
ON LOW TREE-DEPTH DECOMPOSITIONS
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Abstract. The theory of sparse structures usually uses tree like structures as

building blocks. In the context of sparse/dense dichotomy this role is played by
graphs with bounded tree depth. In this paper we survey results related to this

concept and particularly explain how these graphs are used to decompose and

construct more complex graphs and structures. In more technical terms we
survey some of the properties and applications of low tree depth decomposition

of graphs.

1. Tree-Depth

The tree-depth of a graph is a minor montone graph invariant that has been
defined in [47], and which is equivalent or similar to the rank function (used for
the analysis of countable graphs, see e.g. [56]), the vertex ranking number [12, 61],
and the minimum height of an elimination tree [6]. Tree-depth can also be seen
as an analog for undirected graphs of the cycle rank defined by Eggan [18], which
is a parameter relating digraph complexity to other areas such as regular language
complexity and asymmetric matrix factorization. The notion of tree-depth found
a wide range of applications, from the study of non-repetitive coloring [25] to the
proof of the homomorphism preservation theorem for finite structures [59]. Recall
the definition of tree-depth:

Definition 1. The tree-depth td(G) of a graph G is defined as the minimum height1

of a rooted forest Y such thatG is a subgraph of the closure of Y (that is of the graph
obtained by adding edges between a vertex and all its ancestors). In particular,
the tree-depth of a disconnected graph is the maximum of the tree-depths of its
connected components.

Several characterizations of tree-depth have been given, which can be seen as
possible alternative definitions. Let us mention:

TD1. The tree-depth of a graph is the order of the largest clique in a trivially
perfect supergraph of G [65]. Recall that a graph is trivially perfect if it has the
property that in each of its induced subgraphs the size of the maximum independent
set equals the number of maximal cliques [31]. This characterization follows directly
from the property that a connected graph is trivially perfect if and only if it is the
comparability graph of a rooted tree [31].

TD2. The tree-depth of a graph is the minimum number of colors in a centered
coloring of G, that is in a vertex coloring of G such that in every connected subgraph
of G some color appears exactly once [47].
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1Here the height is defined as the maximum number of vertices in a chain from a root to a leaf
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TD3. A strongly related notion is vertex ranking, which has has been investigated
in [12, 61]. The vertex ranking (or ordered coloring) of a graph is a vertex coloring
by a linearly ordered set of colors such that for every path in the graph with end
vertices of the same color there is a vertex on this path with a higher color. The
equality of the minimum number of colors in a vertex ranking and the tree-detph
is proved in [47].

TD4. The tree-depth of a graph G with connected components G1, . . . , Gp, is
recursively defined by:

td(G) =


1 if G ' K1

p
max
i=1

td(Gi) if G is disconnected

1 + min
v∈V (G)

td(G− v) if G is connected and G 6' K1

The equivalence between the value given by this recursive definition and minimum
height of an elimination tree, as well as the equality of this value with the tree-depth
are proved in [47].

TD5. The tree-depth can also be defined by means of games, see [30, 33, 36].
In particular, this leads to a min-max formula for tree-depth in the spirit of the
min-max formula relating tree-width and bramble size [62]. Precisely, a shelter in
a graph G is a family S of non-empty connected subgraphs of G partially ordered
by inclusion such that for every subgraph H ∈ S not minimal in F and for every
x ∈ H there exists H ′ ∈ S covered by H (in the partial order) such that x 6∈ H ′.
The thickness of a shelter S is the minimal length of a maximal chain of S. Then
the tree-depth of a graph G equals the maximum thickness of a shelter in G [30].

TD6. Also, graphs with tree-depth at most t can be theoretically characterized by
means of a finite set of forbidden minors, subgraphs, or even induced subgraphs.
But in each case, the number of obstruction grows at least like a double (and at
most a triple) exponential in t [16].

More generally, classes with bounded tree-depth can be characterized by several
properties:

TD7. A class of graphs C has bounded tree-depth if and only if there is some
integer k such that graphs in C exclude Pk as a subgraph. More precisely, while
computing the tree-depth of a graph G is a hard problem, it can be (very roughly)
approximated bu considering the height h of a Depth-First Search tree of G, as
dlog2(h+ 2)e ≤ td(G) ≤ h [53].

TD8. A class of graphs C has bounded tree-depth if and only if there is some
integers s, t, q such that graphs in C exclude Ps,Kt, and Kq,q as induced subgraphs
(this follows from the previous item and [5, Theorem 3], which states that for every
s, t, and q, there is a number Z = Z(s, t, q) such that every graph with a path of
length at least Z contains either Ps or Kt or Kq,q as an induced subgraph.

TD9. A monotone class of graphs has bounded tree-depth if and only if it is
well quasi-ordered for the induced-subgraph relation (with vertices possibly colored
using k ≥ 2 colors) (follows from [14]).

TD10. A monotone class of graphs has bounded tree-depth if and only if First-
order logic (FO) and monadic second-order (MSO) logic have the same expressive
power on the class [19].
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Classes of graphs with tree-depth at most t are computationally very simple, as
witnessed by the following properties:

It follows from TD9 that every hereditary property can be tested in polynomial
time when restricted to graphs with tree-depth at most t. Let us emphasize how
one can combine TD8 and TD9 to get complexity results for Ps-free graphs. Recall
that a graph G is k-choosable if for every assignment of a set S(v) of k colors to
every vertex v of G, there is a proper coloring of G that assigns to each vertex v
a color from S(v) [64, 23]. Note that in general, for k > 2, deciding k-choosability
for bipartite graphs is ΠP

2 -complete, hence more difficult that both NP and co-NP
problems. It was proved in [34] that for P5-free graphs, that is, graphs excluding
P5 as an induced subgraph, k-choosability is fixed-parameter tractable. For general
Ps-free graphs we prove:

Theorem 2. For every integers s and k, there is a polynomial time algorithm to
decide whether a Ps-free graph G is k-choosable.

