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2 Departamento de Matemática Universidad Nacional de La Plata, Calle 50 y 115 (1900) La
Plata Argentina

Abstract. A directed path graph is the intersection graph of a family of directed subpaths of
a directed tree. A rooted path graph is the intersection graph of a family of directed subpaths
of a rooted tree. Clearly, rooted path graphs are directed path graphs. Several characterizations
are known for directed path graphs: one by forbidden induced subgraphs and one by forbidden
asteroids. It is an open problem to find such characterizations for rooted path graphs. With
the purpose of proving knowledge in this direction, we show in this paper properties of directed
path models that are not rootable for chordal graphs with any leafage and with leafage four.
Therefore, we prove that for leafage four directed path graphs minimally non rooted path graphs
has a unique asteroidal quadruple and can be characterized by the presence of certain type of
asteroidal quadruples.
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1. Introduction

A graph is chordal if it contains no cycle of length at least four as an induced subgraph. A
classical result [5] states that a graph is chordal if and only if it is the (vertex) intersection
graph of a family of subtrees of a tree. It is easy to see that any interval graph is a chordal
graph considering that it is the intersection graph of a family of subpaths of a path.

An asteroidal triple in a graph G is a set of three non- adjacent vertices such that for
any two of them there exists a path between them that does not intersect the neighborhood
of the third.

Lekkerkerler and Boland [8] proved that a chordal graph is an interval graph if and
only if it contains no asteroidal triple. As byproduct, they found a characterization of
interval graphs by forbidden induced subgraphs.

Another natural subclass of chordal graphs are path graphs. A graph is a path graph
if it is the intersection graph of a family of subpaths of a tree. Lévêque, Maffray and
Preissman [9], found the characterization of path graphs by forbidden induced subgraphs
but there is still no nice characterization in terms of forbidden asteroids for this class.

Two subclasses of path graphs have been defined when the host tree is a directed
graph. Firstly, a graph is a directed path graph if it is the intersection graph of a family
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of directed subpaths of a directed tree. Panda [12], found the characterization of directed
path graphs by forbidden induced subgraphs and then Cameron, Hoáng and Lévêque [2]
gave a characterization of this class in terms of forbidden asteroidal triples. Secondly, a
graph is a rooted path graph if it is the intersection graph of a family of directed subpaths
of a rooted tree. By definition we have the following inclusions between the different
considered classes (and these inclusions are strict):

interval ⊂ rooted path ⊂ directed path ⊂ path ⊂ chordal

Characterizing rooted path graphs by forbidden induced subgraphs or forbidden aster-
oids are open problems. It is certainly too difficult to characterizing rooted path graphs
by forbidden induced subgraphs as there are too many (families of) graphs to exclude but
Cameron, Hoáng and Lévêque [1] gave a conjecture which propose a characterization of
these graphs in terms of forbidden asteroids. This conjecture is in fact an attempt to char-
acterize directed path graphs that are non rooted path graphs by forbidding particular
type of asteroidal quadruples. An asteroidal quadruple in a graph G is a set of four non
adjacent vertices such that any three of them is an asteroidal triple. In its original form,
this conjecture is incomplete as was showed in [6]. Gutierrez, Lévêque and Tondato [6]
proved also that every directed path graph that is not rooted path graph has an asteroidal
quadruple. But clearly, it is not a characterization. In Figure 1, we show two DV graphs
containing asteroidal quadruples. One is RDV graph but the other is not.

A B

Fig. 1. The graph A is RDV but the graph B is not

As suggested by the conjecture, a characterization by forbidding particular type of
asteroidal quadruples may holds.

For this purpose, we study in this paper properties of models of directed path graph
non rooted directed path graph. As we said before, any model will be at least four leaves
by the presence of an asteroidal quadruple [10]. We will study properties in models with
any number of leaves but we will obtain special properties in case of models with four
leaves. In this particular case we proved that if a graph is a directed path graph non
rooted directed path graph and minimal with this property, it has an unique asteroidal
quadruple. On the other hand, some paths in the graph which force the direction in any
DV -model will be relevant. It is clear that one of this is a path of three vertices between
two non adjacent. However, as was proved in [1], there are other type of paths with this
property. We will prove some conditions assuring the presence of that type of paths in
models with any number of leaves, and others in models with four leaves.

Formally, we will say that two non adjacent vertices of a DV graph are linked by a
strong connection if for any DV-model the path between them is directed.
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Finally, we propose the following conjecture: anyDV non RDV graph has an asteroidal
quadruple with two disjoint pairs of vertices linked by a strong connections, proving it for
graphs with leafage four.

The paper is organized as follows: in section 2, we give definitions and notations. In
section 3, we recall and prove some properties of directed path graph non rooted directed
path graphs and analyze the presence of twins and false twins. In section 4, we study DV -
models on those graphs in both any or four leafage. In section 5, we prove the existence
of special connections for certain kind of graphs in both any or four leafage. Finally, in
section 6, we prove the conjecture in graph with leafage four.

2. Definitions and notations

A clique in a graph G is a maximal set of pairwise adjacent vertices. Let C (G) be the set
of all cliques of G.

The neighborhood of a vertex x is the set N(x) of vertices adjacent to x and the closed
neighborhood of x is the set N [x] = {x} ∪ N(x). A vertex is simplicial if its (closed)
neighborhood is a clique. Two adjacent vertices x and y are twins if N [x] = N [y] and
they are false twins if N(x) = N(y).

A clique tree T of a graph G is a tree whose vertices are the elements of C (G) and
such that for each vertex x of G, those elements of C (G) that contain x induce a subtree
of T , which we will denote by Tx. Note that G is the intersection graph of the subtrees
(Tx)x∈V (G). Gavril [5] proved that a graph is chordal if and only if it has a clique tree.
Clique trees are called models of the graph.

In [11], Monma and Wei introduced the notation UV, DV and RDV to refer to the
classes of path graphs, directed path graphs and rooted path graphs respectively. They
also prove the following clique tree characterizations for these classes. A graph is a path
graph or a UV graph if it admits a UV-model, i.e. a clique tree T such that Tx is a subpath
of T for every x ∈ V (G). A graph is a directed path graph or a DV graph if it admits a DV-
model, i.e a clique tree T whose edges can be directed such that Tx is a directed subpath
of T for every x ∈ V (G). A graph is a rooted path graph or a RDV graph, if it admits a
RDV-model, i.e a clique tree T that can be rooted and whose edges are directed from the
root toward the leaves such that Tx is a directed subpath of T for every x ∈ V (G).

It has been proved in [4] that if G is a DV graph, then any UV-model of G can be
directed to obtain a DV-model of G. We say that a DV-model T of a DV graph G can be
rooted if T can be rooted on a vertex such that it becomes a RDV-model of G.

Let T be a clique tree. We often use capital letters to denotes the vertices of a clique
tree as these vertices correspond to cliques of G. In order to simplify the notation, we
often write X ∈ T instead of X ∈ V (T ), and e ∈ T instead of e ∈ E(T ). If T ′ is a subtree
of T , then GT ′ denotes the subgraph of G that is induced by the vertices of ∪X∈V (T ′)X.

If G,G′ are two graphs, then G+G′ we will denote the union of G and G′, that is the
graph whose vertices are V (G) ∪ V (G′) and edges are E(G) ∪ E(G′). Note that if T, T ′

are two trees such that |V (T ) ∩ V (T ′)| ≤ 1, then T + T ′ is a forest.
If G is a graph and V ′ ⊆ V (G), then G \ V ′ denotes the subgraph of G induced by

V (G) \ V ′. If E ′ ⊆ E(G), then G− E ′ denotes the subgraph of G induced by E(G) \ E ′.
Let T be a tree. For V ′ ⊆ V (T ), let T [V ′] be the minimal subtree of T containing V ′.

