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Abstract

For two given graphsG1 and G2, the Ramsey number R(G1, G2) is the least integer

r such that for every graph G on r vertices, either G contains a G1 or G contains a

G2. In this note, we determined the Ramsey number R(K1,n,Wm) for even m with

n+2 ≤ m ≤ 2n− 2, where Wm is the wheel on m+1 vertices, i.e., the graph obtained

from a cycle Cm by adding a vertex v adjacent to all vertices of the Cm.
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1 Introduction

Throughout this paper, all graphs are finite and simple. For a pair of graphs G1 and

G2, the Ramsey number R(G1, G2), is defined as the smallest integer r such that for

every graph G on r vertices, either G contains a G1 or G contains a G2, where G is the

complement of G. Note that R(G1, G2) = R(G2, G1). We denote by Pn (n ≥ 1) and Cn

(n ≥ 3) the path and cycle on n vertices, respectively. The bipartite graph K1,n (n ≥ 2)
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is called a star. The wheel Wn (n ≥ 3) is the graph obtained by joining a vertex and a

cycle Cn.

In this note we consider the Ramsey numbers for stars versus wheels. There are many

results on this area. Hasmawati [4] determined the Ramsey number R(K1,n,Wm) for

m ≥ 2n.

Theorem 1 (Hasmawati [4]). If n ≥ 2 and m ≥ 2n, then

R(K1,n,Wm) =







n+m− 1, if both n and m are even;

n+m, otherwise.

So from now on we consider the case that m ≤ 2n − 1. For odd m, Chen et al. [2]

showed that if m ≤ n + 2, then R(K1,n,Wm) = 3n + 1. Hasmawati et al. [5] proved that

the values remain the same even if m ≤ 2n− 1.

Theorem 2 (Hasmawati et al. [5]). If 3 ≤ m ≤ 2n− 1 and m is odd, then

R(K1,n,Wm) = 3n+ 1.

So it is remains the case when m ≤ 2n − 2 and m is even. Surahmat and Baskoro [7]

determined the Ramsey numbers of stars versus W4.

Theorem 3 (Surahmat and Baskoro [7]). If n ≥ 2, then

R(K1,n,W4) =







2n+ 1, if n is even;

2n+ 3, if n is odd.

Chen et al. [2] established R(K1,n,W6), and Zhang et al. [8, 9] established R(K1,n,W8).

In this note we first give a lower bound on R(K1,n,Wm) for even m ≤ 2n − 2. One

can check that when m = 6, 8, the lower bound on R(K1,n,Wm) in Theorem 4 is the exact

value, see [2, 9, 8].

Theorem 4. If 6 ≤ m ≤ 2n− 2 and m is even, then

R(K1,n,Wm) ≥







2n+m/2− 1, if both n and m/2 are even;

2n+m/2, otherwise.

Moreover, we establish the exact values when n+ 2 ≤ m ≤ 2n− 2. We will show that

the lower bound in Theorem 4 is the exact value if m ≥ n+ 2.

Theorem 5. If n+ 2 ≤ m ≤ 2n− 2 and m is even, then

R(K1,n,Wm) =







2n+m/2− 1, if both n and m/2 are even;

2n+m/2, otherwise.
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2 Preliminaries

We denote by ν(G) the order of G, by δ(G) the minimum degree of G, c(G) the circum-

ference of G, and g(G) the girth of G, respectively. The graph G is said to be pancyclic if

G contains cycles of every length between 3 and ν(G), and weakly pancyclic if G contains

cycles of every length between g(G) and c(G).

We will use the following results.

Theorem 6 (Dirac [3]). Every 2-connected graph G has circumference c(G) ≥ min{2δ(G), ν(G)}.

Theorem 7 (Brandt et al. [1]). Every non-bipartite graph G with δ(G) ≥ (ν(G) + 2)/3

is weakly pancyclic and has girth 3 or 4.

Theorem 8 (Jackson [6]). Let G be a bipartite graph with partition sets X and Y , 2 ≤

|X| ≤ |Y |. If for every vertex x ∈ X, d(x) ≥ max{|X|, |Y |/2 + 1}, then G has a cycle

containing all vertices in X, (i.e., of length 2|X|).