Proof. Assume G is Ps-free. We can decide in polynomial time whether G includes
Kk+1 or Kk,kk as an induced subgraph. In the affirmative, G is not k-choosable.
Otherwise, the tree-depth of G is bounded by some constant C(s, k). As the prop-
erty to be k-choosable is hereditary, we can use a polynomial time algorithm de-
ciding whether a graph with tree-depth at most C(s, k) is k-choosable �

Graphs with tree-depth at most t have a (homomorphism) core of order bounded
by a function of t [47]. In other word, every graph G with tree-depth at most t has
an induced subgraph H of order at most F (t) such that there exists an adjacency
preserving map (that is: a homomorphism) from V (G) to V (H).

The complexity of checking the satisfaction of an MSO2 property φ on a class with
tree-depth at most t in time O(f(φ, t) · |G|), where f has an elementary dependence
on φ [28]. This is in contrast with the dependence arising for MSO2-model checking
in classes with bounded treewidth using Courcelle’s algorithm [10], where f involves
a tower of exponents of height growing with φ (what is generally unavoidable [26]).
These properties led to the study of classes with bounded shrub-depth, generalizing
classes with bounded tree-depth, and enjoying similar properties for MSO1-logic
[28, 29]. Concerning the dependency on the tree-depth t, note that the (t+ 1)-fold
exponential algorithm for MSO model-checking given by Gajarský and Hliněný in
[27] is essentially optimal [42].

Graphs with bounded tree depth form the building blocs for more complicated
graphs, with which we deal in the next section.

2. Low Tree-Depth Decomposition of Graphs

Several extensions of chromatic number of been proposed and studied in the
literature. For instance, the acyclic chromatic number is the minimum number of
colors in a proper vertex-coloring such that any two colors induce an acyclic graph
(see e.g. [3, 7]). More generally, for a fixed parameter p, one can ask what is the
minimum number of colors in a proper vertex-coloring of a graph G, such that any
subset I of at most p colors induce a subgraph with treewidth at most |I| − 1. In
this setting, the value obtained for p = 1 is the chromatic number, while the value
obtained for p = 2 is the acyclic chromatic number.

In this setting, the following result has been proved by Devos, Oporowski,
Sanders, Reed, Seymour and Vertigan using the structure theorem for graphs ex-
cluding a minor:



4 JAROSLAV NEŠETŘIL AND PATRICE OSSONA DE MENDEZ

Theorem 3 ([13]). For every proper minor closed class K and integer k ≥ 1, there
is an integer N = N(K, k), such that every graph G ∈ K has a vertex partition into
N graphs such that any j ≤ k parts form a graph with tree-width at most j − 1.

The stronger concept of low tree-depth decomposition has been introduced by
the authors in [47].

Definition 4. A low tree-depth decomposition with parameter p of a graph G is
a coloring of the vertices of G, such that any subset I of at most p colors induce
a subgraph with tree-depth at least |I|. The minimum number of colors in a low
tree-depth decomposition with parameter p of G is denoted by χp(G).

For instance, χ1(G) is the (standard) chromatic number of G, while χ2(G) is
the star chromatic number of G, that is the minimum number of colors in a proper
vertex-coloring of G such that any two colors induce a star forest (see e.g. [2, 45]).

The authors were able to extend Theorem 3 to low tree-depth decomposition in
[47]. Then, using the concept of transitive fraternal augmentation [48], the authors
extended further existence of low tree-depth decomposition (with bounded number
of colors) to classes with bounded expansion, the definition of which we recall now:

Definition 5. A class C has bounded expansion if there exists a function f : N→ N
such that every topological minor H of a graph G ∈ C has an average degree
bounded by f(p), where p is the maximum number of subdivisions per edge needed
to turn H into a subgraph of G.

Extending low tree-depth decomposition to classes with bounded expansion in
is the best possible:

Theorem 6 ([48]). Let C be a class of graphs, then the following are equivalent:

(1) for every integer p it holds supG∈C χp(G) <∞;
(2) the class C has bounded expansion.

Properties and characterizations of classes with bounded expansion will be dis-
cussed in more details in Section 5 (we refer the reader to [53] for a thorough anal-
ysis). Let us mention that classes with bounded expansion in particular include
proper minor closed classes (as for instance planar graphs or graphs embeddable
on some fixed surface), classes with bounded degree, and more generally classes
excluding a topological minor. Thus on the one side the classes of graphs with
bounded expansion include most of the sparse classes of structural graph theory,
yet on the other side they have pleasant algorithmic and extremal properties.

On the other hand, one could ask whether for proper minor-closed classes one
could ask there exists a stronger coloring than the one given by low tree-depth
decompositions. Precisely, one can ask what is the minimum number of colors
required for a vertex coloring of a graph G, so that any subgraph H of G gets at
least f(H) colors. (For instance that the star coloring corresponds to the graph
function where any P4 gets at least 3 colors.) Define the upper chromatic number
χ(H) of a graph H as the greatest integer, such that for any proper minor closed
class of graph C, there exists a constant N = N(C, H), such that any graph G ∈ C
has a vertex coloring by at N colors so that any subgraph of G isomorphic to H gets
at least χ(H) colors. The authors proved in [47] that χ(H) = td(H), showing that
low tree-depth decomposition is the best we can achieve for proper minor closed
classes. Note that the tree-depth of a graph G is also related to the chromatic
numbers χp(G) by td(G) = maxp χp(G) [47].