Then for X, Y ∈ V (T ), T [X, Y ] is the subpath of T between X and Y . Let T [X, Y ) =
T [X, Y ] \ Y , T (X, Y ] = T [X, Y ] \ X and T (X, Y ) = T [X, Y ] \ {X, Y }. Note that some
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of these paths may be empty or reduced to a single vertex when X and Y are equal
or adjacent. If X ∈ V (T ) and e ∈ E(T ) with e = AB and A ∈ T [X,B], then let
T [X, e] = T [X,B], T [X, e) = T [X,A], T (X, e] = T (X,B] and T (X, e) = T (X,A]. A
vertex X ∈ V (T (Y, Z)) has a vertex crossing in T [Y, Z] if X ′ ∩X ′′ �= ∅ where X ′ and X ′′

are the two neighbors of X in T [Y, Z]. If X is not a leaf and X = Y or X = Z, we say
that X has a vertex crossing in T [Y, Z] if X ′ ∩X ′′ �= ∅ where X ′ is the neighbor of X in
T [Y, Z] and X ′′ is a neighbor of X in T different from X ′.

In a clique tree T , the label of an edge AB of T is defined as lab(AB) = A ∩ B. We
say that X ∈ V (T ) dominates e ∈ E(T ) if lab(e) ⊆ X. We say that e′ ∈ E(T ) dominates
e ∈ E(T ) if lab(e) ⊆ lab(e′). If two edges e, e′ satisfy lab(e) = lab(e′), we says that e and
e′ are equivalent edges. We say that an edge e satisfying a given property P is maximally
farthest from a vertex C if there is no edge e′, distinct from e, satisfying this property
and such that e is between C and e′.

Let T be a clique tree of G. Let D(T ) (or D for short) be the vertices of T of degree
at least three. Observe that if T is not a path and H is a leaf of T then there exists
C ∈ T [D] such that T [H,C] ∩ T [D] = {C}. In this case we say that T [H,C] is a branch
of T incident to C. Let C be a element of D. The union of all the branches incident to C
forms a subtree of T called the bouquet of T incident to C and denoted Bouq(C). Note
that if C is a leaf of T [D] then there are at least two branches in Bouq(C) (otherwise
Bouq(C) can be empty or reduced to one branch).

Let T be a tree, we denote by ln(T ) the number of leaves of T . The leafage of a chordal
graph G is the minimum integer � such that G admits a model T with ln(T ) = �. UV-
leafage, DV-leafage and RDV-leafage are defined analogously with T being a UV-model,
DV-model and RDV-model respectively. For any DV graph we know that DV-leafage =
UV-leafage = leafage. The first equality is a consequence of [4], the second equality has
been proved independently in [3] and [7]. Surprisingly for RDV graph the equality does
not hold [6].

An asteroidal set A in a graph G is a set of non adjacent vertices such that for any
v ∈ A the vertices of A \ {v} appears in the same connected component of G \N [v]. Note
that this definition is compatible with the definition of asteroidal triple and quadruple
already given. The asteroidal number of a graph G is the maximum integer a such that G
admits an asteroidal set of cardinality a. If G is a chordal graph containing an asteroidal
set A of size k, then in for any model T of G, T has at least k leaves [10]. Thus the
asteroidal number of a chordal graph is less or equal to its leafage.

Let T be a DV-model of G, and T ′ a (non necessarily proper) subtree of T , we say that
a vertex H of T is good in T ′ if there is no edge of T ′ \H dominated by H, otherwise H is
bad in T ′. We just say that a leaf H of T is good (resp. bad) if it is good in T (resp. bad
in T ). Good leaves are related to the existence of asteroidal sets by the following lemma.

Lemma 1. [6] Let T be a clique tree of a graph G and V ′ ⊆ V (T ). If for every X ∈ V ′,
X is a leaf of T [V ′] that is good in T [V ′], then G has an asteroidal set A of size |V ′| where
each set X ∈ V ′ contains exactly one distinct vertex of A.

3. Preliminaries results

First, we recall some general properties of graph DV non RDV proved in [6].

Theorem 1. If G is a DV graph non RDV then it has an asteroidal quadruple.
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Corollary 1. Let G be a DV graph non RDV. Then l(G) > 3.

Second, we analyze the presence of twins and false twins. As it is natural in this kind
of intersection graphs twins are not allowed in minimal forbidden subgraphs. However,
false twins apperar in chordal minimal non UV graphs but not in DV minimal non RDV
graphs.

Theorem 2. Let G be a DV graph, minimally non RDV. Then G does not have twins
nor false twins.

Proof. Let x and y be twins of G. By minimality of G, G\x is a RDV graph and let T ′ be
a RDV -model of G\x. Observe that C ∈ C (G\x)−C (G) if and only if C∪{x} ∈ C (G).
Let C ′

1, .., C
′
k be the cliques of G \ x containing y and Ci = C ′

i ∪ {x} for i = 1, .., k. Let
T be a tree built replacing C ′

i by Ci in T ′. It is clear that T is a RDV -model of G, a
contradiction.

Let x and y be false twins of G. Clearly, x and y must be simplicial vertices of G. By
minimality of G, G \ x is a RDV graph. Let T ′ be a RDV -model of G \ x rooted on a
vertex R. Observe that as G does not have twins and it is minimally non RDV then there
is an edge e = AB ∈ T ′ such that lab(e) = N(y) = N(x). On the other hand, N [x] is
a clique of G. Then T = T ′ − e + AN [x] + N [x]B rooted on R is a RDV -model of G, a
contradiction.

4. DV minimally non RDV graphs and their DV-models

Clearly in a DV non RDV graph none of its DV models is rootable. Hence we need to
study deeply properties of these models; specially in case that the graph is minimal in the
difference of both classes. We separate this section according to the leafage.

4.1. Any leafage

Lemma 2. Let G be a DV , minimally non RDV graph, T a clique tree of G, H a leaf of
T and T [H,C] a branch of T . Then each vertex X in the branch different from H, has a
vertex crossing X in T [H,C].

Proof. Suppose by contradiction, that X does not have a vertex crossing in T [H,C]. Let
X ′ and X ′′ be neighbors of X. Then X ′∩X ′′ = ∅. Let T ′ = T−E(T [H,X]). The subgraph
T ′ is a proper subtree of T . By minimality of G, GT ′ is a RDV graph. Let T ′′ be a RDV -
model of GT ′ rooted on a vertex R. Thus it is possible to build a RDV -model of G with
T ′′ and T [H,X] as follows: T ′′ + T [H,X] rooted on R, a contradiction.

In the next lemmas we use the following notation: for e = AB an edge of a branch
T [H,C], B ∈ T [A,C].

Lemma 3. Let G be a DV , minimally non RDV graph, T a clique tree of G, H a leaf of
T , and T [H,C] a branch of T . For all e edge of T [H,C]:

1. |lab(e)| > 1
2. There are at least two vertices x, y ∈ lab(e) such that Tx and Ty have different end

towards C, i.e Tx ∩ (T − E(T [H,A]) �= Ty ∩ (T − E(T [H,A]).
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Proof. 1. Suppose by contradiction, that e = AB is an edge of T [H,C] with A∩B = {x}
for x ∈ V (G). Let T ′ = T − E(T [H,B]). The subgraph T ′ is a proper subtree of T .
By minimality of G, GT ′ is a RDV graph. Let T ′′ be a RDV -model of GT ′ rooted on
a vertex R. Let Z,W ∈ T ′′ such that T ′′

x = T ′′[Z,W ] and W ∈ T ′′[Z,R]. Thus it is
possible to build a RDV -model of G with T ′′ and T [H,X] as follows: T ′′+ZA+T [A,H]
rooted on R, a contradiction.

2. Suppose by contradicting, that every vertex x in lab(e) satisfies Tx∩(T−E(T [H,A])) =
T [A,X] for someX in T . Let T ′ = T−E(T [H,B]). The subgraph T ′ is a proper subtree
of T . By minimality of G, GT ′ is a RDV graph. Let T ′′ be a RDV -model of GT ′ rooted
on a vertex R. All vertices of lab(e) are twins in GT ′ as for x ∈ lab(e), T ′′

x = T ′′[Z,W ]
and W ∈ T ′′[Z,R]. As in 1, it is possible to build T ′′+ZA+T [A,H] rooted on R that
is a RDV -model of G, a contradiction.

