On star-wheel Ramsey numbers

Binlong Li*

Ingo Schiermeyer[†]

Department of Applied Mathematics Northwestern Polytechnical University Xi'an, Shaanxi 710072, P.R. China European Centre of Excellence NTIS University of West Bohemia 306 14 Pilsen, Czech Republic; libinlong@mail.nwpu.edu.cn Institut für Diskrete Mathematik und Algebra Technische Universität Bergakademie Freiberg 09596 Freiberg, Germany Ingo.Schiermeyer@tu-freiberg.de

November 26, 2014

Abstract

For two given graphs G_1 and G_2 , the Ramsey number $R(G_1, G_2)$ is the least integer r such that for every graph G on r vertices, either G contains a G_1 or \overline{G} contains a G_2 . In this note, we determined the Ramsey number $R(K_{1,n}, W_m)$ for even m with $n+2 \leq m \leq 2n-2$, where W_m is the wheel on m+1 vertices, i.e., the graph obtained from a cycle C_m by adding a vertex v adjacent to all vertices of the C_m .

Keywords: Ramsey number; star; wheel

AMS Subject Classification: 05C55, 05D10

1 Introduction

Throughout this paper, all graphs are finite and simple. For a pair of graphs G_1 and G_2 , the Ramsey number $R(G_1, G_2)$, is defined as the smallest integer r such that for every graph G on r vertices, either G contains a G_1 or \overline{G} contains a G_2 , where \overline{G} is the complement of G. Note that $R(G_1, G_2) = R(G_2, G_1)$. We denote by P_n $(n \ge 1)$ and C_n $(n \ge 3)$ the path and cycle on n vertices, respectively. The bipartite graph $K_{1,n}$ $(n \ge 2)$

^{*}The work is supported by NSFC (No. 11271300), the Doctorate Foundation of Northwestern Polytechnical University (No. cx201202) and the project NEXLIZ - CZ.1.07/2.3.00/30.0038, which is co-financed by the European Social Fund and the state budget of the Czech Republic.

[†]Research was partly supported by the DAAD-PPP project "Rainbow connection and cycles in graphs" with project-id 56268242.

is called a *star*. The *wheel* W_n $(n \ge 3)$ is the graph obtained by joining a vertex and a cycle C_n .

In this note we consider the Ramsey numbers for stars versus wheels. There are many results on this area. Hasmawati [4] determined the Ramsey number $R(K_{1,n}, W_m)$ for $m \ge 2n$.

Theorem 1 (Hasmawati [4]). If $n \ge 2$ and $m \ge 2n$, then

$$R(K_{1,n}, W_m) = \begin{cases} n+m-1, & \text{if both } n \text{ and } m \text{ are even;} \\ n+m, & \text{otherwise.} \end{cases}$$

So from now on we consider the case that $m \leq 2n - 1$. For odd m, Chen et al. [2] showed that if $m \leq n + 2$, then $R(K_{1,n}, W_m) = 3n + 1$. Hasmawati et al. [5] proved that the values remain the same even if $m \leq 2n - 1$.

Theorem 2 (Hasmawati et al. [5]). If $3 \le m \le 2n - 1$ and m is odd, then

$$R(K_{1,n}, W_m) = 3n + 1.$$

So it is remains the case when $m \leq 2n - 2$ and m is even. Surahmat and Baskoro [7] determined the Ramsey numbers of stars versus W_4 .

Theorem 3 (Surahmat and Baskoro [7]). If $n \ge 2$, then

$$R(K_{1,n}, W_4) = \begin{cases} 2n+1, & \text{if } n \text{ is even;} \\ 2n+3, & \text{if } n \text{ is odd.} \end{cases}$$

Chen et al. [2] established $R(K_{1,n}, W_6)$, and Zhang et al. [8, 9] established $R(K_{1,n}, W_8)$.

In this note we first give a lower bound on $R(K_{1,n}, W_m)$ for even $m \leq 2n - 2$. One can check that when m = 6, 8, the lower bound on $R(K_{1,n}, W_m)$ in Theorem 4 is the exact value, see [2, 9, 8].

