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CHROMATIC POLYNOMIALS OF SIMPLICIAL COMPLEXES

JESPER M. MØLLER AND GESCHE NORD

Abstract. In this note we consider s-chromatic polynomials of finite simplicial complexes. The s-chromatic poly-
nomials of simplicial complexes are higher dimensional analogues of chromatic polynomials for graphs.

1. Introduction

Let K be a finite simplicial complex with vertex set V (K) 6= ∅ and let r ≥ 1 and s ≥ 1 be two natural numbers.
A map col : V (K) → {1, 2, . . . , r} is an (r, s)-coloring of K if there are no monochrome s-simplices in K [5]. We
write χs(K, r) for the number of (r, s)-colorings of K.

Definition 1.1. The s-chromatic polynomial of K is the function χs(K, r) of r. The s-chromatic number of K,
chrs(K), is the minimal r ≥ 1 with χs(K, r) > 0.

The theorem below shows that χs(K, r) is indeed polynomial in r for fixed K and s. (By notational convention,
[r]i = r(r − 1) · · · (r − i+ 1) is the ith falling factorial in r.)

Theorem 1.2. The s-chromatic polynomial of K is

χs(K, r) =

|V (K)|∑

i=chrs(K)

S(K, i, s)[r]i

where S(K, i, s) is the number of partitions of V (K) into i blocks containing no s-simplex of K.

For s = 1, an (r, 1)-coloring of K is a usual graph coloring, χ1(K, r) is the usual chromatic polynomial, and
chr1(K) the usual chromatic number of the 1-skeleton of K. In general, χs(K, r) depends only on the s-skeleton of
K. Although the higher s-chromatic polynomials for simplicial complexes are analogues of 1-chromatic polynomials
for graphs we shall shortly see that there are structural differences between the cases s = and s > 1.

Figure 1 shows a triangulation MB of the Möbius band. To the left is a (5, 1)- and to the right a (2, 2)-coloring
of MB. The chromatic polynomials and chromatic numbers 1 of MB are

χs(MB, r) =





r5 − 10r4 + 35r3 − 50r2 + 24r s = 1

r5 − 5r3 + 5r2 − r s = 2

r5 s ≥ 3

chrs(MB) =





5 s = 1

2 s = 2

1 s ≥ 3

4 5 1

1 2 3 4

>

>

4 5 1

1 2 3 4

>

>

Figure 1. A (5, 1)-coloring and a (2, 2)-coloring of a 5-vertex triangulated Möbius band MB
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1.1. Notation. We shall use the following notation throughout the paper:

K: a finite simplicial complex
Ks: the s-skeleton of K
F s(K): the set of s-simplices K
#V or |V |: the number of elements in the finite set V
V (K): the vertex set

⋃
K of K and m(K) = |V (K) is the number of vertices in K

D[V ]: the complete simplicial complex of all subsets of the finite set V
[m]: the finite set {1, . . . ,m} of cardinality m
[r]i: the ithe falling factorial polynomial [r]i = i!

(
r
i

)
in r

P (a, b): the open interval (a, b) in the poset P

2. Three ways to the s-chromatic polynomial of a simplicial complex

In this section we present three different to approaches to the s-chromatic polynomial χs(K, r):

• Theorem 2.5 via 1-chromatic polynomials of graphs;
• Theorem 2.25 via the Möbius function for the s-chromatic lattice;
• Theorem 1.2 via the simplicial s-Stirling numbers of the second kind.

2.1. Block-connected s-independent vertex partitions. Let s ≥ 1 be a natural number.

Definition 2.1. Let B ⊂ V (K) be a set of vertices of K. Then

• B is s-independent if B contains no s-simplex of K;
• B is connected if K ∩D[B] is a connected simplicial complex;
• the connected components of B are the maximal connected subsets of B.

Definition 2.2. Let P be a partition of V (K).

• The graph G0(P ) of P is the simple graph whose vertices are the blocks of P and with two blocks connected
by and edge if their union is connected;

• The block-connected refinement P0 of P is the refinement whose blocks are the connected components of the
blocks of P ;

• P is block-connected if the blocks of P are connected (ie if P = P0).

Lemma 2.3. Let P be a partition of V (K). If two different blocks of the block-connected refinement P0 are connected
by an edge in the graph G0(P0) of P then they lie in different blocks of P .

Proof. The connected components of the blocks of P are maximal with respect to connectedness. �

Definition 2.4. BCPs(K) is the set of all block-connected s-independent partitions of V (K).

Recall that χ1(G0(P ), r) is the 1-chromatic polynomial of the simple graph G0(P ) of the partition P .

Theorem 2.5. The s-chromatic polynomial for K is the sum

χs(K, r) =
∑

P∈BCPs(K)

χ1(G0(P ), r)

of the 1-chromatic polynomials and the s-chromatic number of K is the minimum

chrs(K) = min
P∈BCPs(K)

chr1(G0(P ))

of the 1-chromatic numbers for the graphs of all the block-connected s-independent partitions of V (K).

Proof. Let col : V (K) → [r] be an (r, s)-coloring of K. The monochrome partition P (col) of V (K) is the s-
independent partition whose blocks are the nonempty monochrome sets of vertices {col = i} for i ∈ [r]. The
block-connected refinement P (col)0 of the monochrome partition is a block-connected s-independent partition of
K. The original coloring col of K is also a coloring of the graph G0(P (col)0) of P (col)0 for, by Lemma 2.3, distinct
vertices of 1-simplices of this graph have distinct colors. We have shown that any (r, s)-coloring col of K induces
an (r, 1)-coloring col0 of the graph G0(P (col)0) of the block-connected refinement of the monochrome partition.

Let P ∈ BCPs(K) be a block-connected s-independent partition of V (K) and col0 : P → {1, . . . , r} an (r, 1)-
coloring of its graph G0(P ). Then col0 determines a map col : V (K) → [r] that is constant on the blocks of P . An
s-simplex of K can not be monochrome under col as it intersects at least two different blocks of P connected by an
edge of G0(P ). Thus col is an (r, s)-coloring of K.

These two constructions are inverses of each other. �
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Remark 2.6 (The minimal block-connected s-independent partition). Let C0 = {{v} | v ∈ V (K)} be the block-
connected s-independent partition of V (K) whose blocks are singletons. The graph G0(C0) = K1 is the 1-skeleton
of K. Thus the 1-chromatic polynomial of the 1-skeleton of K is always one of the polynomials in the sum of
Theorem 2.5. If K is 1-dimensional, BCP1(K) consists only of the partition C0 and Theorem 2.5 simply says that
the 1-chromatic polynomial of a simplicial complex is the 1-chromatic polynomial of its 1-skeleton.

Example 2.7 (The block-connected 2-independent partitions for D[3]). The 2-simplex D[3] has 4 block-connected
2-independent partitions C0, {{1}, {2, 3}}, {{2}, {1, 3}}, and {{3}, {1, 3}}. The graph of C0 is the complete graph
K3, the 1-skeleton of D[3]. The graphs of the other three partitions are all the complete graph K2. Thus the
2-chromatic polynomial of D[3] is χ2(D[3], r) = χ1(K3, r) + 3χ1(K2, r) = [r]3 + 3[r]2 = [r]2(r +1) = r3 − r and the

2-chromatic number is chr2(D[3]) = 2.