A graph G is said to be k-regular if every vertex of G has degree k.

Lemma 1. Let k and n be two integers with n ≥ k+ 1 and k or n is even. Then there is

a k-regular graph of order n each component of which is of order at most 2k + 1.

Proof. We first assume that k + 1 ≤ n ≤ 2k + 1. If k is even, then let G be the

graph with vertex set {v1, v2, . . . , vn} and every vertex vi is adjacent to the k vertices in

{vi±1, vi±2, . . . , vi±k/2}, where the subscripts are taken modulo n. Then G is a k-regular

graph of order n. If k is odd, then n is even and n− 1− k is even. Similarly as above we

can get a (n − 1 − k)-regular graph H of order n. Then G = H is a k-regular graph of

order n. Since n ≤ 2k + 1, every component of G has order at most 2k + 1.

Now we assume that n ≥ 2k + 2.

If k is even, then let

n = q(2k + 1) + r, 0 ≤ r ≤ 2k.

Note that q ≥ 1. If r = 0, then the union of q copies of a k-regular graph of order 2k + 1

is a required graph. If k + 1 ≤ r ≤ 2k, then the union of q copies of a k-regular graph of

order 2k + 1 and one copy of a k-regular graph of order r is a required graph. Now we

assume that 1 ≤ r ≤ k. Note that k + 1 ≤ k + r ≤ 2k. Then the union of q − 1 copies of

a k-regular graph of order 2k + 1, one copy of a k-regular graph of order k + 1, and one

copy of a k-regular graph of order k + r, is a required graph.

If k is odd, then n is even. Let

n = 2qk + r, 0 ≤ r < 2k.
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Clearly r is even. If r = 0 then the union of q copies of a k-regular graph of order 2k is a

required graph. If k+1 ≤ r < 2k, then the union of q copies of a k-regular graph of order

2k and one copy of a k-regular graph of order r is a required graph. Now we assume that

2 ≤ r ≤ k − 1. Note that k + 1 ≤ k + r − 1 ≤ 2k. Then the union of q − 1 copies of a

k-regular graph of order 2k, one copy of a k-regular graph of order k+1, and one copy of

a k-regular graph of order k + r − 1, is a required graph.

3 Proof of Theorem 4

For convenience we define a constant θ such that θ = 1 if both n and m/2 are even, and

θ = 0 otherwise. We will construct a graph G of order 2n + m/2 − θ − 1 such that G

contains no K1,n and G contains no Wm.

It is easy to check that m/2 − 1 or n +m/2 − θ − 1 is even. By Lemma 1, Let H be

an (m/2 − 1)-regular graph of order n+m/2− θ − 1 such that each component of which

has order at most m− 1. Let G = H ∪Kn. Then ν(G) = 2n+m/2− θ − 1.

We first show that G contains no K1,n. Clearly Kn contains no K1,n. Note that every

vertex inH has degreem/2−1, and then every vertex inH has degree ν(H)−1−m/2+1 =

n− θ − 1. Thus H contains no K1,n.

Second we show that G contains no Wm. Suppose to contrary that G contains a Wm.

Let x be the hub of the Wm. If x is contained in Kn, then all vertices of the wheel other

than x are in V (H). This implies that H has a cycle Cm. But every component of H has

order less than m, a contradiction. So we assume that x ∈ V (H). Note that x has m/2−1

neighbors in H. At least m/2 + 1 vertices of the wheel are in the Kn. This implies that

there are two vertices in the Kn such that they are adjacent in G, a contradiction.

This implies that R(K1,n,Wm) ≥ 2n+m/2− θ.

4 Proof of Theorem 5

Note that by our assumption n ≥ 4 and m ≥ 6. We already showed R(K1,n,Wm) ≥

2n+m/2− θ in Theorem 4. Now we prove that R(K1,n,Wm) ≤ 2n+m/2− θ. Let G be

a graph of order

ν(G) = 2n +m/2− θ.