Theorem 4. If $6 \le m \le 2n-2$ and m is even, then

$$R(K_{1,n}, W_m) \ge \begin{cases} 2n + m/2 - 1, & \text{if both } n \text{ and } m/2 \text{ are even}, \\ 2n + m/2, & \text{otherwise.} \end{cases}$$

Moreover, we establish the exact values when $n + 2 \le m \le 2n - 2$. We will show that the lower bound in Theorem 4 is the exact value if $m \ge n + 2$.

Theorem 5. If $n + 2 \le m \le 2n - 2$ and m is even, then

$$R(K_{1,n}, W_m) = \begin{cases} 2n + m/2 - 1, & \text{if both } n \text{ and } m/2 \text{ are even}; \\ 2n + m/2, & \text{otherwise.} \end{cases}$$

2 Preliminaries

We denote by $\nu(G)$ the order of G, by $\delta(G)$ the minimum degree of G, c(G) the circumference of G, and g(G) the girth of G, respectively. The graph G is said to be *pancyclic* if G contains cycles of every length between 3 and $\nu(G)$, and *weakly pancyclic* if G contains cycles of every length between g(G) and c(G).

We will use the following results.

Theorem 6 (Dirac [3]). Every 2-connected graph G has circumference $c(G) \ge \min\{2\delta(G), \nu(G)\}$.

Theorem 7 (Brandt et al. [1]). Every non-bipartite graph G with $\delta(G) \ge (\nu(G) + 2)/3$ is weakly pancyclic and has girth 3 or 4.

Theorem 8 (Jackson [6]). Let G be a bipartite graph with partition sets X and Y, $2 \le |X| \le |Y|$. If for every vertex $x \in X$, $d(x) \ge \max\{|X|, |Y|/2 + 1\}$, then G has a cycle containing all vertices in X, (i.e., of length 2|X|).

A graph G is said to be *k*-regular if every vertex of G has degree k.

Lemma 1. Let k and n be two integers with $n \ge k+1$ and k or n is even. Then there is a k-regular graph of order n each component of which is of order at most 2k + 1.

Proof. We first assume that $k + 1 \leq n \leq 2k + 1$. If k is even, then let G be the graph with vertex set $\{v_1, v_2, \ldots, v_n\}$ and every vertex v_i is adjacent to the k vertices in $\{v_{i\pm 1}, v_{i\pm 2}, \ldots, v_{i\pm k/2}\}$, where the subscripts are taken modulo n. Then G is a k-regular graph of order n. If k is odd, then n is even and n - 1 - k is even. Similarly as above we can get a (n - 1 - k)-regular graph H of order n. Then $G = \overline{H}$ is a k-regular graph of order n. Since $n \leq 2k + 1$, every component of G has order at most 2k + 1.

Now we assume that $n \ge 2k + 2$.

If k is even, then let

$$n = q(2k+1) + r, \ 0 \le r \le 2k.$$

Note that $q \ge 1$. If r = 0, then the union of q copies of a k-regular graph of order 2k + 1 is a required graph. If $k + 1 \le r \le 2k$, then the union of q copies of a k-regular graph of order 2k + 1 and one copy of a k-regular graph of order r is a required graph. Now we assume that $1 \le r \le k$. Note that $k + 1 \le k + r \le 2k$. Then the union of q - 1 copies of a k-regular graph of order 2k + 1, one copy of a k-regular graph of order k + 1, and one copy of a k-regular graph of order k + r, is a required graph.

If k is odd, then n is even. Let

$$n = 2qk + r, \ 0 \le r < 2k.$$

Clearly r is even. If r = 0 then the union of q copies of a k-regular graph of order 2k is a required graph. If $k + 1 \le r < 2k$, then the union of q copies of a k-regular graph of order 2k and one copy of a k-regular graph of order r is a required graph. Now we assume that $2 \le r \le k - 1$. Note that $k + 1 \le k + r - 1 \le 2k$. Then the union of q - 1 copies of a k-regular graph of order 2k, one copy of a k-regular graph of order k + 1, and one copy of a k-regular graph of order $k + r - 1 \le 2k$. Then the union of q - 1 copies of a k-regular graph of order k + r - 1, is a required graph.

3 Proof of Theorem 4

For convenience we define a constant θ such that $\theta = 1$ if both n and m/2 are even, and $\theta = 0$ otherwise. We will construct a graph G of order $2n + m/2 - \theta - 1$ such that G contains no $K_{1,n}$ and \overline{G} contains no W_m .