Example 2.8 (A (2, 2)-coloring and the graph of the block-connected refinement of its monochrome partition).
The picture below illustrates a (2, 2)-coloring of a 9-vertex triangulation of the torus

1 2 3 1

5
8 9

5

4
6 7

4

1 2 3 1

2 3 4 5 6 9

1

7 8

and its corresponding graph. There are 6937 block-connected partitions of the vertex set, and 3 of them has the graph
shown above. The 2-chromatic polynomial is 21[r]2+742[r]3+3747[r]4+4908[r]5+2295[r]6+444[r]7+36[r]8+[r]9 =
[r]2(r

7 + r6 − 17r5 + 10r4 + 82r3 − 116r2 − 23r + 67) and the 2-chromatic number is 2.

Example 2.9 (The (r, 2)-colorings of a simplicial complex K). Let K be the pure 2-dimensional complex with
facets F 2(K) = {{1, 2, 3}, {2, 3, 4}, {4, 5, 6}}.

1

2

3

4

5

6

The picture shows a (2, 2)-coloring of K and the corresponding (2, 1)-coloring of the associated graph, G0(P0), the
block connected refinement of the monochrome partition P = {{1, 2, 5, 6}, {3, 4}}. Table 1 shows the graphs G0(P )
for all block connected partitions P ∈ BCP2(K). For each graph, the table records its 1-chromatic polynomial and
its 1-chromatic number. The 2-chromatic polynomial of K is χ2(K, 2) = 15[r]2 + 73[r]3 + 62[r]4 + 15[r]5 + [r]6 =

[r]2(r − 1)(r + 1)(r2 + r − 1) and the 2-chromatic number is chr2(K) = 2.

Example 2.10 (The (r, 2)-colorings of the Möbius band). The set BCP2(MB) of block-connected 2-independent
partitions of the triangulated Möbius band MB (Figure 1) has 36 elements. There are 5, 5, 15, 10, 1 partitions in
BCP2(MB) realizing the partitions [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1] of the integer |V (MB)| = 5. All
associated graphs are complete graphs. This yields the 2-chromatic polynomial χ2(MB, r) = 5[r]2+20[r]3+10[r]4+

[r]5 = [r]2(r
3 + r2 − 4r + 1) = r5 − 5r3 + 5r2 − r and the 2-chromatic number is chr2(MB) = 2.

Remark 2.11 (The S-chromatic polynomial of K). Let S be a set of connected subcomplexes of K. A set

B ⊂ V (K) of vertices is S-independent if B is not a superset of any member of S. Let BCPS(K) be the set of
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# in BCP2(K) G0(P ) χ1(G0(P ), r) chr1(G0(P ))

1 r(r − 1)2(r − 2)3 3

1 r(r − 1)3(r − 2) 3

3 r(r − 1)2(r − 2)2 3

4 r(r − 1)2(r − 2)2 3

16 r(r − 1)2(r − 2) 3

3 r(r − 1)3 2
12 r(r − 1)2 2

Table 1. The graphs for the block-connected partitions in BCP2(K)

S-independent partitions of V (K). An (r,S)-coloring is a map V (K) → {1, . . . , r} such that #col(S) > 1 for all
S ∈ S. The number of (r,S)-colorings of K is

χS(K, r) =
∑

P∈BCPS(K)

χ1(G0(P ), r)

as one sees by an obvious generalization of Theorem 2.5. An (r, s)-coloring of K is an (r,S)-coloring of K where
S = F s(K) is the set of s-simplices.

2.2. The s-chromatic linear program. Read [9, §10] explains how to construct a linear program with minimal
value equal to the s-chromatic number chrs(K) of K.maximal?

Definition 2.12. M s(K) is the set of all maximal s-independent subsets of V (K).

Let A be the (m(K)× |M s(K)|)-matrix

A(v,M) =

{
1 v ∈ M

0 v 6∈ M

recording which vertices v ∈ V (K) belong to which maximal s-independent sets M ∈ M s(K). Now the s-chromatic
number

chrs(K) = min{
∑

M∈Ms(K)

x(M) | x : M s(K) → {0, 1}, ∀v ∈ V (K) :
∑

M∈Ms(K)

A(v,M)x(M) ≥ 1}

is the minimal value of the objective function
∑

M∈Ms(K) x(M) in |M s(K)| variables x : M s(K) → {0, 1}, taking

values 0 or 1, and m(K) constraints
∑

M∈Ms(K) A(v,M)x(M) ≥ 1, v ∈ V (K).

2.3. The s-chromatic lattice. Our approach here simply follows Rota’s classical method for computing chromatic
polynomials from Möbius functions of lattices [10, §9]. We need some terminology in order to characterize the
monochrome loci for colorings of K. Recall that F s(K) is the set of s-simplices of K.

Definition 2.13. Let S ⊂ F s(K) be a set of s-simplices of K.

• The equivalence relation ∼ is the smallest equivalence relation in S such that s1 ∩ s2 6= ∅ =⇒ s1 ∼ s2 for
all s1, s2 ∈ S;

• the connected components of S are the equivalence classes under ∼;
• π0(S) is the set of connected components of S;
• S is connected if it has at most one component;
• V (S) =

⋃
S is the vertex set of S

• π(S) is the partition of V (K) whose blocks are the vertex sets of the connected components of S together
with the singleton blocks {v}, v ∈ V (K)− V (S), of vertices not in any simplex in S;
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• S is closed if S contains any s-simplex in K contained in the vertex set of S, ie if

{σ ∈ F s(K) | σ ⊂ V (S)} = S

• the closure of S is the smallest closed set of s-simplices containing S.

For instance, the empty set S = ∅ of 0 s-simplices is connected with 0 connected components. If K = D[4], the
set {{1, 2}, {2, 4}} of 1-simplices is connected while {{1, 2}, {3, 4}} has the two components {{1, 2}} and {{3, 4}}.

A set of s-simplices is closed if and only if it equals its closure. For instance in F 2(D[5]), the set {{1, 2, 3}, {3, 4, 5}}
is not closed because its closure is the set of all 2-simplices in D[5]. The empty set of s-simplices, any set of just
one s-simplex, and any set of disjoint s-simplices are closed.

In this picture the green set of 2-simplices is

connected and not closed, closed and not connected, closed and connected, respectively.
The partition π(S) has |π(S)| = |π0(S)|+m(K)− |V (S)| blocks.

Lemma 2.14. Let S be a set of s-simplices in K and S0 a connected component of S. Then S0 is closed if and
only if

{σ ∈ F s(K) | σ ⊂ V (S0)} ⊂ S

Proof. Since the condition is certainly necessary we only need to see that it is sufficient. Let σ be an s-simplex in K
with all its vertices in V (S0). Then σ lies in S by assumption. But σ is equivalent to all elements of the equivalence
class S0. Thus σ ∈ S0. �

Lemma 2.15. Let S and T be sets of s-simplices in K.