3. Low Tree-Depth Decomposition and Restricted Dualities

The original motivation of low tree-depth decomposition was to prove the exis-
tence of a triangle free graph H such that every triangle-free planar G admits a
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homomorphism to H, thus providing a structural strengthening of Grötzsch’s the-
orem [45]. Recall that a homomorphism of a graph G to a graph H is a mapping
from the vertex set V (G) of G to the vertex set V (H) of H that preserves adjacency.
The existence (resp. non-existence) of a homomorphism of G to H will be denoted
by G → H (resp. by G 9 H). We refer the interested reader to the monograph
[35] for a detailed study of graph homomorphisms.

Thus the above planar triangle-free problem can be restated as follows: Prove
that there exists a graph H such that K3 9 H and such that for every planar
graph G it holds

K3 9 G ⇐⇒ G→ H.

More generally, we are interested in the following problem: given a class of graphs
C and a connected graph F , find a graph DC(F ) for C (which we shall refer to as a
dual of F for C), such that F 9 DC(F ) and such that for every G ∈ C it holds

F 9 G ⇐⇒ G→ DC(F ).

(Note that DC(F ) is not uniquely determined by the above equivalence.) A couple
(F,DC(F )) with the above property is called a restricted duality of C.
Example 7. For the special case of triangle-free planar graphs, the existence of
a dual was proved by the authors in [47] and the minimum order dual has been
proved to be the Clebsch graph by Naserasr [43].
∀ planar G :

−6−→ G ⇐⇒ G −→ .

Note that this restricted homomorphism duality extends to the class of all graphs
excluding K5 as a minor [44].

Example 8. A restricted homomorphism duality for toroidal graphs follows from
the existence of a finite set of obstructions for 5-coloring proved by Thomassen in
[63]: Noticing that all the obstructions shown Fig. 1 are homomorphic images of
one of them, namely C3

1 .

K6 C3 ⊕ C5 K2 ⊕H7 C3
11

Figure 1. The 6-critical graphs for the torus.

Thus we get the following restricted homomorphism duality.
∀ toroidal G :

−6−→ G ⇐⇒ G −→

Definition 9. A class C with the property that every connected graph F has a
dual for C is said to have all restricted dualities.
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In [47] we proved, using low tree-depth decomposition, that for every proper
minor closed class C has all restricted dualities. We generalized in [50] this result
to classes with bounded expansions. We briefly outline this.

In the study of restricted homomorphism dualities, a main tool appeared to be
notion of t-approximation:

Definition 10. Let G be a graph and let t be a positive integer. A graph H is a
t-approximation of G if G is homomorphic to H (i.e. G→ H) and every subgraph
of H of order at most t is homomorphic to G.

Indeed the following theorem is proved in [54]:

Theorem 11. Let C be a class of graphs. Then the following are equivalent:

(1) The class C is bounded and has all restricted dualities (i.e. every connected
graph F has a dual for C);

(2) For every integer t there is a constant N(t) such that every graph G ∈ C
has a t-approximation of order at most N(t).

The following lemma stresses the connection existing between t-approximation
and low tree-depth decomposition:

Theorem 12 ([54]). For every integer t there exists a constant Ct such that every
graph G has a t-approximation H with order

|H| ≤ Cχt(G)t

t .

Hence we have the following corollary of Theorems 11, 12, and 6, which was
originally proved in [50]:

Corollary 1. Every class with bounded expansion has all restricted dualities.

The connection between classes with bounded expansion and restricted dualities
appears to be even stronger, as witnessed by the following (partial) characterization
theorem.

Theorem 13 ([54]). Let C be a topologically closed class of graphs (that is a class
closed by the operation of graph subdivision). Then the following are equivalent:

(1) the class C has all restricted dualities;
(2) the class C has bounded expansion.

This theorem has also a variant in the context of directed graphs:

Theorem 14 ([54]). Let C be a class of directed graphs closed by reorientation.
Then the following are equivalent:

(1) the class C has all restricted dualities;
(2) the class C has bounded expansion.

4. Intermezzo: Low Tree-Depth Decomposition and Odd-Distance
Coloring

Let n be an odd integer and let G be a graph. The problem of finding a coloring of
the vertices of G with minimum number of colors such that two vertices at distance
n are colored differently, called Dn-coloring of G, was introduced in 1977 in Graph
Theory Newsletter by E. Sampathkumar [60] (see also [37]). In [60], Sampathkumar
claimed that every planar graph has a Dn-coloring for every odd integer n with 5
colors, and conjectured that 4 colors suffice. Unfortunately, the claimed result was
flawed, as witnessed by the graph depicted on Figure 2, which needs 6 colors for a
D3-coloring [53].
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Figure 2. On the left, a planar graph G needing 6-colors for a
D3-coloring. On the right, a witness: this a graph with vertex set
A ⊂ V (G) in which adjacent vertices are at distance 3 in G, thus
should get distinct colors in a D3-coloring of G.

Low tree-depth decomposition allows to prove that for any odd integer n, a fixed
number of colors is sufficient for Dn-coloring planar graphs, and this results extends
to all classes with bounded expansion.