Lemma 4. Let G be a DV , minimally non RDV graph, T a clique tree of G and X, Y
vertices of T such that all the vertices of T (X, Y ) has degree two in T then there are not
two edges in T [X, Y ] with the same label.

Proof. Suppose by contradiction, that e1 and e2 are edges of T [X, Y ] that have the same
label. Let e1 = A1B1 and e2 = A2B2 with A1 ∈ T [X,B1] and A2 ∈ T [X,B2]. Let T ′ =
T −E(T [A1, B2]) +A1B2. The subgraph T ′ is a proper subtree of T . By minimality of G,
GT ′ is a RDV graph. Let T ′′ be a RDV -model of GT ′ rooted on a vertex R. Let ẽ = Ã1 B̃2

be an equivalent edge of e in T ′′. Clearly, A1∩B2 ⊆ B̃2 and A1∩B2 ⊆ Ã1. Thus it is possible
to build a RDV -model of G with T ′′ and T (A1, B2) as follows: T

′′−Ã1B̃2+Ã1T (A1, B2)B̃2

rooted on R, a contradiction.

Lemma 5. Let G be a DV , minimally non RDV graph, T a clique tree of G, H a leaf
of T , and T [H,C] a branch of T . Every edge of the branch T (H,C] has a dominated edge
outside.

Proof. Suppose that none edge outside T [H,C] is dominated by e. Take e′ dominated
by e in T (H,C] nearest C (it could be e). Let e′ = A′B′ with B′ ∈ T [A′, C] and T ′ =
T − E(T [H,A′]). By the election of e′, A′ is a leaf in any clique tree of GT ′ . Let T ′′ be
a RDV -model of GT ′ rooted on a vertex R. Clearly, T ′′ has only one edge equivalent to
e′ and this edge must be incident in A′. Hence the DV model of G T ′′ + T [H,A′] can be
rooted on R or H, a contradiction.

Lemma 6. [6] Let G be a DV graph, minimally non RDV, T a DV-model of G, H a leaf
of T and T [H,C] a branch of T . Then

1. Every edge of T dominated by H is in T [H,C] or T [D].
2. If there is an edge of T dominated by H in T (H,C] then there is one in T [D].

4.2. Leafage 4

In this section and in every section relative to leafage four, we assume the following
notation. If G is a DV graph and T is a DV-model of G with exactly four leaves, we call
H1, H2, H3, H4 these leaves. If |D| = 1, then we call C the vertex of degree four of T . If
|D| = 2, then we call C1, C2 the vertices of degree three of T and we assume that the four
branches of T are T [Hi, C1] for i = 1, 2 and T [Hj, C2] for j = 3, 4.
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Lemma 7. Let G be a DV non RDV graph and T a DV-model of G with 4 leaves then:

1. If |D| = 1, then there is one vertex crossing C in T [Hi, Hj] and one vertex crossing C
in T [Hk, Hl] being {i, j, k, l} = {1, 2, 3, 4}.

2. If |D| = 2, then there is a vertex crossing C1 in T [H1, H2] if and only if there is a
vertex crossing C2 in T [H3, H4].

Proof. 1. The tree T cannot be rooted on C, so there is a vertex crossing C in T [Hi, Hj]
for some i �= j ∈ {1, 2, 3, 4}. Suppose by symmetry that there is a vertex crossing C
in T [H1, H2]. If there is a vertex crossing C in T [H3, H4], then the lemma is true so
we can assume that there is no vertex crossing C in T [H3, H4]. The tree T cannot
be rooted on H1 so there is a vertex crossing C in T [H2, Hi] for some i ∈ {3, 4}. By
symmetry we can assume that there is a vertex crossing C in T [H2, H3]. If there is a
vertex crossing C in T [H1, H4], then the lemma is true so we can assume that there
is no vertex crossing C in T [H1, H4]. The tree T cannot be rooted on H2 so there is a
vertex crossing C in T [H1, H3]. But then T is not a DV-model, a contradiction.

2. Suppose by contradiction that there is a vertex crossing C1 in T [H1, H2] and that
there is no vertex crossing C2 in T [H3, H4]. As G is a DV graph, it is not possible
that for each i, j ∈ {1, 2} there exists a vertex crossing C1 in T [Hi, C2]. Suppose by
symmetry that there is no vertex crossing C1 in T [H1, C2]. Then T can be rooted on
H2, a contradiction.

Theorem 3. Let G be a DV graph, minimally non RDV, with leafage four.

1. There are four cliques of G that are always leaves in every DV -model.
2. Then G has exactly one asteroidal quadruple.

Proof. 1. Let T be a DV -model with four leaves H1, H2, H3, H4. Suppose that one of
them is bad. In order to fix ideas let H1 be bad. By Lemma 6, there is e = AB ∈ T [D]
dominated by H1. Clearly |D| = 2. Let C1 and C2 be the vertex of D such that
H1, H2 ∈ Bouq(C1) and H2, H4 ∈ Bouq(C2) and B ∈ T [C1, A]. Let T

′ = T − e+AH1.
If there is a vertex crossing C1 in T [H1, H2] then by Lemma 7 there is a vertex crossing
C2 in T [H3, H4]. Hence T ′ is a RDV -model rooted on H3 if there is a vertex crossing
C2 in T [H3, C1] or H4 if there is a vertex crossing C2 in T [H4, C1].
If there is no vertex crossing C1 in T [H1, H2] then by Lemma 7 there is no vertex
crossing C2 in T [H3, H4]. Hence T ′ is a RDV -model rooted on B.
Therefore every Hi is good so it is a leaf in every DV -model for i = 1, 2, 3, 4.

2. By Theorem 1, there are cliques H1, H2, H3, H4 that are leaves in every DV -model of
G. Let T be a DV -model with four leaves, C1 and C2 the vertices of degree at least
3. Observe that C1 may be C2. Suppose H1, H2 ∈ Bouq(C1) and H3, H4 ∈ Bouq(C2).
If there is another asteroidal quadruple there are four cliques X1, X2, X3, X4 such that
X1, X2 ∈ Bouq(C1) and X3, X4 ∈ Bouq(C2) and at least one Xi �= Hi for some
i = 1, 2, 3, 4. Let T ′ = T [X1, X2, X3, X4]. Clearly Xi is good in T ′ then Xi are leaves in
every clique tree of GT ′ . As at least one Xi �= Hi for some i = 1, 2, 3, 4, GT ′ is a RDV
graph by minimality of G. Let T ′′ be a RDV -model of GT ′ rooted on a vertex R. As
every Xi is a leaf of T ′′, thus it is possible to build a RDV -model of G with T [Hi, Xi]
and T ′′ as follows: T ′′ +

∑4
i=1 T [Hi, Xi] rooted on R or Hi for some i = 1, 2, 3, 4, a

contradiction.
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Lemma 8. Let G be a DV non RDV graph, T a DV-model of G with 4 leaves that does
not have vertex crossing C1 in T [H1, H2] and e ∈ T [C1, C2]. Then there are two vertices
x, y ∈ lab(e) such that Tx and Ty have different end towards C1 and towards C2.

Proof. Suppose by contradiction, that e = AB with B ∈ T [C1, A] satisfies that for every
vertex x ∈ lab(e) the end of Tx toward C1 is the same and suppose that it is in T [B,H1].
Let X be this end and T ′ = T − e+AX. As there is no vertex crossing C1 in T [H1, H2] =
T ′[H1, H2], by Lemma 7, there is no vertex crossing C2 in T [H3, H4] = T ′[H3, H4]. On the
other hand, the end of Tx toward H1 is X then there is no vertex crossing X in T ′[H1, A].
Hence T ′ rooted on B is a RDV -model of G, a contradiction.

Lemma 9. Let G be a DV non RDV graph and T a DV-model of G with 4 leaves. There
are not two edges with the same label one in a branch and the other in T [C1, C2].