(1) If S and T are closed, so is S ∩ T .
(2) If S and T have closed connected components, so does S ∩ T

Proof. (1) Let σ be an s-simplex of K and suppose that σ ⊂ V (S ∩T ). Then σ ⊂ V (S) an σ ⊂ V (T ) so that σ ∈ S
and σ ∈ T as S and T are closed.
(2) Let R be a connected component of S ∩ T . Let S0 be the connected component of S containing R and T0 be
the connected component of T containing R. Then R ⊂ S0 ∩ T0. Suppose that σ ∈ F s(K) is an s-simplex with
σ ⊂ V (R). Then σ ⊂ V (S0 ∩ T0) so σ ∈ S0 ∩ T0 by (1) as the connected components S0 and T0 are assumed to be
closed. In particular, σ ∈ S ∩ T . According to Lemma 2.14, the connected component R is closed. �

Definition 2.16. The s-chromatic lattice of K is the set Ls(K) of all subsets of F s(K) with closed connected
components. Ls(K) is a partially ordered by set inclusion.

The set Ls(K) contains the empty set ∅ of s-simplices and the set F s(K) of all s-simplices. These two elements
of Ls(K) are distinct when K has dimension at least s.

Corollary 2.17. Ls(K) is a finite lattice with 0̂ = ∅, 1̂ = F s(K), and meet S ∧ T = S ∩ T .

Proof. If S, T ∈ Ls(K) then S ∩ T is also in Ls(K) by Lemma 2.15 and this is clearly the greatest lower bound
of S and T . It is now a standard result that Ls(K) is a finite lattice [12, Proposition 3.3.1]. The join S ∨ T of
S, T ∈ Ls(K) is the intersection of all supersets U ∈ Ls(K) of S ∪ T . �

Example 2.18 (The s-chromatic lattice Ls(D[m])). The closed and connected elements of the s-chromatic lattice
Ls(D[m]) of the complete simplex D[m] on m > s vertices are ∅ and the

(
m
k

)
sets F s(D[k]) of all s-simplices in

the subcomplexes D[k] for s < k ≤ m. The map S → π(S) is an isomorphism between the lattice Ls(D[m]) and
the lattice, ordered by refinement, of all partitions of the set [m] into blocks of size > s or 1. The least element,

0̂ = (1) · · · (m), is the partition with m blocks and the greatest element, 1̂ = (1 · · ·m), the partition with 1 block.
Ls(D[m]) is not a graded lattice [12, p 99] in general when s ≥ 2. To see this, observe that the 2-chromatic lattices
L2(D[3]), L2(D[4]), and L2(D[4]) are graded but the lattice L2(D[6]) is not graded as it contains two maximal
chains

0̂ = (1)(2)(3)(4)(5)(6) < (123)(4)(5)(6) < (1234)(5)(6) < (12345)(6) < (123456) = 1̂

0̂ = (1)(2)(3)(4)(5)(6) < (123)(4)(5)(6) < (123)(456) < (123456) = 1̂
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of unequal length. In contrast, the 1-chromatic lattice of any finite simplicial complex is always graded and even
geometric [10, §9, Lemma 1].

Remark 2.19 (The Möbius function for the s-chromatic lattices Ls(D[m])). Our discussion of the Möbius function
for the lattice Ls(D[m]) echoes the exposition of the Möbius function for the geometric lattice L1(D[m]) of all
partitions from [12, Example 3.10.4].

Let w : [m] → N be a function that to every element of [m] associates a natural number, thought of as a weight
function. We write w = 1i12i2 · · · rir , or something similar, for the weight function w defined on the set [m] of
cardinality m =

∑
j ij and mapping ij elements to j for 1 ≤ j ≤ r. The map w extends to a map, also called w,

defined on the set of all nonempty subsets X of [m] given by w(X) =
∑

x∈X w(x). Let Ls
m(w) be the lattice of all

partitions of the set [m] into blocks X that are singletons or have weight w(X) > s. The non-singleton blocks of
the meet σ ∧ τ of two partitions σ, τ ∈ Ls

m(w) are the subsets of weight > s of the form S ∩ T where S is a block
in σ and T a block in τ . Write µs

m(w) for the Möbius function of Ls
m(w).

In particular, Ls
m(1m) is a synonym for Ls(D[m]) and we are primarily interested in the Möbius function µs

m(1m)
of the uniform weight w = 1m. However, the computation of this Möbius function will involve the Möbius functions
of other weights as well. We shall therefore discuss the Möbius functions µs

m(w) for general weight functions w.

Suppose that σ ∈ Ls
m(w), σ < 1̂, is a partition of [m] into singleton blocks or blocks of weight > s. Let w(σ) be

the restriction of w to the set of blocks of σ. Thus w(σ)(X) =
∑

x∈X w(x) for any block X of σ. Then the interval

Ls
m(w) ⊃ [σ, 1̂] = Ls

|σ|(w(σ))

so that µs
m(w)(σ, 1̂) = µs

|σ|(w(σ))(0̂, 1̂). More generally, suppose that σ < τ for some τ ∈ Ls
m(w). Assume that the

partition τ has blocks τj . Let σj be the set of those blocks of σ that intersect the block τj of τ . Let w(σj) be the
restriction of w(σ) to σj . Then the interval

Ls
m(w) ⊃ [σ, τ ] =

∏

j

Ls
|σj |

(w(σj))

and therefore the value of the Möbius function on the pair (σ, τ)

µs
m(w)(σ, τ) =

∏

j

µs
|σj |

(w(σj))(0̂, 1̂)

by the product theorem for Möbius functions [12, Proposition 3.8.2]. We conclude that the complete Möbius

functions on all the lattices Ls
m(w), are actually determined by the values µs

m(w)(0̂, 1̂) of these Möbius functions

on just (0̂, 1̂). See Equation (2.36) for more information about these Euler characteristics.
For the following it is convenient to name the elements of the domain [m] of w so that the element m carries

minimal weight. Assume that am = (1 · · ·m − 1)(m) is an element of Ls
m(w), ie that w(1) + · · · + w(m − 1) > s.