Theorem 15 ([53]). For every class with bounded expansion C and every odd in-
teger n there exists a constant N such that every graph G ∈ C has a Dn-coloring
with at most N colors.

The proof of Theorem 15 relies on low tree-depth decomposition, and the bound
N given in [53] for the number of colors sufficient for a Dn-coloring of a graph G is
double exponential in χn(G). Hence it is still not clear whether a uniform bound
could exist for Dn-coloring of planar graphs.

Problem 1 (van den Heuvel and Naserasr). Does there exist a constant C such that
for every odd integer n, it holds that every planar graph has a Dn-coloring with at
most C colors?

Note that, however, there exists no bound for the odd-distance coloring of planar
graphs, which requires that two vertices at odd distance get different colors. Indeed,
one can construct outerplanar graphs having an arbitrarily large subset of vertices
pairwise at odd distance (see Fig. 3).

Figure 3. There exist outerplanar graphs with arbitrarily large
subset of vertices pairwise at odd distance. (In the figure, the
vertices in the periphery are pairwise at distance 1, 3, 5, or 7.)

However, no construction requiring a large number of colors without having a
large set of vertices pairwise at odd-distance is known. Hence the following problem.
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Problem 2 (Thomassé). Does there exist a function f : N→ N such that every pla-
nar graph without k vertices pairwise at odd distance has an odd-distance coloring
with at most f(k) colors?

5. Low Tree-Depth Decomposition and Density of Shallow Minors,
Shallow Topological Minors, and Shallow Immersions

Classes with bounded expansion, which have been introduced in [48], may be
viewed as a relaxation of the notion of proper minor closed class. The original
definition of classes with bounded expansion relates to the notion of shallow minor,
as introduced by Plotkin, Rao, and Smith [58].

Definition 16. Let G,H be graphs with V (H) = {v1, . . . , vh} and let r be an
integer. A graph H is a shallow minor of a graph G at depth r, if there exists
disjoint subsets A1, . . . , Ah of V (G) such that (see Fig. 4)

• the subgraph of G induced by Ai is connected and as radius at most r,
• if vi is adjacent to vj in H, then some vertex in Ai is adjacent in G to some

vertex in Aj .

≤ r

Figure 4. A shallow minor

We denote [48, 53] by GO r the class of the (simple) graphs which are shallow
minors of G at depth r, and we denote by ∇r(G) the maximum density of a graph
in GO r, that is:

∇r(G) = max
H∈GO r

‖H‖
|H|

A class C has bounded expansion if supG∈C ∇r(G) <∞ for each value of r.
Considering shallow minors may, at first glance, look arbitrary. Indeed one can

define as well the notions of shallow topological minors and shallow immersions:

Definition 17. A graph H is a shallow topological minor at depth r of a graph G
if some subgraph of G is isomorphic to a subdivision of H in which every edge has
been subdivided at most 2r times (see Fig. 5).

We denote [48, 53] by G Õ r the class of the (simple) graphs which are shallow

topological minors of G at depth r, and we denote by ∇̃r(G) the maximum density
of a graph in G Õ r, that is:

∇̃r(G) = max
H∈G Õ r

‖H‖
|H|

Note that shallow topological minors can be alternatively defined by considering
how a graph H can be topologically embedded in a graph G: a graph H with vertex
set V (H) = {a1, . . . , ak} is a shallow topological minor of a graph G at depth r is
there exists vertices v1, . . . , vk in G and a family P of paths of G such that
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H G

≤ 2r

Figure 5. H is a shallow topological minor of G at depth r

• two vertices ai and aj are adjacent in H if and only if there is a path in P
linking vi and vj ;
• no vertex vi is interior to a path in P;
• the paths in P are internally vertex disjoint;
• every path in P has length at most 2r + 1.

We can similarly define the notion of shallow immersion:

Definition 18. A graph H with vertex set V (H) = {a1, . . . , ak} is a shallow
immersion of a graph G at depth r is there exists vertices v1, . . . , vk in G and a
family P of paths of G such that

• two vertices ai and aj are adjacent in H if and only if there is a path in P
linking vi and vj ;

• the paths in P are edge disjoint;
• every path in P has length at most 2r + 1;
• no vertex of G is internal to more than r paths in P.

We denote [48, 53] by G
∝
O r the class of the (simple) graphs which are shallow

immersions of G at depth r, and we denote by
∝
∇r(G) the maximum density of a

graph in G
∝
O r, that is:

∝
∇r(G) = max

H∈G
∝
O r

‖H‖
|H|

It appears that although minors, topological minors, and immersions behave very
differently, their shallow versions are deeply related, as witnessed by the following
theorem:

Theorem 19 ([53]). Let C be a class of graphs. Then the following are equivalent:

(1) the class C has bounded expansion;
(2) for every integer r it holds supG∈C ∇r(G) <∞;

(3) for every integer r it holds supG∈C ∇̃r(G) <∞;

(4) for every integer r it holds supG∈C
∝
∇r(G) <∞;

(5) for every integer r it holds supH∈C O r χ(H) <∞;
(6) for every integer r it holds supH∈C Õ r χ(H) <∞;
(7) for every integer r it holds sup

H∈C
∝
O r χ(H) <∞.

In the above theorem, we see that not only shallow minors, shallow topological
minors, and shallow immersions behave closely, but that the (sparse) graph density
‖G‖/|G| and the chromatic number χ(G) of a graph G are also related. This last
relation is intimately related to the following result of Dvorák [15].