Proof. Suppose by contradiction, that e and e′ are two edges with the same label, one in
T [H1, C1] and the other in T [C1, C2]. Let e = AB ∈ T [H1, C1] and e′ = A′B′ ∈ T [C1, C2]
with B ∈ T [A,C1] and B′ ∈ T [C1, A

′]. Let T ′ = T −{e, e′}+AB′+BA′. It is a DV -model
of G.

If there is a vertex crossing C1 in T [H1, H2] then B �= C1 and as there is a vertex
crossing C1 in T [H1, C2] then there is no vertex crossing C1 in T [H2, C2] because G is a
DV graph. By Lemma 7, there is a vertex crossing C2 in T [H3, H4]. As G is a DV -graph
then there is no vertex crossing C2 in T [H3, C1] or there is no in T [H4, C1]. Suppose there
is no vertex crossing C2 in T [H3, C1] then T ′ rooted on H4 is a RDV -model of G, a
contradiction.

If there is no vertex crossing C1 in T [H1, H2], by Lemma 7 there is no vertex crossing
C2 in T [H3, H4]. Hence T ′ rooted on H1 is a RDV -model of G, a contradiction.

Lemma 10. Let G be a DV, minimally non RDV graph and T a DV-model of G with
4 leaves T [H1, C1] is a branch with at least three vertices and e an edge of T (H1, C1]. If
all the dominated edges of e are in T [C1, C2] then the maximally farthest from e does not
dominate edges of T .

Proof. Let e′ = A′B′ be the dominated edge of e farthest away with B′ ∈ T [C1, A
′]. By

the choice of e′, the subtree T [A′, H3, H4] of T does not have edges dominated by e′.
If e′′ were an edge of T dominated by e′, i.e lab(e′′) ⊆ lab(e′) then e′′ /∈ T [H2, C1]

because of that G is a DV graph. Also e′′ /∈ T [B′, H1) because in this case lab(e′) = lab(e′′)
contradiction by Lemmas 4 or 9. Then e′′ = H1A1. Let T

′ = T − {e′, e′′}+A′A1 +B′H1.
If there is no vertex crossing C1 in T [H1, H2] then T ′ rooted on H1 is a RDV -model of G,
a contradiction. If there is a vertex crossing C1 in T [H1, H2] then T ′ rooted on H3 or H4,
depending on which vertex crossing C2 is absent, is a RDV -model of G, a contradiction.

Lemma 11. Let G be a DV, minimally non RDV graph and T a DV-model of G with
four leaves such that has a vertex crossing C1 in T [H1, H2] and H2C1, H4C2 ∈ E(T ). Let
e ∈ T [C1, C2] with |lab(e)| minimum then e does not dominate simultaneously two edges
one in T [H1, C1] and the other in T [H3, C2].

Proof. Suppose by contradiction that e dominates simultaneously an edge e0 ∈ T [H1, C1]
and e′0 ∈ T [H3, C2]. Among all the edges in these conditions choice e0 and e′0 at minimum
distance. Let e0 = A0B0 and e′0 = A′

0B
′
0 with B0, B

′
0 ∈ T [A0, A

′
0]. Observe that B′

0 �= C2

and B0 �= C1 by the existence of vertices crossing T [Hi, Hi+1] for i = 1, 3. By the election
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of e′0, B0 does not dominate an edge in T [B′
0, C2]. If B0 dominates an edge e′ in T [C1, e]

with e′ = AB and B ∈ T [B0, A] then we build T ′ = T − {e′, e0}+AB0 +A0B is a RDV
model of G rooted on H3. If B0 dominates edges an edge e′ in T (e, C2] then lab(e′) ⊆ lab(e)
and by Lemma 4, lab(e′) �= lab(e). So |lab(e′)| < |lab(e)| a contradiction. If B0 dominates
H2C1 then as e dominates e0 and G is a DV -model every vertex of lab(H2C1) are twins
in G contradicting Theorem 2. Therefore B0 does not dominate edges in T [H2, B

′
0, H4].

Analogously B′
0 does not dominate edges in T [H2, B0, H4]. As Hi does not dominate

edges in T [B0, B
′
0, Hj] for i �= j, i, j ∈ {2, 4} then there are an asteroidal quadruple whose

vertices are in B0, B
′
0, H2, H4 contradicting Theorem 2.

Lemma 12. Let G be a DV non RDV graph and T a DV-model of G with 4 leaves. If
T does not have vertex crossing C1 in T [H1, H2] then for every vertex of T [C1, C2] has a
vertex crossing.

Proof. Suppose by contradiction, that there is a vertex X without vertex crossing X in
T [C1, C2]. Then T rooted on X is a RDV -model of G, a contradiction.

5. DV minimally non RDV graphs and some special connections.

Special connection linking vertices a1 and a2 in a graph were defined in [2] in order to
characterize directed path graph by forbidden asteroidals. Here, we will need only two
types of these connections:

– Type 1: vertices a1, a2, w and edges a1w, a2w.
– Type 2: vertices a1, a2, a, b, c, d and edges a1a, a1b, a2c, a2d, ab, bc, cd, da, ac.

Lemma 13. [1] Let G be a directed path and let a1 and a2 two non adjacent vertices that
are linked by a special connection of Type 1 or Type 2. Then for every DV-model T of G,
the subpath T (a1, a2) is a directed path.

As was proved in [6], this kind of connections are not the only that appears in DV
minimally non RDV graphs.

In this section, like in the previous one, we will study special connections of Type 1 or
Type 2 according to the leafage of the graph.

5.1. Any leafage

Theorem 4. Let G be a DV, minimally non RDV graph, T a DV -model of G with min-
imum number of leaves and then maximizing T [D], e and e′ edges in two branches of T
with the same label. Then the simplicial vertices of the leaves of T in those branches are
linked by a special connection of Type 1 or Type 2.

Proof. Let T [H1, C] and T [H2, C
′] be the branches that contain e and e′ and a1, a2 simpli-

cial vertices of H1 and H2 respectively. By Theorem 2, G does not have false twins then e
and e′ are not incident in H1 and H2 (otherwise a1 and a2 are false twins). If one of them
is incident in a leaf, for example e in H1 then every vertex of lab(e′) has the same end
equal H1 in the direction of C contradicting Lemma 3. Hence none of them is incident in
a leaf.

Let e ∈ T [H1, C] and e′ ∈ T [H2, C
′] maximizing the distance among all pair of edges

with the same label.
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Next, we will prove that Hi is good for i = 1, 2. Suppose by contradiction, that H1 is
bad. Then by Lemma 6, it has a dominated edge e0 in T [D] and no one in other branch
different from T [H1, C]. As lab(e) = lab(e′) and T is a DV -model then e0 ∈ T [C,C ′].
Then e, e0, e

′ appear in this order along T [H1, H2] and as lab(e) = lab(e′) then lab(e′) ⊂
lab(e0) ⊂ H1 i.e H1 dominates e′ ∈ T [H2, C

′] which contradicts the Lemma 6. Therefore,
H1 is good. Analogously, H2 is good.

As |E(T [H1, C])| > 1 we have H1 has a neighbor A1 with A1 �= C. Analogously if A2 is
the neighbor of H2 then A2 �= C ′. Let e1 = A1B1 ∈ T [H1, C], B1 may be C. Analogously,
let e2 = A2B2 ∈ T [H2, C

′]. By Lemma 5, there exists dominated edges of e1 and e2
respectively. Let e′1 and e′2 be maximally farthest from e1 and e2 respectively (i.e there is
no edge e′′i dominated by ei and distinct from e′i such that e′i is between Hi and e′′i for
i = 1, 2). As lab(e) = lab(e′) and T is a DV -model then e′1, e

′
2 ∈ T [H1, H2].

Observe that if e′1 ∈ T [D] as lab(e′1) ⊆ lab(e1) then lab(e′1) ⊆ lab(e) = lab(e′). As
e′ ∈ T [H2, C

′], lab(e′) ⊂ lab(e) and e′1 ∈ T [C,C ′] then lab(e′) ⊆ lab(e′1). Therefore
lab(e′1) = lab(e′) so e′ is dominated by e1 which contradicts the choice of e′1. Therefore
e′1 /∈ T [D]. Analogously e′2 /∈ T [D].