We shall determine the set of lattice elements x with x ∧ am = 0̂. There is only one solution to this equation with
x ≤ am and that is x = 0̂. As the other solutions satisfy x � am, they must have a block that contains m and at

least one other element. It follows that the solutions x 6= 0̂ are all elements of the form

x = (x1 · · ·xtm)(·) · · · (·) with

{
w(x1) > s− w(m) t = 1

s ≥ w(x1) + · · ·+ w(xt) > s− w(m) t > 1

where all blocks but the unique block containing m are singletons. There are t+1 elements in the block containing
m where t is some number in the range 1 ≤ t ≤ s. (All the solutions x 6= 0̂ are atoms in the lattice Ls

m(w).) Since
we are in a lattice, the Möbius function satisfies the equation [12, Corollary 3.9.3]

µs
m(w)(0̂, 1̂) = −

∑

x∧am=0̂
x 6=0̂

µs
m(w)(x, 1̂)

which translates to

(2.20) µs
m(w)(0̂, 1̂) = −

∑

x∧am=0̂
x 6=0̂

µs
|x|(w(x))(0̂, 1̂) =

−
∑

1≤x1≤m−1
w(x1)>s−w(m)

µs
m−1(w(x1m)w(·) · · ·w(·))(0̂, 1̂)−

∑

1<t≤s

∑

1≤x1,...,xt≤m−1
s≥w(x1)+···+w(xt)>s−w(m)

µs
m−t(w(x1 · · ·xtm))w(·) · · ·w(·))(0̂, 1̂)

This describes a recursive procedure for computing all values of the Möbius function on the weight lattices Ls
m(w).
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As an illustration we compute µ2
6(1

6)(0̂, 1̂). Using (2.20) twice gives

µ2
6(1

6)(0̂, 1̂) = −10µ2
4(3111)(0̂, 1̂) = 10(µ2

3(411)(0̂, 1̂) + µ2
2(33)(0̂, 1̂))

The lattices L2
4(411) and L2

2(33) have 4 and 2 elements, respectively, and they look like

L2
3(411):

µ(0̂, ·) = 1

µ(0̂, ·) = −1

µ(0̂, ·) = 1

µ(0̂, ·) = 1 L2
2(33):

µ(0̂, ·) = 1

µ(0̂, ·) = −1

so that µ2
3(411)(0̂, 1̂) = 1 and µ2

2(33)(0̂, 1̂) = −1. Therefore µ2
6(1

6)(0̂, 1̂) = 0.

We remind the reader of the well-known fact that µs
m(w)(0̂, 1̂) is the reduced Euler characteristic of the open

interval Ls
m(w)(0̂, 1̂) between 0̂ and 1̂ in the lattice Ls

m(w).

Proposition 2.21. [10, §6] [12, Proposition 3.8.5] Let x < y be two elements in a finite poset. The value of the
Möbius function on the pair (x, y) is the reduced Euler characteristic of the open interval (x, y).

Proof. Write µ be the Möbius function of P and E for Euler characteristic. The closed interval from x to y has
Euler characteristic 1 since it has a smallest element. Thus

1 = E([x, y]) =
∑

a,b∈[x,y]

µ(a, b) =
∑

a,b∈(x,y)

µ(a, b) +
∑

a∈[x,y]

µ(a, y) +
∑

b∈[x,y]

µ(x, b)− µ(x, y)

= E((x, y)) + 0 + 0− µ(x, y) = E((x, y))− µ(x, y)

or µ(x, y) = Ẽ((x, y)). �

For 1 ≤ s ≤ m+ 1 let B(m, s) be the graded poset of nonempty subsets of [m] of cardinality less than s.

Lemma 2.22. The reduced Euler characteristic of B(m, s) is

Ẽ(B(m, s)) = (−1)s
(
m− 1

s− 1

)
, 1 ≤ s ≤ m+ 1

Proof. It is rather easy to get the recurrence relation

E(B(m, 2)) = m

E(B(m, s)) = E(B(m, s− 1)) +

(
m

s− 1

) s−1∑

j=1

(−1)s−1−j

(
s− 1

j

)
, 2 < s < 2 +m

Since the sum of binomial coefficients has value (−1)s, we get the recurrence relation

Ẽ(B(m, 2)) = m− 1

Ẽ(B(m, s)) = Ẽ(B(m, s− 1)) + (−1)s
(

m

s− 1

)
, 2 < s < 2 +m

for the reduced Euler characteristic. The claim of the lemma follows immediately. �

Example 2.23 (Reduced Euler characteristics of the s-chromatic lattice intervals Ls
m(w)(0̂, 1̂)). The reduced Euler

characteristics µs
m(1m)(0̂, 1̂) = Ẽ(Ls

m(1m)(0̂, 1̂)), m ≥ s+ 2, for s = 1, 2, . . . , 8 are

2,−6, 24,−120, 720,−5040, 40320,−362880, 3628800,−39916800, 479001600,−6227020800, 87178291200, . . .

3,−6, 0, 90,−630, 2520, 0,−113400, 1247400,−7484400, 0, 681080400,−10216206000, 81729648000, . . .

4,−10, 20,−70, 560,−4200, 25200,−138600, 924000,−8408400, 84084000,−798798000, 7399392000, . . .

5,−15, 35,−70, 0, 2100,−23100, 173250,−1051050, 5255250,−15765750,−105105000, 2858856000, . . .

6,−21, 56,−126, 252,−924, 11088,−126126, 1093092,−7693686, 46414368,−254438184, 1492322832, . . .

7,−28, 84,−210, 462,−924, 0, 42042,−630630, 6390384,−51459408, 351639288,−2118412296, 11406835440 . . .

8,−36, 120,−330, 792,−1716, 3432,−12870, 205920,−3150576, 35706528,−322583976, 2460949920 . . .

9,−45, 165,−495, 1287,−3003, 6435,−12870, 0, 787644,−14965236, 191222460,−1920538620 . . .
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The first sequence, µ1
m(1m)(0̂, 1̂), m ≥ 2, is the sequence (−1)m−1(m − 1)! of reduced Euler characteristics of the

lattice of partitions of [m] [12, Example 3.10.4]. The second sequence, µ2
m(1m)(0̂, 1̂), m ≥ 3, seems to coincide with

first terms of the sequence A009014 from The On-Line Encyclopedia of Integer Sequences (OES). The remaining 6
sequences apparently do not match any sequences of the OES.

The first s terms of these sequences are signed binomial coefficients. This is because the interval (0̂, 1̂) in
Ls(D[m]) is isomorphic to the opposite of the poset B(m,m− s) when s+2 ≤ m ≤ 2s+1. Thus the reduced Euler
characteristic

µs
m(1m)(0̂, 1̂) = Ẽ(B(m,m− s)) = (−1)m−s

(
m− 1

s

)
, s+ 2 ≤ m ≤ 2s+ 1,

according to Lemma 2.22.
The first terms of the sequence µ2

m(311m−1)(0̂, 1̂), m ≥ 3, of reduced Euler characteristics of the weighted lattice

intervals L2
m(311m−1)(0̂, 1̂),

1, 0,−6, 30,−90, 0, 2520,−22680, 113400, 0,−7484400, 97297200,−681080400, 0, 81729648000,−1389404016000, . . .

seem to coincide up to sign with first terms of the sequence A009775 from OES. The sequence of reduced Euler
characteristics µ2

m(321m−2)(0̂, 1̂), m ≥ 3, of the lattice interval L2
m(321m−2)(0̂, 1̂),

2,−4, 6, 6,−120, 720,−2520,−2520, 136080,−1360800, 7484400, 7484400,

− 778377600, 10897286400,−81729648000,−81729648000, 13894040160000, . . .

apparently does not match any sequence in the OES.