Suppose that G has no K1,n, i.e.,

δ(G) ≥ n+m/2− θ. (1)
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We will prove that G has a Wm. We assume to the contrary that G contains no Wm. We

choose such a G with minimum size.

Let u be a vertex of G with maximum degree. Set

H = G[N(u)] and I = V (G)\({u} ∪N(u)).

Note that ν(H) = d(u).

Claim 1. d(u) ≥ n+m/2; and for every v ∈ V (H), d(v) = n+m/2− θ.

Proof. If θ = 0, then by (1), d(u) ≥ n +m/2. If θ = 1, then n and m/2 are both even.

Thus ν(G) = 2n+m/2− 1 is odd. If every vertex of G has degree 2n+m/2− 1, then G

has an even order, a contradiction. This implies d(u) ≥ n+m/2.

Let v be a vertex in H. Clearly d(v) ≥ δ(G) ≥ n+m/2− θ. If d(v) ≥ n+m/2− θ+1,

then d(u) ≥ d(v) ≥ n + m/2 − θ + 1. Thus G′ = G − uv has size less than G with

δ(G′) ≥ n+m/2− θ. Since G′ is a subgraph of G, it contains no Wm, a contradiction.

By Claim 1, we assume that

ν(H) = n+m/2 + τ, where τ ≥ 0. (2)

Claim 2. δ(H) ≥ m/2 + τ .

Proof. Let v be an arbitrary vertex of H. By Claim 1, d(v) = n + m/2 − θ. Note that

ν(G−H) = (2n+m/2− θ)− (n+m/2 + τ) = n− θ − τ . Thus

dH(v) ≥ d(v) − ν(G−H) = (n+m/2− θ)− (n − θ − τ) = m/2 + τ.

Thus the claim holds.

Claim 3. H is separable.

Proof. By (2), ν(H) ≥ m ≥ 3. Suppose to contrary that H is 2-connected. By Claim 2

and Theorem 6, c(G) ≥ m. Also note that

3δ(H) ≥ 3m/2 + 3τ ≥ n+m/2 + 3τ + 2 ≥ ν(H) + 2,

i.e., δ(H) ≥ (ν(H) + 2)/3.

If H is non-bipartite, then by Theorem 3, H is weakly pancyclic and of girth 3 or 4.

Thus H contains Cm. Note that u is adjacent to every vertex of the Cm, hence G contains

a Wm, a contradiction.

If H is bipartite, say with partition sets X and Y , then |X| ≥ m/2 + τ and

|Y | = ν(H)− |X| ≤ (n+m/2 + τ)− (m/2 + τ) = n,

5



since δ(H) ≥ m/2 + τ . Let X ′ be a subset of X with |X ′| = m/2. Note that for every

vertex x of X ′,

dY (x) = dH(x) ≥ m/2 ≥ n/2 + 1 ≥ |Y |/2 + 1.

By Theorem 8, the subgraph of H induced by X ′ ∪ Y contains a Cm. Thus G contains a

Wm, a contradiction.

If H is disconnected, then H has at least two components; if H is connected, then H

has at least two end-blocks. Now let D be a component or an end-block of H such that

ν(D) is as small as possible. We define a constant ε such that ε = 1 if D is an end-block

of H, and ε = 0 otherwise. Thus

ν(D) ≤ (ν(H) + ε)/2. (3)

If D is an end-block of H, then let z be the cut-vertex of H contained in D.

Claim 4. For every two vertices v,w ∈ V (D) which are not cut-vertices of H, |NI(v) ∩

NI(w)| ≥ m/2− 1.

Proof. Note that dI(v) = d(v) − 1− dH(v) ≥ d(v) − ν(D), and dI(w) ≥ d(w) − ν(D).

|NI(v) ∩NI(w)| ≥ dI(v) + dI(w)− |I| ≥ d(v) + d(w) − 2ν(D)− |I|

≥ 2δ(G) − (ν(H) + ε)− |I| = 2δ(G) − ν(G) + 1− ε

= 2(n +m/2− θ)− (2n +m/2− θ) + 1− ε

= m/2 + 1− θ − ε ≥ m/2− 1.