It is easy to check that m/2 - 1 or $n + m/2 - \theta - 1$ is even. By Lemma 1, Let H be an (m/2 - 1)-regular graph of order $n + m/2 - \theta - 1$ such that each component of which has order at most m - 1. Let $G = \overline{H} \cup K_n$. Then $\nu(G) = 2n + m/2 - \theta - 1$.

We first show that G contains no $K_{1,n}$. Clearly K_n contains no $K_{1,n}$. Note that every vertex in H has degree m/2-1, and then every vertex in \overline{H} has degree $\nu(H)-1-m/2+1 = n-\theta - 1$. Thus \overline{H} contains no $K_{1,n}$.

Second we show that \overline{G} contains no W_m . Suppose to contrary that \overline{G} contains a W_m . Let x be the hub of the W_m . If x is contained in K_n , then all vertices of the wheel other than x are in V(H). This implies that H has a cycle C_m . But every component of H has order less than m, a contradiction. So we assume that $x \in V(H)$. Note that x has m/2-1neighbors in H. At least m/2 + 1 vertices of the wheel are in the K_n . This implies that there are two vertices in the K_n such that they are adjacent in \overline{G} , a contradiction.

This implies that $R(K_{1,n}, W_m) \ge 2n + m/2 - \theta$.

4 Proof of Theorem 5

Note that by our assumption $n \ge 4$ and $m \ge 6$. We already showed $R(K_{1,n}, W_m) \ge 2n + m/2 - \theta$ in Theorem 4. Now we prove that $R(K_{1,n}, W_m) \le 2n + m/2 - \theta$. Let G be a graph of order

$$\nu(G) = 2n + m/2 - \theta.$$

Suppose that \overline{G} has no $K_{1,n}$, i.e.,

$$\delta(G) \ge n + m/2 - \theta. \tag{1}$$

We will prove that G has a W_m . We assume to the contrary that G contains no W_m . We choose such a G with minimum size.

Let u be a vertex of G with maximum degree. Set

$$H = G[N(u)]$$
 and $I = V(G) \setminus (\{u\} \cup N(u)).$

Note that $\nu(H) = d(u)$.

Claim 1. $d(u) \ge n + m/2$; and for every $v \in V(H)$, $d(v) = n + m/2 - \theta$.

Proof. If $\theta = 0$, then by (1), $d(u) \ge n + m/2$. If $\theta = 1$, then n and m/2 are both even. Thus $\nu(G) = 2n + m/2 - 1$ is odd. If every vertex of G has degree 2n + m/2 - 1, then G has an even order, a contradiction. This implies $d(u) \ge n + m/2$.

Let v be a vertex in H. Clearly $d(v) \ge \delta(G) \ge n + m/2 - \theta$. If $d(v) \ge n + m/2 - \theta + 1$, then $d(u) \ge d(v) \ge n + m/2 - \theta + 1$. Thus G' = G - uv has size less than G with $\delta(G') \ge n + m/2 - \theta$. Since G' is a subgraph of G, it contains no W_m , a contradiction. \Box

By Claim 1, we assume that

$$\nu(H) = n + m/2 + \tau, \text{ where } \tau \ge 0.$$
(2)

Claim 2. $\delta(H) \ge m/2 + \tau$.

Proof. Let v be an arbitrary vertex of H. By Claim 1, $d(v) = n + m/2 - \theta$. Note that $\nu(G - H) = (2n + m/2 - \theta) - (n + m/2 + \tau) = n - \theta - \tau$. Thus

$$d_H(v) \ge d(v) - \nu(G - H) = (n + m/2 - \theta) - (n - \theta - \tau) = m/2 + \tau.$$

Thus the claim holds.

Claim 3. *H* is separable.

Proof. By (2), $\nu(H) \ge m \ge 3$. Suppose to contrary that H is 2-connected. By Claim 2 and Theorem 6, $c(G) \ge m$. Also note that

$$3\delta(H) \ge 3m/2 + 3\tau \ge n + m/2 + 3\tau + 2 \ge \nu(H) + 2,$$

i.e., $\delta(H) \ge (\nu(H) + 2)/3$.

