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EKR sets for large n and r

Benjamin Bond1

Massachusetts Institute of Technology, 77 Mass. Ave. Cambridge, MA, 02139

Abstract. Let A �
�
[n]
r

�
be a compressed, intersecting family and let X � [n]. Let A(X) = fA 2 A : A\X 6= ;g

and Sn;r =
�
[n]
r

�
(f1g). Motivated by the Erd}os-Ko-Rado theorem, Borg asked for which X � [2; n] do we have

jA(X)j � jSn;r(X)j for all compressed, intersecting families A? We call X that satisfy this property EKR. Borg
classi�ed EKR sets X such that jXj � r. Barber classi�ed X, with jXj � r, such that X is EKR for su�ciently
large n, and asked how large n must be. We prove n is su�ciently large when n grows quadratically in r. In the
case where A has a maximal element, we sharpen this bound to n > '2r implies jA(X)j � jSn;r(X)j. We conclude
by giving a generating function that speeds up computation of jA(X)j in comparison with the na��ve methods.

Key words. Erd}os-Ko-Rado Theorem, Intersecting Family, Compressed Family

1. Introduction

The main objects of study in this paper are compressed, intersecting families. We begin by de�ning these
terms. Let

�
[n]
r

�
denote the set of r element subsets of [n] = f1; : : : ; ng. We label elements of

�
[n]
r

�
in

increasing order i.e. for B = fb1; : : : ; brg 2
�
[n]
r

�
we have bi < bi+1. A family A is a subset A � �

[n]
r

�
.

Call A intersecting if B;C 2 A implies B \ C 6= ;. Notice that A is trivially intersecting if n < 2r by
the pigeonhole principle. We de�ne a partial order known as the compression order on

�
[n]
r

�
, as follows.

For A = fa1; : : : ; arg, and B = fb1; : : : ; brg, de�ne A � B if ai � bi for all 1 � i � r. A family A is
compressed if A 2 A implies B 2 A for B � A. We extend this partial order to 2[n]: for C = fc1; : : : ; ckg,
we say A � C if r � k and ai � ci for 1 � i � k. For example, there are

�
n�2
r�2

�
+
�
n�3
r�2

�
elements A 2 �[n]r �

with A � f1; 3g, since the �rst two elements must be f1; 2g or f1; 3g.
Let A be a family and X � [n]. De�ne A(X) = fA 2 A : A\X 6= ;g. An important example of such

a family is Sn;r, de�ned by

Sn;r =
�
[n]

r

�
(f1g) = fA 2

�
[n]

r

�
: 1 2 Ag:

If n and r are clear, then Sn;r will be simpli�ed to S. It is easy to check that S is compressed and
intersecting.

The following theorem is one of the fundamental results about intersecting families.

Theorem 1 (Erd}os-Ko-Rado)[4] (See also [6]) Let n � 2r and let A � �[n]r � be an intersecting family.
Then jAj � jSj.
In [3], Borg considered a variant of the Erd}os-Ko-Rado theorem. Borg asked which sets X � [2; n] =
f2; 3; : : : ; ng have the property that jA(X)j � jS(X)j for all compressed, intersecting families A. Call X
with this property EKR. We assume X � [2; n], because if 1 2 X, then S(X) = S and X is trivially
EKR by the Erd}os-Ko-Rado theorem. There are many X which are not EKR. For example, consider
the Hilton-Milner family N = S([2; r + 1]) [ f[2; r + 1]g, see [7] . Then for X = [2; r + 1], we have
jN (X)j = jS(X)j+ 1.
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The motivation for considering compressed families is twofold. Firstly, the question is uninteresting
without the requirement that A be compressed, since for any x 2 X, we have A =

�
[n]
r

�
(fxg) maximizes

jA(X)j for intersecting families A. Secondly, arbitrary sets lack structure, and by imposing more condi-
tions, we may gain more information. In fact, compressed families and the shifting technique (see [5] for
a survey) are powerful techniques in extremal set theory and can be used to give a simple proof of the
Erd}os-Ko-Rado theorem.

