], [3, 4], [6, 5]} ∪ {0}. Now we have a − ã = 0 and b − b̃ = 2,
hence α = 0 and β = 1. So we have to take the following edges of length 2: [7, 9]
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and [28, 30]. The elements used up to now to construct the edges of length 1 and
2 are highlighted in bold in the matrix. Finally, it is easy to construct 19 edges
of length 21 as follows: [21, 42], [14, 35], [23, 44], [16, 37], [22, 43], [15, 36], [8, 29], [24,
45], [17, 38], [10, 31], [25, 46], [18, 39], [11, 32], [27, 48], [20, 41], [13, 34], [26, 47], [19, 40],
[12, 33]. Clearly, the isolated vertex is 0.

Example 20. Let L = {17, 24, 2516}. Hence, we have v = 55, d = 5 and a + b −
d−1
2 = 7 + 4 − 2 = 9 is odd. So we are in Case 2 of Proposition 18. We start

constructing the 5× 11 matrix M :

M =









0 25 50 20 45 15 40 10 35 5 30

2 27 52 22 47 17 42 12 37 7 32

1 26 51 21 46 16 41 11 36 6 31
3 28 53 23 48 18 43 13 38 8 33
4 29 54 24 49 19 44 14 39 9 34









.

Note that in this case we have more than one choice for ã and b̃, in fact we can
choose (ã, b̃) = (0, 2) or (2, 0). In this example we choose ã = 0 and b̃ = 2.

So we take F = {[0, 2], [1, 3]} ∪ {4}. Now we have a − ã = 7 and b − b̃ = 2,
hence α = 3 and β = 1. So we have to take the following edges of length
2: [5, 7] and [30, 32]. Take now [m4,3,m5,3] = [53, 54]. Also, take the following
edges of length 1: [23, 24], [48, 49], [18, 19], [43, 44], [13, 14], [38, 39]. The elements
used up to now to construct the edges of length 1 and 2 are highlighted in bold
in the matrix. Finally, it is easy to construct 16 edges of length 25 as follows:
[25, 50], [20, 45], [15, 40], [10, 35], [27, 52], [22, 47], [17, 42], [12, 37], [26, 51], [21, 46], [16,
41], [11, 36], [6, 31], [8, 33], [4, 29], [9, 34]. Clearly, the isolated vertex is 28.

In order to complete the study of MPP({1a, 2b, tc}) we are left to consider the
case gcd(t, v) = 1 and a+ b < ⌊ t−1

2 ⌋, where v = 2(a+ b+ c)+1. In the following we

give some partial results about this case. So we take a + b < ⌊ t−1
2 ⌋, but not “too

small”. Clearly, we believe that MPP conjecture holds also for a + b “very small”
and we will give some examples for these cases at the end of this section.

Proposition 21. Let L = {1a, 2b, tc}, where t is an integer with t > 2. Let
v = 2(a+ b+ c) + 1 and let r′ be the remainder of the division of v by 2t. Assume

that a+ b ≥ r′−1
2 if ⌊ v

t
⌋ is even and that a+ b ≥ t− r′+1

2 if ⌊ v
t
⌋ is odd. Then there

exists a near 1-factor F of Kv such that ℓ(F ) = L.

Proof. In view of Propositions 16 and 18, we may assume a + b < ⌊ t−1
2 ⌋ and

gcd(t, v) = 1. Let v = qt + r, with 0 < r < t. We construct an incomplete matrix
M with t rows and q + 1 columns whose elements are {0, 1, 2, . . . , v − 1}, namely
the vertices of Kv, and the element on the i-th row and j-th column is mi,j =
(i − 1) + (j − 1)t, for i = 1, . . . , t, j = 1, . . . , q and i = 1, . . . , r if j = q + 1. Hence
the first q columns are complete, while in the last column we have only r elements.
It is easy to see that mi,j+1 −mi,j = t for any i, j, hence two elements adjacent on
a row can be connected by an edge of length t. Also, we have mi+1,j −mi,j = 1
for any i, j, so two elements adjacent on a column can be connected by an edge of
length 1.

As in Proposition 18, our aim is to construct a edges of length 1 and b edges of
length 2 in such a way that the elements ofM not used to obtain these edges appear
in all but one rows as an even number of adjacent entries. So, in the following, we
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will explain how to construct the edges of length 1 and 2 in such a way that the
previous condition is always satisfied.

Since v is odd and r′ is the remainder of the division of v by 2t, r′ is an odd
integer too. Now we split the construction into two cases.

Case 1. q even.
Note that, in this case, the rows with an odd number of elements are the first r′ = r
rows of M .

Case 1A. a+ b = r′−1
2 .

By Corollary 13, there exists a near 1-factor F of Kr′ with δ(F ) = {1a, 2b}. Then
it suffices to take the edges of F .

Case 1B. a+ b > r′−1
2 .