If H is non-bipartite, then by Theorem 3, H is weakly pancyclic and of girth 3 or 4. Thus H contains C_m . Note that u is adjacent to every vertex of the C_m , hence G contains a W_m , a contradiction.

If H is bipartite, say with partition sets X and Y, then $|X| \ge m/2 + \tau$ and

$$|Y| = \nu(H) - |X| \le (n + m/2 + \tau) - (m/2 + \tau) = n_{0}$$

since $\delta(H) \ge m/2 + \tau$. Let X' be a subset of X with |X'| = m/2. Note that for every vertex x of X',

$$d_Y(x) = d_H(x) \ge m/2 \ge n/2 + 1 \ge |Y|/2 + 1.$$

By Theorem 8, the subgraph of H induced by $X' \cup Y$ contains a C_m . Thus G contains a W_m , a contradiction.

If H is disconnected, then H has at least two components; if H is connected, then H has at least two end-blocks. Now let D be a component or an end-block of H such that $\nu(D)$ is as small as possible. We define a constant ε such that $\varepsilon = 1$ if D is an end-block of H, and $\varepsilon = 0$ otherwise. Thus

$$\nu(D) \le (\nu(H) + \varepsilon)/2. \tag{3}$$

If D is an end-block of H, then let z be the cut-vertex of H contained in D.

Claim 4. For every two vertices $v, w \in V(D)$ which are not cut-vertices of H, $|N_I(v) \cap N_I(w)| \ge m/2 - 1$.

Proof. Note that $d_I(v) = d(v) - 1 - d_H(v) \ge d(v) - \nu(D)$, and $d_I(w) \ge d(w) - \nu(D)$.

$$|N_I(v) \cap N_I(w)| \ge d_I(v) + d_I(w) - |I| \ge d(v) + d(w) - 2\nu(D) - |I|$$
$$\ge 2\delta(G) - (\nu(H) + \varepsilon) - |I| = 2\delta(G) - \nu(G) + 1 - \varepsilon$$
$$= 2(n + m/2 - \theta) - (2n + m/2 - \theta) + 1 - \varepsilon$$
$$= m/2 + 1 - \theta - \varepsilon \ge m/2 - 1.$$

Thus the claim holds.

Suppose that there is a vertex $v \in V(D)$ which is not a cut-vertex of H such that v has m/2 neighbors in V(D) each of which is not a cut-vertex of H. Then let X be the set of such m/2 neighbors of v and $Y = \{u\} \cup N_I(v)$. Let B be the bipartite subgraph of G with partition sets X and Y, and for any two vertices $x \in X$ and $y \in Y$, $xy \in E(B)$ if and only if $xy \in E(G)$.

Note that |X| = m/2. By Claim 4, every vertex of X has at least m/2 neighbors in Y. By Claims 1 and 2, $d(v) = n + m/2 - \theta$ and $d_H(v) \ge m/2 + \tau$. Thus $|Y| = d(v) - d_H(v) \le n - \theta - \tau$. Since $m \ge n + 2$, $m/2 \ge |Y|/2 + 1$. By Theorem 8, B contains a C_m . Note that v is adjacent to every vertex of the C_m , hence G has a W_m , a contradiction.

So we conclude that D is an end-block of H (i.e., $\varepsilon = 1$), and every vertex $v \in V(D) \setminus \{z\}$ has at most m/2 - 1 neighbors in $V(D) \setminus \{z\}$. By Claim 2, we can see that z is adjacent to every vertex in $V(D) \setminus \{z\}$ and every vertex in $V(D) \setminus \{z\}$ has degree in H exactly m/2and $\tau = 0$. Claim 5. Every vertex in $V(D) \setminus \{z\}$ is adjacent to every vertex in I.

Proof. Let v be a vertex in $V(D) \setminus \{z\}$. Since $d(v) = n + m/2 - \theta$ and $d_H(v) = m/2$. we have

$$d_I(v) = d(v) - 1 - d_H(v) = n - 1 - \theta$$

Also note that

$$|I| = \nu(G) - 1 - \nu(H) = (2n + m/2 - \theta) - 1 - (n + m/2) = n - 1 - \theta.$$

This implies that v is adjacent to every vertex in I.