Define the s-monochrome set of a map col : V (K) → [r] = {1, . . . , r} to be the set

M s(col) = {σ ∈ F s(K) | |col(σ)| = 1}

of all monochrome s-simplices in K. The map col is an (r, s)-coloring of K if and only if M s(col) = ∅.

Lemma 2.24. The s-monochrome set M s(col) of any map col : V (K) → [r] is an element of the s-chromatic lattice
Ls(K).

Proof. Let S be a connected component of M s(col). Since S is connected, all vertices in S have the same color.
Let σ ∈ F s(K) be an s-simplex of K such that σ ⊂ V (S). The σ is monochrome: σ ∈ M s(col). By Lemma 2.14, S
is closed. �

Theorem 2.25. The number of (r, s)-colorings of K is

χs(K, r) =
∑

T∈Ls(K)

µ(0̂, T )r|π(T )|

where µ the Möbius function for the s-chromatic lattice Ls(K).

Proof. For any B ∈ Ls(K), let χ(K, r, s, B) be the number of maps col : V (K) → [r] with M s(col) = B. We want
to determine χ(K, r, s, ∅) = χr(s,K). For any A ∈ Ls(K),

r|π(A)| =
∑

A≤B

χ(K, r, s, B)

because there are r|π0(A)|rm(K)−|V (A)| = r|π(A)| maps col : V (K) → [r] with A ≤ M s(col). Equivalently,
∑

A≤B

µ(A,B)r|π(B)| = χ(K, r, s, A)

by Möbius inversion [12, Proposition 3.7.1]. The statement of the theorem is the particular case of this formula

where A = 0̂. �

The defining rules for the Möbius function of the poset Ls(K) [12, 3.7]

• µ(S, S) = 1 for all S ∈ Ls(K)
•
∑

R≤S≤T µ(R,S) = 0 when R � T

• µ(R,S) = 0 when R � S

imply that µ(0̂, 0̂) = 1 and µ(0̂, {σ}) = −1 for every s-simplex σ ∈ F s(K).

Corollary 2.26. The highest degree terms of the s-chromatic polynomial are

χs(K, r) = rm(K) − fs(K)rm(K)−s + · · ·

Thus the s-chromatic polynomial determines f0(K) and fs(K).

http://oeis.org/A009014
http://oeis.org/A009775
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Proof. The s-chromatic polynomial is

χs(K, r) = µ(0̂, 0̂)rf0(K) +
∑

σ∈F s(K)

µ(0̂, {σ})rf0(K)−s + · · ·

where µ(0̂, 0̂) = 1 and µ(0̂, {σ}) = −1 for all s-simplices σ of K. �

Example 2.27. Consider the 2-dimensional complex K from Example 2.9. The 2-chromatic lattice L2(K) of K

•

{1, 2, 3}
•

{4, 5, 6}
•

{2, 3, 4}

•

{1, 2, 3}
{4, 5, 6}

•

{1, 2, 3}
{2, 3, 4}

•

{2, 3, 4}
{4, 5, 6}

•

0̂

•

1̂

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

❄❄❄❄❄❄❄❄❄❄❄❄❄❄

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄❄

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄

µ(S) = +1 |π(S)| = 6

µ(S) = −1 |π(S)| = 4, 4, 4

µ(S) = +1 |π(S)| = 2, 3, 2

µ(S) = −1 |π(S)| = 1

consists of all subsets of F 2(K). The 2-chromatic polynomial is

χ2(K, r) = r6 − r4 − r4 − r4 + r2 + r3 + r2 − r = r6 − 3r4 + r3 + 2r2 − r

K has χ2(K, 2) = 30 (2, 2)-colorings and χ2(K, 3) = 528 (3, 2)-colorings.

Example 2.28. The triangulation MB of the Möbius band with f -vector f(MB) = (5, 10, 5) shown in Figure 1 has

the following (reduced) 2-chromatic lattice L2(MB)− {0̂, 1̂}

•

{1, 3, 5}
•

{2, 3, 5}
•

{1, 3, 4}
•

{2, 4, 5}
•

{1, 2, 4}

•

{1, 3, 5}
{2, 3, 5}

•

{1, 3, 5}
{1, 3, 4}

•

{2, 4, 5}
{2, 3, 5}

•

{1, 2, 4}
{1, 3, 4}

•

{2, 4, 5}
{1, 2, 4}

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

❄❄❄❄❄❄❄❄❄❄❄❄❄❄

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

❄❄❄❄❄❄❄❄❄❄❄❄❄❄

⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧⑧

❄❄❄❄❄❄❄❄❄❄❄❄❄❄

❄❄❄❄❄❄❄❄❄❄❄❄❄❄
µ = −1 |π(S)| = 3, 3, 3, 3, 3

µ = +1 |π(S)| = 2, 2, 2, 2, 2

and 2-chromatic polynomial

χ2(MB, r) = r5 − 5r3 + 5r2 − r

The lattice L2(MB) is graded but it is still not semi-modular [12, Proposition 3.3.2]: The meet and join of a =

{{2, 3, 5}} and b = {{1, 3, 4}} are a∧ b = 0̂ and a∨ b = 1̂. Thus a and b cover a∧ b but a∨ b covers neither a nor b.

Example 2.29. Let MT be Möbius’s minimal triangulation of the torus with f -vector f(MT) = (7, 21, 14) and
P2 the triangulation of the projective plane with f -vector f(P2) = (1, 6, 15, 10) shown in Figure 2 (decorated with
(3, 2)-colorings). The chromatic polynomials of these two simplicial complexes are

χ1(MT, r) = [r]7, χ2(MT, r) = r7 − 14r5 + 21r4 + 7r3 − 21r2 + 6r

χ1(P2, r) = [r]6, χ2(P2, r) = r6 − 10r4 + 15r3 − 6r2

In both cases, the 1-skeleton is the complete graph on the vertex set. The chromatic numbers are chr1(MT) = 7,
chr1(P2) = 6, and chr2(MT) = 3 = chr2(P2).

The chromatic polynomials of simple graphs (the 1-chromatic polynomials of simplicial complexes) are known to
have these properties:

• The coefficients are sign-alternating [10, §7, Corollary]
• The coefficients are log-concave (Definition 2.43) in absolute value [7]
• There are no negative roots and no roots between 0 and 1 [14]
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1

23

1

2 3

4

5

6

1 4 7 3

3

2

1 4 7 3

2

1
5

6

Figure 2. (3, 2)-colorings of P2 and MT

In contrast, the coefficients of the 2-chromatic polynomial

χ2(MT, r) = r7 − 14r5 + 21r4 + 7r3 − 21r2 + 6r = [r]3(r + 1)(r3 + 2r2 − 9r + 3)

are not sign-alternating, not log-concave in absolute value, and the polynomial has a negative root and a root
between 0 and 1.

2.4. The s-chromatic polynomial in falling factorial form. Theorem 1.2 provides an interpretation of the
coefficients of the falling factorial [r]i in the s-chromatic polynomial of the simplicial complex K.