In case that e′1 is incident in H2, by Lemma 3 there is x ∈ lab(e′1) such that x ∈ H1∩H2.
Therefore, a1 and a2 are linked by a special connection of Type 1. Analogously if e′2 is
incident in H1.

Finally, suppose e′1 and e′2 are not incident in H1 and H2 respectively. As e
′
1 ∈ T [A2, C

′],
e′2 ∈ T [A1, C] and lab(e′2) ⊂ A2 we have lab(e′2) ⊂ lab(e′1). Similarity, lab(e′1) ⊂ lab(e′2).
Hence lab(e′1) = lab(e′2). By the choice of e and e′, if e′2 is between e and H1 then e′1 is
between e′ and C ′. In this case lab(e) ⊆ lab(e′1) = lab(e′2) and lab(e′1) = lab(e′2) ⊆ lab(e)
then lab(e′1) = lab(e) then lab(e′1) = lab(e) = lab(e′) = lab(e′2). Hence e′1 = e′ and e′2 = e
because in other case Lemma 4 is contradicted. Therefore, every vertex in lab(e′1) = lab(e′2)
is in A1 ∩ A2 and exist x, y ∈ A1 ∩ A2 being x ∈ H1 and y ∈ H2. Among all x ∈ H1 ∩ A2

we chose one that maximizes |Cx|. Analogously for y. If x ∈ H2 or y ∈ H1 then a1 and a2
are linked by a special connection of Type 1.

Suppose x ∈ H1 \H2 and y ∈ H2 \H1. By Lemma 3, there are x1 �= x and x2 �= y with
x1 ∈ H1 ∩ A1 and x2 ∈ H2 ∩ A2 respectively. Among all the x1 ∈ H1 ∩ A1 we chose one
minimizing |Cx1|, analogously for x2. If x1 and x2 were adjacent some of them would be
in lab(e′1). Suppose x1 ∈ lab(e′1) then x1 ∈ lab(e2) and x1 ∈ H1 ∩ A2. As x1 was chosen
minimizing |Cx1| then Cx = Cx1 and x and x1 are twins in G, a contradiction. Therefore
x1 and x2 are not adjacent. So a1 and a2 are linked by a special connection of Type 2.

In the following we need to introduce some notation because some edges of aDV -model
play an important role.

From now until the end we use the following notation.

Let T [Hi, C] be a branch of T with |V (T [Hi, C])| > 2. We denote ei = AiBi, the edge
of T [Hi, C] such that Ai is the neighbor of Hi and Bi �= Hi. Since ei ∈ T (Hi, C] then
by Lemma 5 there is at least an edge of T dominated edge by ei. Choose e′i a maximally
farthest from ei (i.e there is no edge e′′i dominated by ei and distinct from e′i such that e′i
is between Hi and e′′i ). We denote e′i = A′

iB
′
i with B′

i ∈ T [A′
i, C]. By Lemma 6, e′i is not

in the same branch of ei.

Corollary 2. Let G be a DV, minimally non RDV graph, T a DV-model of G with mini-
mum number of leaves and then maximizing T [D], H1, H2 leaves of T , T [H1, C], T [H2, C

′]
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branches of T , e′1 ∈ T [H2, C
′] and e′2 ∈ T [H1, C]. Then the simplicial vertices of H1 and

H2 are linked by a special connection of Type 1 or Type 2.

Proof. If e′1 = H2A2 or e′2 = H1A1, by Lemma 3 there is x ∈ H1 ∩ H2. Hence the
simplicial vertices of H1 and H2 are linked by a special connection of Type 1. Otherwise,
as e′1 ∈ T [H2, C

′] and e′2 ∈ T [H1, C] then lab(e′1) = lab(e′2). So by Theorem 4, the simplicial
vertices of H1 and H2 are linked by a special connection of Type 1 or Type 2.

5.2. Leafage 4

We assume the same notation of subsections 4.2 and 5.1.

Lemma 14. Let G be a DV non RDV graph and T a DV-model of G with 4 leaves then
maximizing T [D]. If e′1 ∈ T [Hi, Cj] with i �= 1 then the simplicial vertices of H1 and Hi

are linked by a special connection of Type 1 or Type 2.

Proof. In case e′1 = HiAi, observe that Ai may be Cj, since lab(e′1) ⊆ lab(e1) and by
Lemma 3, there is a vertex x in lab(e′1) such that x ∈ H1 then the simplicial vertices of
H1 and H2 are linked by a special connection of Type 1.

Suppose e′1 �= HiAi. By Lemma 5, we know that e′i /∈ T [Hi, Cj]. As T is a DV -
model and e′1 ∈ T [Hi, Cj] then e′i ∈ T [H1, C2]. By Lemma 9, e′i /∈ T [C1, C2] then e′i ∈
T [H1, C1]. Hence, by Corollary 2, the simplicial vertices of H1 and H2 are linked by a
special connection of Type 1 or Type 2.

6. DV non RDV graphs with leafage 4.

In this section we propose formally our conjecture and proved it for graphs with leafage
four.

As was mentioned before, special connections of Type 1 and Type 2 force the direction
in any DV-model of the graph but we know that this kind of connections are not the only
that produce this effect in the model. Although we could not describe every those special
connections we can give a conjecture using a more abstract concept: strong path.

Two non adjacent vertices ai, aj of a DV graph G are linked by a strong path if in
every DV-model T of G, T (ai, aj) is a directed path.

Conjecture: A graph is DV non RDV graph if and only if it has an asteroidal quadru-
ple partitioned in two pairs each one linked by a strong path.

As we said before if a graph is DV non RDV it has an asteroidal quadruple hence its
leafage is at least four. In case the graph is minimal in the difference of both classes we
have proved that it has only one asteroidal quadruple.

In this section we will prove the conjecture in graph of leafage four, before we will
prove some previous results. We assume the same notation of subsections 4.2 and 5.1.

Property 1. Let G be a DV graph and it does not have an asteroidal quadruple. If there
is T a DV model with four leaves satisfying:

1. |V (T [H2, C1])| = |V (T [H4, C2])| = 2,
2. H1, H2, H4 are good,
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3. there are xi, yi ∈ Hi for i = 2, 4 with |Cxi
| > |Cyi | > 1 and x2 crossing C1 in T [H1, H2]

respectively x4 crossing C2 in T [H3, H4].

then there are a succession of edges e1, .., ek in T [H1, H3] with lab(e1) ⊆ H3, lab(ei) ⊆
lab(ei+1), ek ∈ T [C1, C2] and if k > 1 e2i+1 ∈ T [H1, C1] and e2i ∈ T [C2, H3] whether
k �= 2i, 2i+ 1

Proof. Let Txi
= T [Li, Hi], i = 2, 4. Due to x2 is a vertex crossing C1 in T [H1, H2],

L2 �= C1; analogously L4 �= C2. As G does not have an asteroidal quadruple then H3

is a bad leaf in T [H1, H2, H4]. So there is an edge in T [H1, H2, H4] dominated by H3.
By the existence of yi such edge is not H2C1 or H4C2. Let e1 be the nearest H3. If
e1 ∈ T [C1, C2], we are done. If e1 /∈ T [C1, C2] then e1 ∈ T [H1, C1]. As G is a DV graph
e1 ∈ T [H1, L2]. Let e1 = X1Y1 with X1 ∈ T [Y1, C1]. By the choice of e1, it is clear that
H3 is good in T [H2, H4, X1]. As G does not have an asteroidal quadruple, X1 must be
bad in T [H2, H3, H4]. As before exposed, there is an edge there dominated by X1 which
is not H2C1 or H4C2 because there exists yi for i = 2, 4. So it is in T [C1, H3]. Let e2 the
nearest X1. Clearly e1, e2, H3 appear in this order in T [H1, H3] and as lab(e1) ⊆ H3 then
lab(e1) ⊆ lab(e2). If e2 ∈ T [C1, C2], we are done. If e2 ∈ T [C2, H3] as G is a DV graph
then e2 ∈ T [L4, H3]. Let e2 = X2Y2 with X2 ∈ T [L2, Y2]. Recursively applying the above
reasoning the theorem is proved.