Lemma 20. Let c ≥ 4 be an integer and let G be a graph with average degree

d > 56(c − 1)2 log(c−1)
log c−log(c−1) . Then the graph G contains a subgraph G′ that is the

1-subdivision of a graph with chromatic number c.
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It follows from Theorem 19 that the notion of class with bounded expansion
is quite robust. Not only classes with bounded expansion can be defined by edge
densities and chromatic number, but also by virtually all common combinatorial
parameters [53].

If one considers the clique number instead of the density or the chromatic num-
ber, then a different type of classes is defined:

Definition 21. A class of graph C is somewhere dense if there exists an integer p
such that every clique is a shallow topological minor at depth p of some graph in C
(in other words, C Õ p contain all graphs); the class C is nowhere dense if it is not
somewhere dense.

Similarly that Theorem 19, we have several characterizations of nowhere dense
classes.

Theorem 22 ([53]). Let C be a class of graphs. Then the following are equivalent:

(1) the class C is nowhere dense;

(2) for every integer r it holds lim supG∈C
log∇r(G)

log |G| = 0;

(3) for every integer r it holds lim supG∈C
log ∇̃r(G)

log |G| = 0 ;

(4) for every integer r it holds lim supG∈C
log
∝
∇r(G)

log |G| = 0;

(5) for every integer r it holds supH∈C O r ω(H) <∞;
(6) for every integer r it holds supH∈C Õ r ω(H) <∞;
(7) for every integer r it holds sup

H∈C
∝
O r ω(H) <∞.

Note that every class with bounded expansion is nowhere dense. As mentioned
in Theorem 6, classes with bounded expansion are also characterized by the fact
that they allow low tree-depth decompositions with bounded number of colors. A
similar statement holds for nowhere dense classes:

Precisely, we have the following:

Theorem 23. Let C be a class of graphs, then the following are equivalent:

(1) for every integer p it holds lim supG∈C
χp(G)
log |G| = 0;

(2) the class C is nowhere dense.

The direction bounding χp(G) of both Theorem 6 and 23 follow from the next
more precise result:

Theorem 24 ([53]). For every integer p there is a polynomial Pp (degPp ≈ 22p)
such that for every graph G it holds

χp(G) ≤ Pp(∇̃2p−2+1(G)).

Note that the original proof given in [48] gave a slightly weaker bound, and that
an alternative proof of this result has been obtained by Zhu [66], in a paper relating
low tree-depth decomposition with the generalized coloring numbers introduced by
Kierstead and Yang [40].

6. Low Tree-Depth Decomposition and Covering

In a low treedepth decomposition of a graph G by N colors and for parameter
t, the subsets of t colors define a disjoint union of clusters that cover the graph,
such that each cluster has tree-depth at most t, every vertex belongs to at most(
N
t

)
clusters, and every connected subgraph of order t is included in at least one

cluster.
It is natural to ask whether the condition that such a covering comes from a

coloring could be dropped.
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Theorem 25. Let C be a monotone class.
Then C has bounded expansion if and only if there exists a function f such that

for every integer t, every graph G ∈ C has a covering C1, . . . , Ck of its vertex set
such that

• each Ci induces a connected subgraph with tree-depth at most t;
• every vertex belongs to at most f(t) clusters;
• every connected subgraph of order at most t is included in at least one

cluster.

Proof. One direction is a direct consequence of Theorem 6. Conversely, assume
that the class C does not have bounded expansion. Then there exists an integer p
such that for every integer d the class C contains the p-th subdivision of a graph
Hd with average degree at least d. Moreover, it is a standard argument that we
can require Hd to be bipartite (as every graph with average degree 2d contains a
bipartite subgraph with average degree at least d).

Let t = 2(p+ 1) and let d = 2f(t) + 1. Assume for contradiction that there exist
clusters C1, . . . , Ck as required, then we can cover Hd by clusters C ′1, . . . , C

′
k such

that each C ′i induces a star (possibly reduced to an edge), every vertex belongs to
at most f(t) clusters, and every edge is included in at least one cluster. If an edge
{u, v} of Hd is included in more than two clusters, it is easily checked that (at least)
one of u and v can be safely removed from one of the cluster. Hence we can assume
that each edge of Hd is covered exactly once. To each cluster C ′i associates the
center of the star induced by C ′i (or an arbitrary vertex of C ′i if C ′i has cardinality
2) and orient the edges of the star induced by C ′i away from the center. This way,
every edge is oriented once and every vertex gets indegree at most f(t). However,
summing the indegrees we get f(t) ≥ d/2, a contradiction. �

It is natural to ask whether similar statements would hold, if we weaken the
condition that each cluster has tree-depth at most t while we strengthen the condi-
tion that every connected subgraph of order at most t is included in some cluster.
Namely, we consider the question whether a similar statement holds if we allow
each cluster to have radius at most 2t while requiring that every t-neighborhood
is included in some cluster. In the context of their solution of model checking
problem for nowhere dense classes, Grohe, Kreutzer and Siebertz introduced in [32]
the notion of r-neighborhood cover and proved that nowhere dense classes admit
such cover with small maximum degree, and proved that nowhere dense classes and
bounded expansion classes admit such nice covering.