Definition 2.30. S(K, r, s) is the number of partitions of V (K) into r s-independent blocks.

We think of S(K, r, s) as an s-Stirling number of the second kind for the simplicial complex K. If s > dim(K),
then there are no s-simplices in K and all partitions of V (K) are s-independent, so that S(K, r, s) is the Stirling
number of the second kind S(m(K), r) [12, p 33]. We now explain the general relation between these simplicial
Stirling numbers S(K, r, s) and the usual Stirling numbers of the second kind.

Define the s-monochrome set of a partition P of V (K) to be the set

M s(P ) = {σ ∈ F s(K) | σ is contained in a block of P}

of all s-simplices entirely contained in one of the blocks of P . The set M s(P ) is an element of the s-chromatic
lattice Ls(K) by Lemma 2.24.

Theorem 2.31. The number of partitions of V (K) into r s-independent blocks is

S(K, r, s) =
∑

T∈Ls(K)

µ(0̂, T )S(|π(T )|, r)

where µ the Möbius function for the s-chromatic lattice Ls(K).

Proof. For any B ∈ Ls(K), let S(K, r, s, B) be the number of partitions P of V (K) into r blocks with monochrome
set M s(P ) = B. We want to determine S(K, r, s, ∅) = S(K, r, s). For any A ∈ Ls(K),

S(|π(A)|, r) =
∑

A≤B

S(K, r, s, B)

because there are S(|π(A)|, r) partitions P of V (K) into r blocks with A ≤ M s(P ). Equivalently,
∑

A≤B

µ(A,B)S(|π(B)|, r) = S(K, r, s, A)

by Möbius inversion [12, Proposition 3.7.1]. The statement of the theorem is the particular case of this formula

where A = 0̂. �

Proof of Theorem 1.2. We simply follow the proof of the similar statement for chromatic polynomials for graphs
[9, Theorem 15]. When r ≥ i we can get an (r, s)-coloring out of one of the S(K, i, s) partitions of V (K) into i
s-independent blocks by choosing i out of the r colors and assigning them to the i blocks. There are

(
r
i

)
ways of
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choosing the i out of r colors and i! ways of coloring i blocks in i colors. The number of (r, s)-colorings of K in
exactly i colors is thus

S(K, i, s)

(
r

i

)
i! = S(K, i, s)[r]i

so that

χs(K, r) =

m(K)∑

i=1

S(K, i, s)[r]i

is the total number of (r, s)-colorings of K. �

Corollary 2.32. The reduced Euler characteristic of the open interval (0̂, 1̂) in s-chromatic lattice Ls(K) is

µ(Ls(K))(0̂, 1̂) =

m(K)∑

i=chrs(K)

(−1)i−1(i− 1)!S(K, i, s)

Proof. Equate the terms of degree 1 of the two expressions

(2.33)
∑

T∈Ls(K)

µ(0̂, T )r|π(T )| =

m(K)∑

i=chrs(K)

S(K, i, s)[r]i

from Theorem 2.25 and Theorem 1.2 for the s-chromatic polynomial of K. �

We observe that
∑

i

S(K, i, s)[r]i =
∑

i

∑

T

µ(0̂, T )S(|π(T )|, i)[r]i =
∑

T

µ(0̂, T )
∑

i

S(|π(T )|, i)[r]i =
∑

T

µ(0̂, T )r|π(T )|

so that Theorem 2.31 implies Theorem 1.2.
The s-chromatic number of K is immediately visible with the s-chromatic polynomial in factorial form because

chrs(K) = min{i | S(K, i, s) 6= 0}

is the lowest degree of the nonzero terms. The positive integer sequence

χs(K, chrs(K)), . . . , χs(K,m(K)) = 1

has no internal zeros. (If there is a partition of V (K) into r blocks not containing any s-simplex of K and r < m(K),
then split one of the blocks with more than one vertex into two sub-blocks to get a partition of V (K) into r + 1
blocks containing no s-simplices of K.)

The simplicial Stirling numbers satisfy the recurrence relations

S(K, r, s) =
∑

∅(U⊆V (K)−{v0}
V (K) − U s-independent

S(K ∩D[U ], r − 1, s), S(K, 1, s) =

{
1 s > dim(K) ≥ 0

0 otherwise

To see this, fix a vertex v0 of K. Let P be partition of V (K) into r s-independent subsets. Let U0 be the block
containing v0. The other blocks in P form a partition P0 of K ∩D[V (K) − U0] into r − 1 s-independent subsets.
The map P ↔ (P0, U0) is a bijection.

The familiar recurrence relation S(m, r) = S(m− 1, r− 1)+ rS(m− 1, r) for Stirling numbers of the second kind
does not readily apply to simplicial Stirling numbers. The closest analogue may be

S(K, r, s) = S(K ∩D[V (K)− {v0}], r − 1, s) +
∑

P∈S(K∩D[V (K)−{v0}],r,s)

|{B ∈ P | B ∪ {v0} is s-independent in K}|

where v0 is a vertex of K and S(K∩D[V (K)−{v0}, r, s) is the set of partitions P of the vertex set of K∩D[V (K)−
{v0} into r s-independent subsets.

Proposition 2.34. Let K be a subcomplex of L and assume that V (K) = V (L).

(1) S(K, r, s) ≥ S(L, r, s) for all r.
(2) If S(K, r, s) = S(L, r, s) for some r with 1

s (|V | − 1) ≤ r ≤ |V | − s, then Ks = Ls.
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(
0 1

) (
0 0 1
0 3 1

)



0 0 0 1
0 3 6 1
0 7 6 1







0 0 0 0 1
0 0 15 10 1
0 10 25 10 1
0 15 25 10 1







0 0 0 0 0 1
0 0 15 45 15 1
0 10 75 65 15 1
0 25 90 65 15 1
0 31 90 65 15 1







0 0 0 0 0 0 1
0 0 0 105 105 21 1
0 0 175 315 140 21 1
0 35 280 350 140 21 1
0 56 301 350 140 21 1
0 63 301 350 140 21 1




Table 2. Chromatic tables for complete simplices D[m] for m = 2, . . . , 7

Proof. (1) Let V be the vertex set of K and L. Write S(K, r, s) and S(L, r, s) for the set of partitions of V
into r blocks containing no s-simplex of K or L, respectively. Then S(L, r, s) ⊆ S(K, r, s) for all r and s. Thus
S(L, r, s) ≤ S(K, r, s).
(2) Suppose that σ ∈ F s(L)−F s(K) is an s-simplex of L that is not an s-simplex of K. Any partition of the form

{σ} ∪ τ, τ ∈ S(D[V − σ], r − 1, s),

in S(K, r, s) − S(L, r, s). The set S(D[V − σ], r − 1, s) is nonempty when

chrs(D[V − σ]) =

⌈
|V | − s− 1

s

⌉
≤ r − 1 ≤ |V | − s− 1

and thus S(K, r, s) is strictly greater than S(L, r, s) when |V |−1
s ≤ r ≤ |V | − s. �

Remark 2.35 (S(K, r, s) for the complete simplex K = D[m]). For any finite set M , let S(M, r, s) stand for
S(D[M ], r, s) (Definition 2.30), the number of partitions of the set M into r blocks containing at most s elements.
Let us even write S(m, r, s) in case M = [m], m ≥ 1, r, s ≥ 0. Clearly, S(m, r, s) is nonzero only when m/s ≤ r ≤ m.
Also, S(m, r, s) = S(m, r) when r is among the s numbers m− s+ 1, . . . ,m. The recurrence relation

S(m, r, s) =
m−1∑

j=m−s

(
m− 1

j

)
S(j, r − 1, s)

can be used to compute these numbers. Table 2 shows S(m, r, s) for small m; the number S(m, r, s) is in row s and
column r in the chromatic table (Definition 2.39) for D[m]. All the red numbers are usual Stirling numbers of the
second kind.