Thus the claim holds.

Suppose that there is a vertex v ∈ V (D) which is not a cut-vertex of H such that v

has m/2 neighbors in V (D) each of which is not a cut-vertex of H. Then let X be the

set of such m/2 neighbors of v and Y = {u} ∪NI(v). Let B be the bipartite subgraph of

G with partition sets X and Y , and for any two vertices x ∈ X and y ∈ Y , xy ∈ E(B) if

and only if xy ∈ E(G).

Note that |X| = m/2. By Claim 4, every vertex of X has at least m/2 neighbors in Y .

By Claims 1 and 2, d(v) = n+m/2− θ and dH(v) ≥ m/2+ τ . Thus |Y | = d(v)− dH (v) ≤

n− θ− τ . Since m ≥ n+2, m/2 ≥ |Y |/2+1. By Theorem 8, B contains a Cm. Note that

v is adjacent to every vertex of the Cm, hence G has a Wm, a contradiction.

So we conclude thatD is an end-block ofH (i.e., ε = 1), and every vertex v ∈ V (D)\{z}

has at most m/2 − 1 neighbors in V (D)\{z}. By Claim 2, we can see that z is adjacent

to every vertex in V (D)\{z} and every vertex in V (D)\{z} has degree in H exactly m/2

and τ = 0.
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Claim 5. Every vertex in V (D)\{z} is adjacent to every vertex in I.

Proof. Let v be a vertex in V (D)\{z}. Since d(v) = n +m/2 − θ and dH(v) = m/2. we

have

dI(v) = d(v) − 1− dH(v) = n− 1− θ.

Also note that

|I| = ν(G)− 1− ν(H) = (2n+m/2− θ)− 1− (n+m/2) = n− 1− θ.

This implies that v is adjacent to every vertex in I.

Case 1. NI(z) 6= ∅.

Note that |I| = n − 1 − θ ≥ m/2 − 1. Let v ∈ V (D)\{z} and u1, u2, . . . , um/2−1 be

m/2− 1 vertices in I such that zu1 ∈ E(G), and let v1, v2 . . . , vm/2−1 be m/2− 1 vertices

in ND(v)\{z}. Then uzu1v1u2v2 · · · um/2−1vm/2−1u is a Cm. Since v is adjacent to every

vertex of the Cm, G contains a Cm, a contradiction.

Case 2. NI(z) = ∅ and G[I] is not empty.

Let v ∈ V (D)\{z} and u1, u2, . . . , um/2−1 be m/2 − 1 vertices in I such that u1u2 ∈

E(G), and let v1, v2 . . . , vm/2−1 bem/2−1 vertices inND(v)\{z}. Then uzv1u1u2v2u3v3 · · ·

um/2−1vm/2−1u is a Cm. Since v is adjacent to every vertex of the Cm, G contains a Cm,

a contradiction.

Case 3. NI(z) = ∅ and G[I] is empty.

Let w be an arbitrary vertex in I. Note that w is nonadjacent to every vertex in

{u, z} ∪ I. Hence

d(w) ≤ ν(G)− 2− |I| = (2n +m/2− θ)− 2− (n− 1− θ) = n+m/2− 1.

Since d(w) ≥ δ(G) = n+m/2− θ, we can see that θ = 1 and w is adjacent to every vertex

of V (H)\{z}. Moreover, every vertex in I is adjacent to every vertex in V (H)\{z}.

Since θ = 1, by Claim 1, d(u) = n+m/2 and d(z) = n+m/2−1. Thus there is a vertex

x ∈ V (H)\{z} such that xz /∈ E(G). By Claim 2, let v1, v2, . . . , vm/2 be m/2 vertices in

NH(x) and u1, u2, . . . , um/2 be m/2 vertices in {u} ∪ I. Then u1v1u2v2 · · · um/2vm/2u1 is

a Cm. Since x is adjacent to every vertex of the Cm, G contains a Wm, a contradiction.

The proof is complete.
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