Precisely, for r ∈ N, an r-neighborhood cover X of a graph G is a set of connected
subgraphs of G called clusters, such that for every vertex v ∈ V (G) there is some
X ∈ X with Nr(v) ⊆ X. The radius rad(X ) of a cover X is the maximum radius
of its clusters. The degree dX (v) of v in X is the number of clusters that contain
v. The maximum degree ∆(X ) = maxv∈V (G) d

X (v). For a graph G and r ∈ N
we define τr(G) as the minimum maximum degree of an r-neighborhood cover of
radius at most 2r of G.

The following theorem is proved in [32].

Theorem 26. Let C be a class of graphs with bounded expansion. Then there is a
function f such that for all r ∈ N and all graphs G ∈ C , it holds τr(G) ≤ f(r).

In order to prove the converse statement, we shall need the following result of
Kühn and Osthus [41]:

Theorem 27. For every k there exists d = d(k) such that every graph of average
degree at least d contains a subgraph of average degree at least k whose girth is at
least six.
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We are now ready to turn Theorem 26 into a characterization theorem of classes
with bounded expansion.

Theorem 28. Let C be an infinite monotone class of graphs. Then C has bounded
expansion if and only if, for every integer r it holds

sup
G∈C

τr(G) <∞.

Proof. One direction follows from Theorem 26. For the other direction, assume
that the class C does not have bounded expansion. Then there exists an integer p
such that for every integer n, C contains the p-th subdivision of a graph Gn with
average degree at least n.

Let d ∈ N. According to Theorem 27, there exists N(d) such that every graph
with average degree at least N(d) contains a subgraph of girth 6 and average degree
at least d. We deduce that C contains the p-th subdivision H ′d of a graph Hd with
girth at least 6 and average degree at least d. As in the proof of Theorem 31, we
get

sup
G∈C

τp+1(G) ≥ sup
d
τp+1(H ′d) ≥ sup

d
τ1(Hd) ≥ sup

d

‖Hd‖
|Hd|

=∞.

�

Also, similar statements exist for nowhere dense classes:

Theorem 29. A hereditary class C is nowhere dense if there exists a function f
such that for every integer t and every ε > 0, every graph G ∈ C of order n ≥ f(t, ε)
has a covering C1, . . . , Ck of its vertex set such that

• each Ci induces a connected subgraph with tree-depth at most t;
• every vertex belongs to at most nε clusters;
• every connected subgraph of order at most t is included in at least one

cluster.

Proof. One direction directly follows from Theorem 23. For the reverse direction,
assume that C is not nowhere dense. Then there exists p such that for every n ∈ N,
the class C contains a graph Gn having the p-th subdivision of Kn as the spanning
subgraph. Assume that a covering exists for t = 3p + 3. Then every p-subdivided
triangle of Kn is included in some cluster. As the p-subdivided Kn includes

(
n
3

)
triangles, and as there are at most n1+ε clusters including some principal vertex of
the subdivided Kn (which is necessary to include some subdivided triangle), some
cluster C includes at least n2−ε triangles. It follows that the subgraph induced
by C has a minor H of order at most n with at least n2−ε triangles. However,
as tree-depth is minor monotone, the graph H has tree-depth at most t hence is
t-degenerate thus cannot contain more than

(
t
2

)
n triangles. Whence we are led to

a contradiction if n >
(
t
2

) 1
1−ε . �

Theorem 30 ( [32]). Let C be a nowhere dense class of graphs. Then there is a
function f such that for all r ∈ N and ε > 0 and all graphs G ∈ C with n ≥ f(r, ε)
vertices, it holds τr(G) ≤ nε.

In other words, every infinite nowhere dense class of graphs C is such that

sup
r∈N

lim sup
G∈C

log τr(G)

log |G| = 0.

We shall deduce from this theorem the following characterization of nowhere
dense classes of graphs.
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Theorem 31. Let C be an infinite monotone class of graphs. Then

sup
r∈N

lim sup
G∈C

log τr(G)

log |G|

is either 0 if C is nowhere dense, at at least 1/3 if C is somewhere dense.

This theorem will directly follow from Theorem 30 and the following two lemmas.

Lemma 32. Let G be a graph of girth at least 5. Then it holds

τ1(G) ≥ ∇0(G),

where

∇0(G) = max
H⊆G

‖H‖
|H| .

Proof. Let X be a 1-neighborhood cover of radius at most 2 of G with maximum
degree τ1(G). Let X1, . . . , Xk be the clusters of X . For an edge e = {u, v}, let i ≤ k
be the minimum integer such that N1(u) or N1(v) is included in Xi. Let ci be a
center of Xi. Then e belongs to a path of length at most 2 with endpoint ci. We
orient e according to the orientation of this path away from ci. Note that by the
process, we orient every edge, and that every vertex v gets at most one incoming
edge by cluster that contains v. Hence we constructed an orientation of G with
maximum degree at most τ1(G). As the maximum indegree of an orientation of G
is at least ∇0(G), we get τ1(G) ≥ ∇0(G). �

We deduce the following

Lemma 33. Let C be a monotone somewhere dense class of graphs. Then

sup
r∈N

lim sup
G∈C

log τr(G)

log |G| ≥
1

3
.

Proof. A C is monotone and somewhere dense, there exists integer p ≥ 0 such that
for every n ∈ N, the p-th subdivision Subp(Kn) of Kn belongs to C. For n ∈ N, let

Hn be a graph of girth at least 5, with order |Hn| ∼ n and size ‖Hn‖ ∼ n3/2. If
p = 0, then according to Lemma 32 it holds

sup
r∈N

lim sup
G∈C

log τr(G)

log |G| ≥ lim sup
G∈C

log τ1(G)

log |G|

≥ lim
n→∞

log∇0(Hn)

log |Hn|

≥ lim
n→∞

log ‖Hn‖ − log |Hn|
log |Hn|

=
1

2
.