Property 2. Let G be a DV graph and it does not have an asteroidal quadruple. If there
is T a DV model with four leaves satisfying:

1. |V (T [H2, C1])| = |V (T [H4, C2])| = 2,
2. H1, H2, H4 are good,
3. there are xi, yi ∈ Hi for i = 2, 4 with |Cxi

| > |Cyi | > 1 and x2 crossing C1 in T [H1, H2]
respectively x4 crossing C2 in T [H3, H4].

4. there are not vertices crossing by C1 nor C2 in T [H2, H4]

then there is a RDV-model of G rooted on H4.

Proof. By Property 1, there is a succession of edges e1, .., ek. Let

ei =

⎧⎪⎨
⎪⎩
OE, if i = k
XiYi, with Xi ∈ T [Yi, C1] if i is odd
XiYi, with Xi ∈ T [Yi, C2] if i is even

Let T1 = T − e1 + Y1H3 if k > 1 let

Ti =

⎧⎪⎨
⎪⎩
Ti−1 − ei + YiXi−1, if i < k
Ti−1 − ei +OXi−1, if i = k and k is odd
Ti−1 − ei + EXi−1, if i = k and k is even

Clearly each Ti for 1 ≤ i ≤ k is a DV -model of G and Tk is a RDV -model of G rooted
on H4.

Property 3. Let G be a DV minimally non RDV graph, T a DV-model of G with four
leaves satisfying:

1. maximizing T [D],
2. |V (T [H2, C1])| = |V (T [H4, C2])| = 2,
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3. there is no vertex crossing C1 in T [H1, H2]

then every T ′, DV-model of G, has four leaves.

Proof. By Lemma 3 there are at least two non simplicial vertices in Hi for i = 1, 2, 3, 4.
Let xi, yi be non simplicial vertices of Hi being |Cxi

| maximum for i = 1, 2, 3, 4.

Claim If there is e1 ∈ T (H1, C1] then Cx2 \H2 ⊂ Cx1 or Cx2 \ {H2, H4} ⊂ Cx1 .

Proof. By Lemma 5, there is a dominated edge of e1 outside T (H1, C1]. As T does not
have vertex crossing C1 in T [H1, H2] then e′1 �= C1H2. Hence e′1 ∈ T [C1, H3, H4]. In case
e′1 ∈ T [C1, C2] as lab(e

′
1) ⊂ lab(e1) ⊂ A1 by Lemma 8 there is a vertex x1 ∈ lab(e′1) ∩H1

so we are done. Analogously if e′1 ∈ T [H3, H4].

Now we will prove that any DV -model has four leaves. If |V (T [H1, C1])| = 2 we can
rename the leaves H1, H2 such that Cx2\H2 ⊂ Cx1 or Cx2\{H2, H4} ⊂ Cx1 . Hence suppose
without loss of generality that Cx2 \H2 ⊂ Cx1 or Cx2 \{H2, H4} ⊂ Cx1 and Cx4 \H4 ⊂ Cx3

or Cx4 \ {H2, H4} ⊂ Cx3 .
Let T ′ be a DV -model of G. As G is DV non RDV , G has an asteroidal quadruple then

ln(T ′) ≥ 4. By Theorem 1, Hi are leaves of T ′ for i = 1, 2, 3, 4. Let X and Y be vertices
of T ′ such that T ′[H1, H3] ∩ T ′[H4, X] = {X} and T ′[H1, H3] ∩ T ′[H2, Y ] = {Y }. By the
existence of xi for i = 1, 2, 3, 4 it is clear that XH4 and Y H2 are edges of T ′. Suppose
ln(T ′) > 4, let H be a leaf of T ′ different from Hi for i = 1, 2, 3, 4. If H dominates Y H2

as |lab(Y H2)| > 1 then x2, y2 are twins of G contradicting Theorem 2. Hence H does
not dominate Y H2, analogously H does not dominate XH4. Therefore, H must have a
dominated edge in T ′[H1, H3], otherwise H1, H2, H3, H or H1, H3, H4, H are good leaves
contradicting that G has one and only one asteroidal quadruple. Let e be a dominated
edge by H in T ′[H1, H3] maximally farthest from H and T ′

1, T
′
2 the connected component

of T ′ − e being H ∈ T ′
1. Note that vertices of lab(e) are twins in GT ′

1
.

By the choice of e and as T ′ is a DV -model, every e′ dominated edge by e if some exists,
is between e and H and then lab(e) = lab(e′).

Hence, in case e′ exists, T ′ has two edges with the same label. As a consequence of
Lemma 4 and Lemma 9 in T equivalents edges to e and e′ respectively are in different
branches. As |V (T [H2, C1])| = |V (T [H4, C2])| = 2, H2, H4 are good and by Lemma 3
then none of them is in T [H2, C1] + T [H4, C2] then they are one in T (H1, C1] and the
other T (H3, C2]. By Theorem 4, the simplicial vertices of H1 and H3 are linked by a
special connection of Type 1 or Type 2. If the connection of Type 1 then there is x a
vertex of G such that V (T ) \ {H2, H4} ⊂ Cx. By the existence of x, x2, x4 it is clear
ln(T ′) = 4. If the connection of Type 2 then there are vertices x, y, x0, y0 satisfying
V (T )\{H2, H3, H4} ⊂ Cx, V (T )\{H1, H2, H4} ⊂ Cy, x0 ∈ H1, y0 ∈ H3 with Cx0∩Cy0 = ∅.
By the existence of x, y, x0, y0, x2, x4, it is easy to see that ln(T ′) = 4, a contradiction.

In case e does not have dominated edges then it is the only edge whose label is equal
lab(e). Let ẽ be the equivalent edge of e in T and T1, T2 the connected component of T −e.
Clearly V (T ′

i ) = V (Ti) for i = 1, 2 and vertices of lab(ẽ) = lab(e) are twins in GT1 . As e
does not have dominated edges and does not dominate Hi for i = 1, 2, 3, 4 then ẽ must be
in T [C1, C2]. If H1 ∈ V (T1) (H3 ∈ V (T1)) then vertices of lab(ẽ) have the same extreme
to C1 (C2) contradicting Lemma 8.

We will say that a1 and a2 are linked by a strong connection if for every DV-model T
of G, the subpath T (a1, a2) is a directed path.
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Theorem 5. A graph with leafage four is a DV non RDV graph if and only if it has an
asteroidal quadruple a1, .., a4 such that ai, aj and ak, al are linked by a strong connection
being {i, j, l, k} = {1, 2, 3, 4}.
Proof. ⇐ Trivial.

⇒ Let G be a DV minimally non RDV graph. By Corollary 1, l(G) > 3 then as the
hold graphs has four leaves so l(G) = 4. Let T be a DV -model with ln(T ) = 4 and then
maximizing T [D]. By Theorem 1 we know that G has an asteroidal quadruple. As G is
DV minimally non RDV the simplicial vertices of the leaves H1, H2, H3, H4 of T are an
asteroidal quadruple in G. We denote them by a1, a2, a3, a4 respectively.

In case T is a star we will analyze the following situations:

– |V (T [Hi, C])=2 for all i ∈ {1, 2, 3, 4} then by Lemma 7, we are done.
– |V (T [Hi, C])| > 2 for some i ∈ {1, 2, 3, 4}, to fix ideas |V (T [H1, C])| > 2, then by

Lemma 5 there is e′1 such that e′1 ∈ T [Hj, C] for j �= 1, to fix ideas j = 2. Therefore
there is a special connection of Type 1 or 2 between a1 and a2.