In [3], Borg classi�ed X that are EKR for jXj � r and gave a partial solution in the case jXj < r.
Barber continued with Borg's work in [2] by considering jXj � r. To describe his results, we introduce
the notion of eventually EKR sets, which are �nite sets X � Z�2 such that for �xed r, the set X is EKR
for su�ciently large n. Notice that X does not vary with r or n, but whether or not X is EKR may
depend on r and n.

Theorem 2 (Barber) Let r � 3, n � 2r and X � [2; n] with jXj � r. If X 6� [2; r + 1], then X is
eventually EKR if and only if one of the following holds

1. jXj = 1
2. jXj = 2 and f2; 3g \X = ;
3. jXj = 3 and f2; 3g 6� X
4. jXj � 4:

Barber asked which n are su�ciently large to imply X is EKR. This paper provides bounds on n.

Based on numerical results for small n and r stated in [2], Barber speculated that n � 2r + 2 was
su�cient to imply X is EKR. However, as will be seen in Section 2, this bound does not hold in general.
We replace the suggested bound of n � 2r + 2 with the following conjecture, which is supported by
computer evidence for r � 5.

Conjecture 3 Let r � 2 and X � [2; n] be eventually EKR. Then n > '2r implies X is EKR, where

' = 1+
p
5

2 .

Notice that in the case r = 2, there are only two maximal compressed, intersecting families, namely
S and the family ff1; 2g; f1; 3g; f2; 3gg, so the result is easy in this case, and we assume r � 3.

In order to describe results towards Conjecture 3, we need the notion of generating sets. These were
introduced by Ahlswede and Khachatrian in [1], and Barber considered a variant de�nition, which is
more useful in the present context. Let G � 2[n] and de�ne

F (n; r;G) = fA 2
�
[n]

r

�
: A � G for some G 2 Gg:

Observe that such families are naturally compressed. We may now state the main theorems of this
paper.

Theorem 4 Let r � 3 and let X be eventually EKR with jXj � r. For each c > 1
log 2 , there exists an rc

such that r � rc implies that X is EKR. Furthermore, for r � 6, X is EKR for n > 2r2.

In the case of a single generator, we have a sharper bound, which provides evidence for Conjecture 3.

Theorem 5 Let r � 3, let A = F (n; r;G) be an intersecting family with jGj = 1, and let X be eventually
EKR with jXj � r. Then n > '2r implies jA(X)j � jS(X)j.

The outline of the paper is as follows. In Section 2 we give an example of a family A and set X
showing that the coe�cient '2 in Conjecture 3 cannot be made any smaller. Section 3 gives a necessary
and su�cient condition for a compressed family to be intersecting. This will be useful in the sections
that follow. The proofs of Theorems 5 and 4 occur in Sections 4 and 5, respectively. Finally, in Section
6 we give a generating function that greatly speeds up numerical computations for jF (n; r;G)(X)j in
comparison with the na��ve methods.
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2. A family for which jA(X)j > jS(X)j

In this section, we exhibit a family that shows tightness of the coe�cient '2 in the bound n > '2r of
Conjecture 3.

We remark that for compressed, intersecting families A that are not subfamilies of S, the quantity
jA(X)j is usually maximized by a family of the form F (n; r;G) with jGj = 1 (cf. Theorem 5). For such
families, the family and choice of X given in Proposition 6 appears to be the largest. These observations
motivate Conjecture 3.

Proposition 6 Let X = f2; 4; r+ 2g, A = F (n; r; ff2; 3gg). For r � 4, n � 2r, if jA(X)j > jS(X)j then
n < 3r+1+

p
5r2�22r+25
2 .