Thus assume p ≥ 1. Denote by H ′n the p-th subdivision of Hn, where we identify
V (Hn) with a subset of V (H ′n) for convenience. Then |Hn| ∼ pn3/2. Let X =
{X1, . . . , Xk} be a (p+1)-neighborhood cover of radius at most 2(p+1) of H ′n with
maximum degree τp+1(H ′n). Let ci be a center of cluster Xi, and let di be a vertex
of Hn at minimal distance of ci in H ′n. It is easily checked that there exists a cluster
X ′i with center di and radius 2(p+ 1) such that Xi ∩ V (Hn) = X ′i ∩ V (Hn). Define
Yi = X ′i∩V (Hn). As X is a (p+1)-neighborhood cover of radius at most 2(p+1) of
H ′n with maximum degree τ1(H ′n), the cover Y = {Yi} is a 1-neighborhood cover of
radius 2 of Hn with maximum degree τp+1(H ′n). Hence τ1(Hn) ≤ τp+1(H ′n). Thus
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it holds

sup
r∈N

lim sup
G∈C

log τr(G)

log |G| ≥ lim
n→∞

log τp+1(H ′n)

log |H ′n|

≥ lim
n→∞

log τ1(Hn)

log |H ′n|

≥ lim
n→∞

log ‖Hn‖ − log |Hn|
log |H ′n|

=
1

3
.

�

7. Algorithmic Applications of Low Tree-Depth Decomposition

Theorem 24 has the following algorithmic version.

Theorem 34 ([53]). There exist polynomials Pp (degPp ≈ 22p) and an algorithm
that computes, for input graph G and integer p, a low tree-depth decomposition of
G with parameter p using Np(G) colors in time O(Np(G) |G|), where

χp(G) ≤ Np(G) ≤ Pp(∇̃2p−2+1(G)).

It is not surprising that low tree-depth decompositions have immediately found
several algorithmic applications [46, 49].

As noticed in [8], the existence of an orientation of planar graphs with bounded
out-degree allows for a planar graph G (once such an orientation has been computed
for G) an easy O(1) adjacency test, and an enumeration of all the triangles of G in
linear time.

For a fixed pattern H, the problem is to check whether an input graph G has
an induced subgraph isomorphic to H is called the subgraph isomorphism problem.
This problem is known to have complexity at most O(nωl/3) where l is the order
of H and where ω is the exponent of square matrix fast multiplication algorithm
[55] (hence O(n0.792 l) using the fast matrix algorithm of [9]). The particular case
of subgraph isomorphism in planar graphs have been studied by Plehn and Voigt
[57], Alon [4] with super-linear bounds and then by Eppstein [20, 21] who gave the
first linear time algorithm for fixed pattern H and G planar. This was extended
to graphs with bounded genus in [22]. We further generalized this result to classes
with bounded expansion [49]:

Theorem 35. There is a function f and an algorithm such that for every input
graphs G and H, counts the number of occurrences of H is G in time

O
(
f(H) (N|H|(G))|H| |G|

)
,

where Np(G) is the number of colors computed by the algorithm in Theorem 34.
In particular, for every fixed bounded expansion class (resp. nowhere dense class)

C and every fixed pattern H, the number of occurrences of H in a graph G ∈ C can
be computed in linear time (resp. in time O(|G|1+ε) for any fixed ε > 0).

Theorem 35 can be extended from the subgraph isomorphism problem to first-
order model checking.

Theorem 36 ([17], see also [11]). Let C be a class of graphs with bounded expansion,
and let φ be a first-order sentence (on the natural language of graphs). There exists
a linear time algorithm that decides whether a graph G ∈ C satisfies φ.

The above theorem relies on low tree-depth decomposition. However, the next
result, due to Kazana and Segoufin, is based on the notion of transitive fraternal
augmentation, which was introduced in [48] to prove Theorem 24.
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Theorem 37 ([39]). Let C be a class of graphs with bounded expansion and let φ
be a first-order formula. Then, for all G ∈ C, we can compute the number |φ(G)|
of satisfying assignements for φ in G in in time O(|G|).

Moreover, the set φ(G) can be enumerated in lexicographic order in constant time
between consecutive outputs and linear time preprocessing time.

Eventually, the existence of efficient model checking algorithm has been extended
to nowhere dense classes by Grohe, Kreutzer, and Siebertz [32] using the notion of
r-neighborhood cover we already mentioned:

Theorem 38. For every nowhere dense class C and every ε > 0, every property of
graphs definable in first-order logic can be decided in time O(n1+ε) on C.

However, it is still open whether a counting version of Theorem 38 (in the spirit
of Theorem 37) holds.

8. Low Tree-Depth Decomposition and Logarithmic Density of
Patterns

We have seen in the Section 7 that low tree-depth decomposition allows an easy
counting of patterns. It appears that they also allow to prove some “extremal”
results. A typical problem studied in extremal graph theory is to determine the
maximum number of edges ex(n,H) a graph on n vertices can contain without
containing a subgraph isomorphic to H. For non-bipartite graph H, the seminal
result of Erdős and Stone [24] gives a tight bound:

Theorem 39.

ex(n,H) =

(
1− 1

χ(H)− 1

)(
n

2

)
+ o(n2).