– |V (T [Hj, C])| > 2 for j ∈ {3, 4} then there is e′j. By the type of connection between
a1 and a2, e

′
j /∈ T [H1, H2] then there is a special connection between a3 and a4 of

Type 1 or 2, we are done.
– |V (T [Hj, C])| = 2 for j = 3, 4. Clearly if there is a vertex crossing C in T [H3, H4]

then there is a special connection between a3 and a4 of Type 1 or 2, we are done.
Suppose there is no vertex crossing C in T [H3, H4]. Then by Lemma 2, there are
vertices crossing C in T [H3, H1] and T [H4, H2] or viceversa. Suppose that there are
vertices crossing C in T [H3, H1] and T [H4, H2].
On the other hand, there are four vertices v1, v2 ∈ H4 ∩ C and v′1, v

′
2 ∈ H3 ∩ C

such that Cvi ∩ Cv′j = {C}. Suppose that |Cv2| and |Cv′2| are maximum. If v2 ∈ H1

and v′2 ∈ H2, there is a special connection between a1 and a4 of Type 1 or 2 and
a special connection between a2 and a3 of Type 1 or 2, we are done. Analogously
if v2 ∈ H2 and v′2 ∈ H1. Suppose v2, v

′
2 /∈ Hi for i = 1, 2. Let Tv2 = T [H4, X2] and

Tv′2 = T [H3, X
′
2]. By before exposed X2, X

′
2 �= H1, H2. It is easy to prove that X2 is

good in T [H3, H2, X
′
2] and X ′

2 is good in T [H3, H2, X2]. Then G has two asteroidal
quadruple contradicting Theorem 2.

Suppose T is not a star. Let C1 and C2 be the vertices of degree 3 in T . In order to fix
ideas H1, H2 ∈ Bouq(C1) and H3, H4 ∈ Bouq(C2).

We will analyze two cases:

1. There is a vertex crossing C1 in T [H1, H2]. Hence by Lemma 7, there is a vertex crossing
C2 in T [H3, H4]. By Lemma 2, each vertex of branches has a crossing. It is clear that
T (a1, a2) and T (a3, a4) are directed paths.

(a) |V (T [Hi, Hi+1])| = 3 for i = 1, 3. Therefore there are two vertices x1 ∈ N [a1]∩N [a2]
and x2 ∈ N [a3]∩N [a4]. Then ai and ai+1 are linked by a special connection of Type
1, for i = 1, 3. Therefore ai and ai+1 are linked by a strong connection.

(b) |V (T [Hi, Hi+1])| > 3 for some i ∈ {1, 3}, there is at least a branch with more than
two vertices and by Lemma 5, there are edges in this branch having dominated
edges outside.

i. There is at least a branch whose edges has only dominated edges in T [C1, C2].
In order to fix ideas, e′3 ∈ T [C1, C2]. Observe that if |V (T [C ′, H4])| > 2 then
e′4 /∈ T [H1, H2, C2] because T is a DV -model. In this case, e′4 ∈ T [C2, H3] then,
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by Lemma 14, a3 and a4 are linked by a special connection of Type 1 or Type
2. Hence a3 and a4 are linked by a strong connection.
Suppose |V (T [C2, H4])| = 2. By Lemma 10 there is only one edge with label
contained in lab(e′3) it is e

′
3 itself. Therefore G \ lab(e′3) has only two connected

components, one containing a1, a2 and the other containing a3, a4.
Let T1 be the connected component of T − e′3 containing H1, H2 and T2 the
other. As e′3 does not have dominated edges in T [A′

3, H3, H4], we have B′
3 is

always a leaf in each clique tree of GT2+e′3 . Hence l(GT2+e′3) = 3. Also if A′
3 �= C2

then it does not have dominated edges in T [H3, C2], otherwise let e = AB be
a dominated edge by A′

3 with B ∈ T [A,C2] and T ′ = T − {e, e′3}+B′
3B +A′

3A
it is a RDV -model of G rooted on H1 or H2, a contradiction.
Let T ′ be other DV -model of G. Let ẽ′3 be the edge of T ′ such that lab(ẽ′3) =
lab(e′3). It is clear from Lemma 10 and connectivity that if T ′

1 and T ′
2 are the

two connected components of T ′− ẽ′3 then V (T ′
1) = V (T1) and V (T ′

2) = V (T2).
On the other hand, there is v ∈ V (G) ∩ lab(e′3) such that V (T ′

2) \ {H3, H4} ⊆
Cv ⊆ V (T ′

2) \H4. Clearly, ln(T
′
2) ≤ 4. We choose v maximizing |Cv|.

– ln(T ′
2) = 4 then Cv = V (T ′

2) \ {H3, H4}. On the other hand, by Lemma
3, there are at least 4 vertices v1, v

′
1, v2, v

′
2 with v′i ∈ H3 for i = 1, 2 and

vj ∈ H4 for j = 1, 2 such that |Cv′i ∩ Cv| ≥ 1, |Cvj ∩ Cv| ≥ 1, |Cv′2| > |Cv′1 |
and |Cv2 | > |Cv1|.
Now, if T ′(a3, a4) is not a directed path of T ′ we must analyze the following
2 situations showed in Figures 2 and 3 according to the positions of v2 and
v′2. In both figures we draw only T ′

2 being H3, H4;B,A its leaves, X, Y
the vertices of degree 3, may be the same, Y ∈ T ′

2[B,X], lab(e′3) ⊂ A and
lab(e′3) ⊂ B.

v v

vj
vjvi

´ vi
´

B Y X A B Y X A

H3 H4
H3 H4

Fig. 2. T ′
2 is a proper subtree of T ′ a DV-model of G

By the symmetry we can assume in Figure 2 that v′2 is a vertex crossing
Y in T ′

2[H3, A] and v2 is a vertex crossing X in T ′
2[H4, A]. Hence T ′

2 rooted
on A is a RDV -model of GT ′

2
. We will denote this RDV -model by T ′

2
A.

Observe that A contains lab(e′3). Hence T1 + T ′
2
A + AB′

3 is a RDV -model
of G rooted on H1 if there is a vertex crossing C1 in T [H1, C2] or on H2 if
there is a vertex crossing C1 in T [H2, C2], a contradiction.
In Figure 3, v′2 is a vertex crossing Y in T ′

2[H3, B] and v3 is a vertex crossing
X in T ′

2[H4, A].
If there is an edge e = LM ∈ T ′

2[X, Y ],M ∈ T ′
2[Y, L] and lab(e) ⊆ B then we

build T ′′
2 = T ′

2−e+LB that is aDV -model of GT ′
2
which can be rooted on A.

Observe that we can conclude as in case of Figure 2, considering T ′′
2 instead

of T ′
2. Therefore none edge of T ′

2[X, Y ] is dominated by B. Analogously,
none is dominated by A.
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B Y X A

H H3 4
ví vj

v

Fig. 3. T ′
2 is a proper subtree of T ′ a DV-model of G

By before exposed if A′
3 �= C2 then A = A′

3 or B = A′
3. Suppose A =

A′
3. Hence, by Property 2, GT ′

2
has a RDV -model rooted on B. As before

exposed T1 + T ′
2
A + AB′

3 is a RDV -model of G rooted on H1 if there is a
vertex crossing C1 in T [H1, C2] or on H2 if there is a vertex crossing C1 in
T [H2, C2], a contradiction.
If A′

3 = C2 then A and B are bad leaf, so both of them has dominated edges.
As none edge of T ′

2[X, Y ] is dominated by A or B then dominated edges
of B are in T ′

2[X,A] and dominated edges of A are in T ′
2[B, Y ]. Therefore,

there are at least two edges one dominated by A and the other dominated
by B with the same label. But the equivalent edges to these are in the same
branch of T2 contradicting the Lemma 4.

– ln(T ′
2) = 3 then Cv = V (T ′

2)\{H4} or Cv = V (T ′
2)\{H3, H4}. Let B,H3, H4

be the leaves of T ′
2 and Y the vertex of degree 3 in T ′

2. We analyze the case in
Figure 4 because the other is similar. (Remember that we assume T ′(a3, a4)
is not a directed path)

B H3

H 4
vj

v

Fig. 4. T ′
2 is a proper subtree of T ′ a DV-model of G

In case v2 is a vertex crossing Y in T ′
2[H4, B], since T ′

2 can be rooted on B
and lab(e′3) ⊆ B the tree T1 + T ′

2
B + A′

3B is a RDV -model of G rooted on
H1 if there is a vertex crossing C1 in T1[H1, C2] or on H2 if there is a vertex
crossing C1 in T1[H2, C2], a contradiction.