Firstly, consider the case r′ = 1. We apply Corollary 13 to obtain a near 1-factor

F̃ such that δ(F̃ ) = L′ = {1⌊
a
2
⌋, 2⌊

b
2
⌋}. Next, in Kv we take the edges of the graphs

F̃ + t− 2|L′|− 1 and F̃ +2t− 2|L′|− 1. If a and b are both even, we have done. If a
is even and b is odd, we still have to construct an edge of length 2, take [1, v− 1]. If
a is odd and b is even, we still have to construct an edge of length 1, take [0, v− 1].
Finally, if a and b are both odd, we still have to construct an edge of length 1 and
one of length 2, take [v − t− 1, v − t] and [1, v − 1].

Assume now r′ > 1. The construction in this subcase depends on the parity of

a+ b− r′−1
2 . It is easy to see that if a+ b− r′−1

2 is even there exist ã, b̃ such that

ã + b̃ = r′−1
2 and a − ã = 2α and b − b̃ = 2β, for suitable α and β. Now, it is

possible, in view of Corollary 13, to construct a near 1-factor F of Kr′ such that

δ(F ) = {1ã, 2b̃} and a near 1-factor F ′ of K2(α+β)+1 such that δ(F ′) = {1α, 2β}.

Note that, since a+ b < ⌊ t−1
2 ⌋, we have 2(α+ β) + 1 < t. Now, in Kv we take the

edges of F + tq, F ′ + t− 2(α+ β)− 1 and F ′ + 2t− 2(α+ β)− 1, these are exactly
a edges of length 1 and b edges of length 2.

It is easy to see that if a+ b− r′−1
2 is odd, there exist ã, b̃ such that ã+ b̃ = r′−1

2

and a− ã = 2α+1 and b− b̃ = 2β, for suitable α and β. Now, in Kv we take again
the edges of F + tq, F ′+ t−2(α+β)−1 and F ′+2t−2(α+β)−1, where F and F ′

are defined as before. Furthermore, we take also the edge [mi,1,mi+1,1] of length
1, where i is the isolated vertex of F (observe that we may always assume i ≥ 1).
Finally, observe that, since r′ < t and a+ b < t−1

2 it follows t− 2(α + β) − 1 > r′

and so F + tq and F ′ + t− 2(α+ β)− 1 involve distinct rows.

Case 2. q odd.
Note that, in this case, the rows with an odd number of elements are the last
2t− r′ = t− r rows of M .

Case 2A. a+ b = t− r′+1
2 .

By Corollary 13 there exists a near 1-factor F such that δ(F ) = {1a, 2b} so it is
sufficient to take the edges of F + t− 2(a+ b)− 1 in Kv.

Case 2B. a+ b > t− r′+1
2 .

If a + b − (t − r′+1
2 ) is even there exist ã and b̃ such that ã + b̃ = t − r′+1

2 and

a− ã = 2α and b− b̃ = 2β, for suitable α and β. Now let F and F ′ as in Case 1B.
In Kv we take the edges of F + v − t, F ′ and F ′ + t.

If a + b − (t − r′+1
2 ) is odd there exist ã and b̃ such that ã + b̃ = t − r′+1

2 and

a− ã = 2α+1 and b− b̃ = 2β, for suitable α and β. In Kv we take again the edges
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M =























0 12 24

1 13 25

2 14 26

3 15 27
4 16 28

5 17
6 18
7 19
8 20
9 21

10 22
11 23























M ′ =























0 12 24 36
1 13 25 37
2 14 26 38
3 15 27 39
4 16 28 40
5 17 29

6 18 30

7 19 31

8 20 32

9 21 33

10 22 34

11 23 35























Figure 1. Matrices of Example 22.

of F + v − t, F ′ and F ′ + t. Finally we take the edge [mi,1,mi+1,1] where i is the
isolated vertex of F + r. �

Example 22. Let L = {12, 23, 129}, hence, following the notation of Proposition
21, we have v = 29, t = 12, q = 2 and r = r′ = 5. It is easy to see that we are in
Case 1B of the proof of Proposition 21. Let M be the incomplete matrix defined
in Proposition 21 (see Fig. 1). We take ã = b̃ = 1 and F = {[0, 1], [2, 4]} ∪ {3}.
Now α = 0 and β = 1 and we consider F ′ = {[0, 2]} ∪ {1}. Following the proof, we
have to take the edges of F + 24, F ′ + 9 and F ′ + 21, namely the following edges
{[24, 25], [26, 28], [9, 11], [21, 23]}. Since the isolated vertex of F is 3 we have to take
also the edge [m3,1,m4,1] = [2, 3]. Up to now we have constructed all the edges of
length 1 and 2. It is easy to see that the elements not used to construct these edges
appear in an even number on all but one row. Hence it is immediate to construct
the edges of length 12.
Now let L = {14, 22, 1214}, hence we have v = 41, t = 12, q = 3, r = 5 and r′ = 17.
So we are in Case 2B of the proof of Proposition 21. Let M ′ be the incomplete

matrix defined in Proposition 21 (see Fig. 1). Since a + b − (t − r′+1
2 ) is odd, we

take ã = 1, b̃ = 2 and we consider F = {[0, 2], [1, 3], [4, 5]} ∪ {6}. Now α = 1 and
β = 0, so we consider F ′ = {[0, 1]} ∪ {2}. Following the proof now we have to take
the edges of F + 29, F ′ and F ′ + 12, namely [29, 31], [30, 32], [33, 34], [0, 1], [12, 13].
Finally, we take the edge [m11,1,m12,1] = [10, 11] since the isolated vertex of F + r
is 11. Now it is trivial to construct the edges of length 12.