Proof. We begin by computing jA(X)nS(X)j and jS(X)nA(X)j. Consider the intersection of an element
of one of these families with the set f1; 2; 3; 4; r + 2g. For an element of S(X)nA(X), the intersection
must be f1; 4g; f1; r + 2g, or f1; 4; r + 2g. For an element of A(X)nS(X), the intersection must be
f2; 3g; f2; 3; 4g; f2; 3; r + 2g; or f2; 3; 4; r + 2g. Given one of these sets I, the number of elements of the
family that have that intersection with f1; 2; 3; 4; r + 2g is � n�5

r�jIj
�
. Thus

jA(X)nS(X)j � jS(X)nA(X)j =
�
n� 5

r � 3

�
+

�
n� 5

r � 4

�
�
�
n� 5

r � 2

�
:

Multiplying by (r�2)!(n�r�1)!
(n�5)! and expanding, we get that jA(X)nS(X)j � jS(X)nA(X)j > 0 if and only

if
n2 + (�3r � 1)n+ r2 + 7r � 6 < 0;

i.e.

n <
3r + 1 +

p
5r2 � 22r + 25

2
;

as desired.

Notice that 3r+1+
p
5r2�22r+25
2 = '2r + o(r), so the bound given in Conjecture 3 is tight, up to lower

order terms.

3. Conditions for a family to be intersecting

This section determines necessary and su�cient conditions for a family to be intersecting that will be
useful later in the paper. The purpose of this section is to prove the following proposition.

Proposition 7 A compressed family A is intersecting if and only if for any A = fa1; : : : ; arg, B =
fb1; : : : brg 2 A there exists a pair i; j, with 1 � i; j � r such that i+ j > maxfai; bjg.

Note that this is most useful in the case where A = F (n; r;G). In this case assume that for some
A;B 2 A, we have an i; j such that i + j > maxfai; bjg. For any C = fc1; : : : ; crg � A and D =
fd1; : : : ; drg � B, we have i+ j > maxfci; djg, thus it is su�cient to �nd such a pair i; j for each pair of
generators.

Proof. Assume that there exists i; j with i+ j > maxfai; bjg. Without loss of generality, assume ai � bj .
Then a1; : : : ; ai; b1; : : : ; bj � bj , so we have i + j > bj elements that are less than or equal to bj , so two
must be the same by the pigeonhole principle, so A \B 6= ;.

The opposite direction is a direct consequence of Proposition 8.1 of [5] in the case of 2 families.
When this proposition is rephrased using the notation of this paper, and the result is restricted to the
present conditions, it states that if A1;A2 are compressed, intersecting families, and Fi 2 Ai is �xed,
then there exists an ` such that jF1 \ [1; `]j+ jF2 \ [1; `]j > `. To apply this result take A1 = F (n; r; fAg),
A2 = F (n; r; fBg), F1 = A and F2 = B, then let i = jA \ [1; `]j, and j = jB \ [1; `]j.

This has the following corollary.

Corollary 8 Let A = fa1; : : : ; arg. There exists an s such that A � [s; 2s� 1] if and only if F (n; r; fAg)
is an intersecting family.
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Proof. If A � [s; 2s�1] and fb1; : : : ; brg; fc1; : : : ; crg � A, let i = j = s, and we have s+s > maxfas; asg �
maxfbs; csg, so F (n; r; fAg) is intersecting. Conversely, assume there exists i and j such that i+j > ai; aj .
Without loss of generality i � j, so

2i � i+ j > ai:

This is su�cient to show A � [i; 2i� 1], since ak � ak+1 � 1.

4. Proof of Theorem 5

Let An;r;s = F (n; r; f[s; 2s � 1]g) for s � 2. Notice that by Corollary 8, for the proof of Theorem 5 it
is su�cient to consider families of this form. In [3], Borg proved that for a compressed family A, and
X;X 0 � [n] with X 0 � X we have jA(X)j � jA(X 0)j. Notice that fr + 2g, f4; r + 2g, f2; 4; r + 2g
and f2; : : : ; jXj; r + 2g, are the minimal elements in each of the cases of Theorem 2, thus it su�ces to
assume X is one of these sets. This is important, because it greatly reduces the number of cases we need
to consider. The proof will break into several cases depending on various possibilities for X, which is
uniquely determined by t := jXj. We assume throughout that t � r and s � 2.