According to Theorem 1.2, the numbers S(m, r, s) determine the s-chromatic polynomial in falling factorial form
of the complete simplex on m vertices

χs(D[m], r) =

m∑

i=⌈m/s⌉

S(m, i, s)[r]i

and, according to Corollary 2.32, they also determine the reduced Euler characteristic

µs
m(1m)(0̂, 1̂) =

m∑

i=⌈m/s⌉

(−1)i−1(i − 1)!S(m, i, s)

of the s-chromatic lattice Ls(D[m]).
More generally, if w : M → N is a function on M with natural numbers as values, let S(M,w, r, s) be the number

of partitions of M into admissible blocks, where we declare a block admissible if it is a singleton or it has weight
at most s. (Then S(m, r, s) = S([m], 1m, r, s) occur when M = [m] and w = 1m places weight 1 on all elements.)
Any such partition is a partition of M into blocks of weight at most s, and therefore S(M,w, r, s) ≤ S(#M, r, s).
In particular, S(M,w, r, s) is nonzero only when #M/s ≤ r ≤ #M . The recurrence relation

S(M,w, r, s) =
∑

∅6=J⊂M−{max(M)}
M − J admissible

S(J,w|J, r − 1, s)

provides a means to compute these numbers.
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The weighted version of Equation (2.33) for K = D[m],

∑

σ∈Ls
m(w)

µs
m(w)(0̂, σ)r|σ| =

m∑

i=⌈m/s⌉

S([m], w, i, s)[r]i

implies, by equating coefficients of first degree terms, the expression

(2.36) µs
m(w)(0̂, 1̂) =

m∑

i=⌈m/s⌉

(−1)i−1(i− 1)!S([m], w, i, s)

for the Euler characteristic of the weighted lattice Ls
m(w) from Remark 2.19.

Because any simplicial complex K is a subcomplex of the complete simplex D[m(K)] on its vertex set, we have

(2.37) S(m(K), r) ≥ S(K, r, s) ≥ S(m(K), r, s), 1 ≤ r ≤ m(K)

Moreover, these inequalities are equalities for the s highest values m(K)− s+ 1, . . . ,m(K) of r. Thus the s terms
of highest falling factorial degree in the s-chromatic polynomial of K

χs(K, r) =

m(K)−s∑

i=0

S(K, i, s)[r]i +

m(K)∑

i=m(K)−s+1

S(m(K), i)[r]i

are given by the s Stirling numbers S(m(K),m(K)−s+1), . . . , S(m(K),m(K)) of the second kind. These coefficients
depend only on the size of the vertex set of K. We shall next show that the coefficient number s+ 1 counted from
above, S(K,m(K)− s, s), informs about the number fs(K) of s-simplices in K.

Proposition 2.38. S(K,m(K)−s, s) = S(m(K),m(K)−s)−fs(K). If S(K,m(K)−s, s) = S(m(K),m(K)−s, s)
then Ks = D[m(K)]s.

Proof. The only partitions of the S(m,m− s) partitions of V (K) into m− s blocks that are not s-independent are
those consisting of one s-simplex of K together with singleton blocks. If S(K,m(K)− s, s) = S(D[m(K)],m(K)−
s, s) then fs(K) = fs(D[m(K)]) so Ks = D[m(K)]s. (This is a special case of Proposition 2.34.(2).) �

Definition 2.39. The chromatic table, χ(K), of K is the (dim(K) × m(K))-table with S(K, r, s) in row s and
column r.

This means that row s in the chromatic table lists the coefficients of the s-chromatic polynomial. The chromatic
table of a 3-dimensional simplicial complex K, for instance, looks like this

r = 1 r = 2 · · · r = m− 3 r = m− 2 r = m− 1 r = m
S(K, ·, 1) S(K, 1, 1) S(K, 2, 1) · · · S(K,m− 3, 1) S(K,m− 2, 1) S(m,m− 1)− f1 S(m,m) = 1
S(K, ·, 2) S(K, 1, 2) S(K, 2, 2) · · · S(K,m− 3, 2) S(m,m− 2)− f2 S(m,m− 1) S(m,m) = 1
S(K, ·, 3) S(K, 1, 3) S(K, 2, 3) · · · S(m,m− 3)− f3 S(m,m− 2) S(m,m− 1) S(m,m) = 1

where the red entries in row s are Stirling numbers of the second kind S(m, r) for m− s+1 ≤ r ≤ m, and the blue
entry in row s is S(m(K),m(K)− s)− fs(K).

Example 2.40. The chromatic tables of the 2-dimensional simplicial complexes from Examples 2.9, 2.28, and 2.29
are

χ(K) =

(
0 0 2 10 7 1
0 15 73 62 15 1

)
χ(MB) =

(
0 0 0 0 1
0 5 20 10 1

)

χ(MT) =

(
0 0 0 0 0 0 1
0 0 84 231 126 21 1

)
χ(P2) =

(
0 0 0 0 0 1
0 0 45 55 15 1

)

The red entries in column r are Stirling numbers S(m, r) and they are independent of the row index. The blue entry
in row s and column m−s, which equals S(m−s, s)−fs(K), detects if K has maximal s-skeleton by Proposition 3.

Example 2.41. Let K = AS3 be Altshuler’s peculiar triangulation of the 3-sphere with f -vector f = (10, 45, 70, 35)
[1]. The 1-chromatic polynomial is χ1(AS3, r) = [r]10 as K1 is the complete graph on 10 vertices. The chromatic
table is

χ(AS3) =



0 0 0 0 0 0 0 0 0 1
0 0 0 1360 8475 10355 4200 680 45 1
0 26 4320 25915 38550 22152 5845 750 45 1




The blue numbers determine the f -vector

f(AS3) = (10, S(10, 9)− χ(AS3)19, S(10, 8)− χ(AS3)28, S(10, 7)− χ(AS3)37)
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Figure 3. The simplicial Stirling numbers for S3
17,74

The row numbers of the first nonzero term in each row tell us that chr1(AS3) = 10, chr2(AS3) = 4, and chr3(AS3) =
2.