In the case of bipartite graphs, less is known. Let us mention the following result
of Alon, Krivelevich and Sudakov [1]

Theorem 40. Let H be a bipartite graph with maximum degree r on one side.

ex(n,H) = O(n2− 1
r ).

The special case where H is a subdivision of a complete graph will be of prime

interest in the study of nowhere dense classes. Precisely, denoting ex(n,K
(≤p)
t ) the

maximum number of edges a graph on n vertices can contain without containing
a subdivision of Kt in which every edge is subdivided at most p times, Jiang [38]
proved the following bound:

Theorem 41. For every integers k, p it holds

ex(n,K
(≤p)
k ) = O(n1+ 10

p ).

From this theorem follows that if a class C is such that lim supG∈C Õ t
log ‖G‖
log |G| >

1 + ε then C Õ 10t
ε contains graphs with unbounded clique number. This property is

a main ingredient in the proof of the following classification “trichotomy” theorem.

Theorem 42 ([52]). Let C be an infinite class of graphs. Then

sup
t

lim sup
G∈C Õ t

log ‖G‖
log |G| ∈ {−∞, 0, 1, 2}.

Moreover, C is nowhere dense if and only if sup
t

lim sup
G∈C Õ t

log ‖G‖
log |G| ≤ 1.
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Note that the property that the logarithmic density of edges is integral needs to
consider all the classes C Õ t. For instance, the class D of graphs with no C4 has
a bounding logarithmic edge density of 3/2, which jumps to 2 when on considers
D Õ 1.

Using low tree-depth decomposition, it is possible to extend Theorem 42 to other
pattern graphs:

Theorem 43 ([51]). For every infinite class of graphs C and every graph F

lim
i→∞

lim sup
G∈C Õ i

log(#F ⊆ G)

log |G| ∈ {−∞, 0, 1, . . . , α(F ), |F |},

where α(F ) is the stability number of F .
Moreover, if F has at least one edge, then C is nowhere dense if and only if

lim
i→∞

lim sup
G∈C Õ i

log(#F⊆G)
log |G| ≤ α(F ).

The main ingredient in the proof of this theorem is the analysis of local con-
figurations, called (k, F )-sunflowers (see Fig. 6). Precisely, for graphs F and G, a
(k, F )-sunflower in G is a (k + 1)-tuple (C,F1, . . . ,Fk), such that C ⊆ V (G),Fi ⊆
P(V (G)), the sets in {C}∪⋃i Fi are pairwise disjoints and there exists a partition
(K,Y1, . . . , Yk) of V (F ) so that

• ∀i 6= j, ω(Yi, Yj) = ∅,
• G[C] ≈ F [K],
• ∀Xi ∈ Fi, G[Xi] ≈ F [Yi],
• ∀(X1, . . . , Xk) ∈ F1×· · ·×Fk, the subgraph ofG induced by C∪X1∪· · ·∪Xk

is isomorphic to F .

G F

Y1

Yk

Y2

KC

ℱ1

ℱ2

ℱk

Xk

X2

X1

Figure 6. A (3,Petersen)-sunflower

The following stepping up lemma gives some indication on how low tree-depth
decomposition is related to the proof of Theorem 43:

Lemma 44 ([51]). There exists a function τ such that for every integers p, k, every
graph F of order p, every 0 < ε < 1, the following property holds:
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Every graph G such that (#F ⊆ G) > |G|k+ε contains a (k + 1, F )-sunflower
(C,F1, . . . ,Fk+1) with

min
i
|Fi| ≥

 |G|(
χp(G)
p

)1/ε
τ(ε,p)

In particular, G contains a subgraph G′ such that

|G′| ≥ (k + 1)

 |G|(
χp(G)
p

)1/ε
τ(ε,p)

and (#F ⊆ G′) ≥
( |G′| − |F |

k + 1

)k+1

.
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[45] J. Nešetřil and P. Ossona de Mendez, Colorings and homomorphisms of minor
closed classes, The Goodman-Pollack Festschrift (B. Aronov, S. Basu, J. Pach,
and M. Sharir, eds.), Algorithms and Combinatorics, vol. 25, Discrete & Com-
putational Geometry, 2003, pp. 651–664.

[46] , Linear time low tree-width partitions and algorithmic consequences,
STOC’06. Proceedings of the 38th Annual ACM Symposium on Theory of
Computing, ACM Press, 2006, pp. 391–400.

[47] , Tree depth, subgraph coloring and homomorphism bounds, European
Journal of Combinatorics 27 (2006), no. 6, 1022–1041.

[48] , Grad and classes with bounded expansion I. decompositions, European
Journal of Combinatorics 29 (2008), no. 3, 760–776.

[49] , Grad and classes with bounded expansion II. algorithmic aspects, Eu-
ropean Journal of Combinatorics 29 (2008), no. 3, 777–791.

[50] , Grad and classes with bounded expansion III. restricted graph ho-
momorphism dualities, European Journal of Combinatorics 29 (2008), no. 4,
1012–1024.

[51] , How many F’s are there in G?, European Journal of Combinatorics
32 (2011), no. 7, 1126–1141.

[52] , On nowhere dense graphs, European Journal of Combinatorics 32
(2011), no. 4, 600–617.

[53] , Sparsity (graphs, structures, and algorithms), Algorithms and Com-
binatorics, vol. 28, Springer, 2012, 465 pages.

[54] , On first-order definable colorings, Geometry, Structure and Random-
ness in Combinatorics (J. Matousek and M. Pellegrini, eds.), Publications of
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