Therefore a3 and a4 are linked by a strong connection.
If |V (T [H1, H2])| = 3 then a1 and a2 are linked by a special connection of Type
1. Therefore, they are linked by a strong connection.
If |V (T [H1, H2])| > 3, suppose |V (T [H1, C1])| > 2 then by Lemma 5, there is
e′1 dominated edge by e1.
If e′1 ∈ T [C1, C2], by the previous analysis taking e′1 instead of e′3, then a1 and
a2 are linked by a strong connection.
In case e′1 /∈ T [C1, C2], as e′3 ∈ T [C1, C2] and T is a DV -model then e′1 /∈
T [C2, H4]. By Lemma 10, e′3 does not dominate e′1 then e′1 /∈ T [C2, H3]. Hence
e′1 ∈ T [H2, C1] and by Lemma 14, a1 and a2 are linked by a special connection
of Type 1 or Type 2. Therefore they are linked by a strong connection.
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ii. None branch has edges whose dominated edges are in T [C1, C2]. If e
′
3 ∈ T [H4, C2]

then, by Corollary 2, a3 and a4 are linked by a special connection of Type 1 or
Type 2. Therefore they are linked by a strong connection.
In case |V (T [H1, H2])| = 3 then a1 and a2 are linked by a special connection of
Type 1. Therefore they are linked by a strong connection.
In case |V (T [H1, H2])| > 3, suppose |V (T [H1, C1])| > 2 then by Lemma 5 there
is e′1 a dominated edge by e1. By the type of connection between a3 and a4 it
is clear that e′1 /∈ T [H3, H4]. Hence e′1 ∈ T [H2, C1] then, by Lemma 14, a1 and
a2 are linked by a special connection of Type 1 or Type 2. Therefore they are
linked by a strong connection.

2. There is no vertex crossing C1 in T [H1, H2]. Hence by Lemma 7, there is no vertex
crossing C2 in T [H3, H4]. Also by Lemma 12, ever vertex of T [C1, C2] has a vertex
crossing. Therefore T (a1, a3), T (a1, a4), T (a2, a3) and T (a2, a4) are directed paths.

(a) |V (T [Hi, C1])| = |V (T [Hj, C2])| = 2 for some i = 1, 2; j = 3, 4. By symmetry, sup-
pose |V (T [H2, C1])| = |V (T [H4, C2])| = 2. Let T ′ be a dv-model of G. By Property
3, ln(T ′) = 4. Let X and Y be vertices of T ′ with degree 3.
i. X, Y ∈ T ′[H1, H2]. Clearly X ∈ T ′[H1, H3] or X ∈ T ′[H1, H4]. By symmetry,

suppose X ∈ T ′[H1, H3]. If there is a vertex crossing X in T ′[H1, H3] then by
Lemma 7 there is a vertex crossing Y in T [H2, H4]. Also by Lemma 2 every
vertex of T ′[Hi, X] for i = 1, 3 has a vertex crossing. Therefore T ′(a1, a3) and
T ′(a2, a4) are directed paths. As T (a1, a3) and T (a2, a4) are directed paths then
a1, a3 and a2, a4 are linked by a strong connection. If there is no vertex crossing
X in T ′[H1, H3] then by Lemma 7 there is no vertex crossing Y in T [H2, H4].
Also by Lemma 12, every vertex of T ′[X, Y ] has a vertex crossing. Therefore
T ′(a1, a2), T ′(a1, a4), T ′(a2, a3) and T ′(a3, a4) are directed paths. As T (a1, a4)
and T (a2, a3) are directed paths then a1, a4 and a2, a3 are linked by a strong
connection.

ii. X, Y /∈ T ′[H1, H2]. Then X ∈ T ′[H1, H2] or Y ∈ T ′[H1, H2]. Suppose X ∈
T ′[H1, H2]. If there is no a crossing X in T ′[H1, H2] then there is no vertex cross-
ing Y in T ′[H3, H4]. Therefore T

′(a1, a3), T ′(a1, a4), T ′(a2, a3) and T ′(a2, a4) are
directed paths. As T (a1, a3) and T (a2, a4) are directed paths then a1, a3 and
a2, a4 are linked by a strong connection. If there is a crossing X in T ′[H1, H2]
then by Lemma 7 there is a vertex crossing Y in T ′[H3, H4]. As T (a1, a2) and
T (a3, a4) are not directed paths then ai and ai+1 for i = 1, 3 are not linked by a
special connection of Type 1. Hence |V (T ′[Hi, Hi+1])| > 3 for i = 1, 3. Observe
that if |V (T ′[Hi, X])| ≥ 3 for i = 1, 2 then there exist ei ∈ T ′(Hi, X] having a
dominated edge e′i for i = 1, 2. As G is a DV graph e′1 and e′2 do not be both
in T ′[X,H3, H4]. Hence at least one of them is in T ′[H1, H2] and by Lemma
14, there is a special connection of Type 1 or 2 linking a1, a2 a contradiction
because there is no vertex crossing C1 in T [H1, H2]. Then H1X ∈ E(T ′) or
H2X ∈ E(T ′) and analogously H3Y ∈ E(T ′) or H4Y ∈ E(T ′). By symmetry
suppose that H2X and H4Y are edges of T ′. Hence exist e′1 and e′3.
If e′1 ∈ T ′[X, Y ] then we build a RDV -model with T ′ and T . More clearly, as
e′1 ∈ T ′[X, Y ] by Lemma 10, e′1 does not have a dominated edge in T ′. Hence
G \ lab(e′1) has only two connected component. Let T ′

1 and T ′
2 the connected

component of T ′ − e′1. Let ẽ
′
1 be the equivalent edge to e′1 in T and T1, T2 the

connected component of T − ẽ′1. By before exposed V (T ′
i ) = V (Ti) for i = 1, 2.
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Let ẽ′1 = Ã1B̃1 and e′1 = A′
1B

′
1 with B̃1 ∈ T ′[X, Ã1] and B′

1 ∈ T [C1, A1]. We
build T1 +B′

1Ã1 + T ′
2; it is a RDV -model of G, a contradiction. Analogously if

e′3 ∈ T ′[X, Y ]. Hence e′1 /∈ T ′[X, Y ] and e′3 /∈ T ′[X, Y ]. Then the only possibility
is e′1 = Y H4 and e′2 = XH2 but this contradicts that G is DV .
If e′1 ∈ T ′[H3, Y ] and e′3 ∈ T ′[H1, X] then every edge e ∈ T ′[X, Y ] dominates e′1
and e′3 contradicting Lemma 11.

(b) We assume that (a) does not hold then if |V (T [H1, C1])| = 2 or |V (T [H2, C1])| = 2
then |V (T [H3, C2])| > 2 and |V (T [H4, C2])| > 2.
As there is no vertex crossing T [H3, H4] then e′3 /∈ T [H4, C2] and e′4 /∈ T [H3, C2]. As
T is a DV -model then e′3 ∈ T [H1, C1] and e′4 ∈ T [H2, C1] or viceversa. In both case
there are a special connection of Type 1 or 2 between a1, a3 and a2, a4 or a1, a4 and
a2, a3.

7. Concluding remarks

The celebrate characterization of interval graph given by Lekkerkerker and Boland, related
chordal non interval graph with asteroidal triples. This kind of characterization is given
by Cameron, Hoáng and Lévêque for chordal non DV graph. Analyzing the difference
between the nested classes, we proved [4] that UV non DV graphs always contains an odd
sun that is an odd asteroidal with forced path between consecutives vertices. Since as we
shown before DV non RDV graph must have an asteroidal quadruple it is natural think
if some type of quadruple must appear with strong paths not allowed that any DV-model
could be rooted. Althout we can not describe totally the special connections that force
the direction in any DV-models, we prove that every DV minimally non RDV graph must
have an asteroidal quadruple with two pairs of strong paths when the leafage is four. In
future work, we will try to complete the type of those paths.
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