Example 2.42. The nonconstructible, nonshellable 3-sphere S3
17,74, f = (17, 91, 148, 74), found by Lutz [8], has

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8 r = 9
s = 1 0 0 0 0 0 0 0 88 3089
s = 2 0 0 36 702475 82949364 1075420155 3827766587 5493687086 3876597169
s = 3 0 422 4319865 338438489 3903094622 14292381565 22946854806 19158310796 9202775199

r = 10 r = 11 r = 12 r = 13 r = 14 r = 15 r = 16 r = 17
s = 1 23017 55285 54973 25941 6210 762 45 1
s = 2 1507939074 346346664 48855523 4302470 235026 7672 136 1
s = 3 2708454744 507528561 61784524 4903589 249826 7820 136 1

as its chromatic table. Figure 3 shows a semi-logarithmic plot of the simplicial Stirling numbers S(S3
17,74, r, s). The

triangulation Σ3
16, f = (16, 106, 180, 90), of the Poincaré homology 3-sphere constructed by Björner and Lutz [2,

Theorem 5] has

r = 1 r = 2 r = 3 r = 4 r = 5 r = 6 r = 7 r = 8
s = 1 0 0 0 0 0 0 0 0
s = 2 0 0 0 4589 2974411 69671411 300475213 442354547
s = 3 0 3 845561 70005500 701299653 2158716508 2888730959 2000811501

r = 9 r = 10 r = 11 r = 12 r = 13 r = 14 r = 15 r = 16
s = 1 0 0 0 0 28 44 14 1
s = 2 292864435 100793551 19546606 2225261 150095 5840 120 1
s = 3 792553648 190527025 28730056 2750278 165530 6020 120 1

as its chromatic table.

Observe that all the above chromatic tables have strictly log-concave rows.

Definition 2.43. [11] A finite sequence a1, a2, . . . , aN of N ≥ 3 nonnegative integers is strictly log-concave if
ai−1ai+1 < a2i for 1 < i < N (and log-concave if ai−1ai+1 ≤ a2i ).
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It has been conjectured that the sequence of coefficients of the 1-chromatic polynomial of a simple graph in
falling factorial form, r → S(K, 1, r), chr1(K) ≤ r ≤ m(K), is log-concave [4, Conjecture 3.11]. More generally, one
may ask

Question 2.44. Is the finite sequence of simplicial Stirling numbers

r → S(K, r, s), chrs(K) ≤ r ≤ m(K),

log-concave for fixed K and s?

This seems to be the right question to ask as it may be true for all the chromatic polynomials of a simplicial
complex and we have seen that the absolute value of the coefficients of the s-chromatic polynomial are simply not
log-concave for s > 1.

Note that the Stirling numbers of the second kind, which are upper bounds for the simplicial Stirling numbers
S(K, r, s) by the inequalities (2.37), are log-concave in r [11, Corollary 2].

We shall now examine Question 2.44 on two spherical boundary complexes of cyclic n-polytopes.

Definition 2.45. ∂CP(m,n), m > n, is the (n− 1)-dimensional simplicial complex on the ordered set [m] with the
following facets: An n-subset σ of [m] is a facet if and only if between any two elements of [m]− σ there is an even
number of vertices in σ.

By Gale’s Evenness Theorem [6], the simplicial complex ∂CP(m,n) triangulates the boundary of the cyclic n-
polytope on m vertices. Thus ∂CP(m,n) is a simplicial (n− 1)-sphere on m vertices and it is ⌊n/2⌋-neighborly in
the sense that ∂CP(m,n) has the same s-skeleton as the full simplex on its vertex set when s < ⌊n/2⌋.

Example 2.46 (Cyclic polytopes with log-concave simplicial Stirling numbers of the second kind). Let ∂CP(m,n)
be the triangulated boundary of the cyclic polytope on m vertices in Rn. The simplicial complex ∂CP(m,n) is an
m-vertex triangulation of Sn−1. The chromatic tables of the simplicial 3-spheres ∂CP(m, 4) on m = 6, 7, 8, 9, 10
vertices are


0 0 0 0 0 1
0 1 21 47 15 1
0 16 81 65 15 1






0 0 0 0 0 0 1
0 0 28 147 112 21 1
0 21 238 336 140 21 1






0 0 0 0 0 0 0 1
0 1 50 393 582 226 28 1
0 29 654 1533 1030 266 28 1






0 0 0 0 0 0 0 0 1
0 0 94 1062 2523 1719 408 36 1
0 36 1729 6471 6591 2619 462 36 1






0 0 0 0 0 0 0 0 0 1
0 1 180 2980 10200 10777 4225 680 45 1
0 46 4445 25960 38550 22152 5845 750 45 1




All rows are strictly log-concave. As ∂CP(m, 4)1 = D[m]1, the 1-chromatic number chr1(∂CP(m, 4)) = m, and it

is not difficult to see that the 2-chromatic number chr2(∂CP(m, 4)) is 2 if m is even and 3 if m is odd [5].

Right multiplication with the upper triangular matrix ([j]i)1≤i,j≤m(K) with [j]i =
(
j
i

)
i! = j!

(i−j)! in row i and

column j transforms, by Theorem 1.2, the chromatic table into the (dim(K)×m(K))-matrix

χ(K)([j]i)1≤i,j≤m(K) = (χs(K, i))1≤s≤dim(K)
1≤i≤m(K)

with the m(K) values χs(K, i), 1 ≤ i ≤ m(K), of the s-chromatic polynomial in row s. This matrix of chromatic
polynomial values appears also to have log-concave rows.

3. Chromatic uniqueness

In this section we briefly discuss to what extent simplicial complexes are determined by their chromatic polyno-
mials. Proposition shows that the chromatic table of a simplicial complex determines its f -vector.

Definition 3.1. K is chromatically unique if it is determined up to isomorphism by its chromatic table.

In Lemma 3.2 below, K ∐ L is the disjoint union and K ∨ L the one-point union of K and L. The proof is
identical to the one for the similar statements about chromatic polynomials for simple graphs.

Lemma 3.2. If K and L are finite simplicial complexes then

χs(K ∐ L, r) = χs(K, r)χs(L, r), χs(K ∨ L, r) =
χs(K, r)χs(L, r)

r

for all r and all s ≥ 0.

The two nonisomorphic simplicial complexes
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are not chromatically unique as they have identical chromatic tables
(
0 0 2 10 7 1
0 15 73 62 15 1

)

by Lemma 3.2. (These two complexes are, however, PL-isomorphic.)
On the other hand, Proposition 2.34.(2) immediately implies that the s-skeleton of a full simplex is chromatically

unique (in a very strong sense).

Proposition 3.3. If K has the same s-chromatic polynomial as a full simplex D[N ], then K and D[N ] have
isomorphic s-skeleta.

Proof. IfK and D[N ] have the same s-chromatic polynomial for some s ≥ 1, then K has N vertices (Corollary 2.26),
and, since χs(K,N − s) = χs(D[N ], N − s), the s-skeleton of K is isomorphic to the s-skeleton of the full simplex
on N vertices (Proposition 2.34.(2)). �
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