Case 1. $N_I(z) \neq \emptyset$.

Note that $|I| = n - 1 - \theta \ge m/2 - 1$. Let $v \in V(D) \setminus \{z\}$ and $u_1, u_2, \ldots, u_{m/2-1}$ be m/2 - 1 vertices in I such that $zu_1 \in E(G)$, and let $v_1, v_2 \ldots, v_{m/2-1}$ be m/2 - 1 vertices in $N_D(v) \setminus \{z\}$. Then $uzu_1v_1u_2v_2 \cdots u_{m/2-1}v_{m/2-1}u$ is a C_m . Since v is adjacent to every vertex of the C_m , G contains a C_m , a contradiction.

Case 2. $N_I(z) = \emptyset$ and G[I] is not empty.

Let $v \in V(D) \setminus \{z\}$ and $u_1, u_2, \ldots, u_{m/2-1}$ be m/2 - 1 vertices in I such that $u_1u_2 \in E(G)$, and let $v_1, v_2 \ldots, v_{m/2-1}$ be m/2-1 vertices in $N_D(v) \setminus \{z\}$. Then $uzv_1u_1u_2v_2u_3v_3 \cdots u_{m/2-1}v_{m/2-1}u$ is a C_m . Since v is adjacent to every vertex of the C_m , G contains a C_m , a contradiction.

Case 3. $N_I(z) = \emptyset$ and G[I] is empty.

Let w be an arbitrary vertex in I. Note that w is nonadjacent to every vertex in $\{u, z\} \cup I$. Hence

$$d(w) \le \nu(G) - 2 - |I| = (2n + m/2 - \theta) - 2 - (n - 1 - \theta) = n + m/2 - 1.$$

Since $d(w) \ge \delta(G) = n + m/2 - \theta$, we can see that $\theta = 1$ and w is adjacent to every vertex of $V(H) \setminus \{z\}$. Moreover, every vertex in I is adjacent to every vertex in $V(H) \setminus \{z\}$.

Since $\theta = 1$, by Claim 1, d(u) = n + m/2 and d(z) = n + m/2 - 1. Thus there is a vertex $x \in V(H) \setminus \{z\}$ such that $xz \notin E(G)$. By Claim 2, let $v_1, v_2, \ldots, v_{m/2}$ be m/2 vertices in $N_H(x)$ and $u_1, u_2, \ldots, u_{m/2}$ be m/2 vertices in $\{u\} \cup I$. Then $u_1v_1u_2v_2\cdots u_{m/2}v_{m/2}u_1$ is a C_m . Since x is adjacent to every vertex of the C_m , G contains a W_m , a contradiction.

The proof is complete.

References

- S. Brandt, R.J. Faudree and W. Goddard, Weakly pancyclic graphs, J. Graph Theory 27 (1998) 141–176.
- [2] Y. Chen, Y. Zhang and K. Zhang, The Ramsey numbers of stars versus wheels, European J. Combin. 25 (2004) 1067–1075.
- [3] G.A. Dirac, Some theorems on abstract graphs, Proc. London. Math. Soc. 2 (1952) 69–81.
- [4] Hasmawati, Bilangan Ramsey untuk graf bintang terhadap graf roda, Tesis Magister, Departemen Matematika ITB, Indonesia, 2004.
- [5] Hasmawati, E.T. Baskoro, H. Assiyatun, Star-wheel Ramsey numbers, J. Combin. Math. Combin. Comput. 55 (2005), 123–128.
- [6] B. Jackson, Cycles in bipartite graphs, J. Comb. Theory, Ser. B 30 (3) (1981) 332–342.
- [7] Surahmat, E.T. Baskoro, On the Ramsey number of path or star versus W₄ or W₅,
 in: Proceedings of the 12th Australasian Workshop on Combinatorial Algorithms (Bandung, Indonesia, 2001) 174–179.
- [8] Y. Zhang, Y. Chen and K. Zhang, The Ramsey numbers for stars of even order versus a wheel of order nine, European J. Combin. 29 (2008) 1744–1754.
- [9] Y. Zhang, T.C.E Cheng and Y. Chen, The Ramsey numbers for stars of odd order versus a wheel of order nine, Discrete Math., Alg. and Appl. 1 (3) (2009) 413–436.