Corollary 23. If t ≤ 11, MPP({1a, 2b, tc}) holds for any a, b, c ≥ 0.

Proof. For t = 3, 4, 5, 6 the thesis directly follows from Proposition 16. If t = 7 the
thesis follows from Propositions 16, 18 and 21.

Take now t = 8, in view of Propositions 16 and 21 we are left to consider
the following classes of lists {1, 2, 88q

′+1} and {1, 2, 88q
′+2}. If L = {1, 2, 88q

′+1},
v = 16q′ + 7. Let q = 2q′ and M be the incomplete matrix defined in Proposition
21. Consider the edges [m2,1,m1,q+1] of length 8, [m3,1,m4,1] of length 1 and
[m5,1,m7,1] of length 2. Now all the rows of M except the 6-th one have an even
number of adjacent entries so we can construct the remaining edges of length 8.
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If L = {1, 2, 88q
′+2}, v = 16q′+9. Let q = 2q′+1 and M be the incomplete matrix

defined in Proposition 21. Consider the edges [m2,1,m3,q] of length 8, [m4,1,m5,1]
of length 1 and [m6,1,m8,1] of length 2. Now all the rows of M except the 7-th one
have an even number of adjacent entries so we can construct the remaining edges
of length 8.

For t = 9, in view of Propositions 16, 18 and 21 we are left to consider the
following classes of lists {1, 2, 99q

′+1} and {1, 2, 99q
′+3}. If L = {1, 2, 99q

′+1}, v =
18q′ + 7. Let q = 2q′ and M be the incomplete matrix defined in Proposition
21. Consider the edges [m3,1,m1,q+1] of length 9, [m2,1,m4,1] of length 2 and
[m5,1,m6,1] of length 1. Now all the rows of M except the 7-th one have an even
number of adjacent entries so we can construct the remaining edges of length 9.
If L = {1, 2, 99q

′+3}, v = 18q′+11. Let q = 2q′+1 and M be the incomplete matrix
defined in Proposition 21. Consider the edges [m7,1,m9,q] of length 9, [m3,1,m4,1]
of length 1 and [m6,1,m8,1] of length 2. Now all the rows of M except the 5-th one
have an even number of adjacent entries so we can construct the remaining edges
of length 9.

Finally, for t = 10, 11 it is easy to see that we are left to consider eight classes of
lists for each value of t. By direct computation we have checked that the conjecture
holds also in these cases. �

To conclude we present an example for lists not considered in previous proposi-
tions. We consider the “most difficult” case namely when a = b = 1. It is important
to underline that the strategy used for these particular cases can be generalized to
infinite classes of lists.

Example 24. Take L = {1, 2, 1923}, hence v = 51. LetM be the incomplete matrix
defined in Proposition 21 (see Fig. 2) and take the following edges [38, 6], [39, 7], [40,
8], [41, 9] of length 19, [42, 43] of length 1 and [48, 50] of length 2. Now all the rows
of M except the 12-th one have an even number of adjacent entries so we can con-
struct the remaining edges of length 19. It is easy to see that this construction can
be easily generalized to any list {1, 2, 1919k+4}.
Take now L = {1, 2, 1928}, hence v = 61. Let M ′ be the incomplete matrix de-
fined in Proposition 21 (see Fig. 2) and take the following edges [57, 15], [58, 16],
[59, 17], [60, 18], [0, 42], [1, 43], [2, 44], [3, 45], [8, 50] of length 19, [9, 11] of length 2
and [13, 14] of length 1. Now all the rows of M ′ except the 11-th one have an
even number of adjacent entries so we can construct the remaining edges of length
19. It is easy to see that this construction can be easily generalized to any list
{1, 2, 1919k+9}.

We have to point out that the constructions illustrated in the previous example
work for any values of t if L = {1, 2, tc} with c belonging to some suitable congruence
classes modulo t. Indeed for t = 19 we are able to prove MPP(L) for any c, but
the construction of the near 1-factor depends on the congruence class of c modulo
19. In our opinion it seems not possible to present a general construction, but it is
necessary to split the proof of the remaining open case in several subcases.
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0 19 38

1 20 39

2 21 40

3 22 41

4 23 42

5 24 43

6 25 44
7 26 45
8 27 46
9 28 47
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11 30 49
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0 19 38 57

1 20 39 58

2 21 40 59

3 22 41 60

4 23 42

5 24 43

6 25 44

7 26 45

8 27 46
9 28 47
10 29 48
11 30 49
12 31 50

13 32 51
14 33 52
15 34 53
16 35 54
17 36 55
18 37 56





































Figure 2. Matrices of Example 24.
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