For t � 2, we will show that jAn;r;s(X)j is decreasing in s, so it is su�cient to show that jS(X)j �
jAn;r;s(X)j for small values of s. The case t = 1 is slightly more complicated, since jAn;r;s(X)j is not
decreasing in s. For this case we may write jAn;r;s(X)j = D(n; r; s) + E(n; r; s) where D(n; r; s) is de-
creasing in s, and E(n; r; s)=jS(X)j goes to 0 as r !1. By considering the ratio jAn;r;s(X)j=jS(X)j, we
will show that it is less than 1 for large r, and then use a computer to check the result for small values
of r. We begin by considering the case t � 2.

4.1. The case t � 2

Lemma 9 If t � 2, jAn;r;s(X)j is decreasing in s for s � 3. Also, if n > '2r and t � 3 then jAn;r;2(X)j �
jAn;r;3(X)j.
Proof. First address the case 2s � 1 � r + 2. Let Bn;r;s = An;r;s+1(X)nAn;r;s(X). Observe that if
A = fa1; : : : ; arg 2 Bn;r;s, then as = 2s and as+1 = 2s+ 1. Notice that for an element of An;r;s+1nAn;r;s

there are 2s� 1 possibilities for the �rst s� 1 elements and n� (2s+1) possibilities for the last r� s� 1
elements, hence jAn;r;s+1nAn;r;sj =

�
2s�1
s�1

��
n�2s�1
r�s�1

�
(we may assume that n � r+ s+1, so

�
n�2s�1
r�s�1

� 6= 0).

Similarly since 2s�1 � r+2, there are
�
2s�1�t
s�1

��
n�2s�1
r�s�1

�
elements of An;r;s+1nAn;r;s that do not contain

an element of X (notice this is 0 if t � 2s� 1). Subtracting gives that

jBn;r;sj =
��

2s� 1

s� 1

�
�
�
2s� 1� t

s� 1

���
n� 2s� 1

r � s� 1

�
:

Now consider Cn;r;s = An;r;s(X)nAn;r;s+1(X). Notice that ifA = fa1; : : : ; arg 2 Cn;r;s, then fa1; : : : ; asg �
[s; 2s � 1] and as+1 > 2s + 1. We use the same counting method as used above, namely, we �rst count
the number of elements of An;r;snAn;r;s+1 by considering possibilities for the �rst s elements of a set and
the last r� s elements to �nd that there are

�
2s�1
s

��
n�2s�1
r�s

�
such elements (Note that this di�ers slightly

for the method used to count Bn;r;s since in that case we new the values of the elements in positions s
and s+ 1). Then we count the number of elements of An;r;snAn;r;s+1 that do not contain an element of
X by considering possibilities for the �rst s and last r � s elements, and multiplying. We �nd there are�
2s�1�t

s

��
n�2s�1
r�s

�
. We then subtract to get

jCn;r;sj =
��

2s� 1

s

�
�
�
2s� 1� t

s

���
n� 2s� 1

r � s

�
:

This same method of counting Bn;r;s and Cn;r;s will be repeated several times below with only slight
variations, so we omit the explanations of those computations.

We wish to show that jCn;r;sj � jBn;r;sj. Notice that
�
2s�1
s�1

� � �2s�1�t
s

� � �
2s�1
s

� � �2s�1�t
s�1

�
since

s � 1 � 1
2 (2s � 1 � t). Also,

�
n�2s�1
r�s

� � �
n�2s�1
r�s�1

�
, and combining these shows that jCn;r;sj � jBn;r;sj,

hence jAn;r;sj is decreasing in s when 2s� 1 � r + 2.
Now consider the case that r+2 2 f2s; 2s+1g. Using the counting method described above, modi�ed

for the fact that now for an element of Bn;r;s, we have r + 2 = as or as+1, we �nd that
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jBn;r;sj =
�
2s� 1

s� 1

��
n� 2s� 1

r � s� 1

�

jCn;r;sj =
��

2s� 1

s

�
�
�
2s� t

s

���
n� 2s� 1

r � s

�
:

Let � =
�
2s�1
s

�
and � =

�
2s�t
s

�
. In this case, to show jCn;r;sj � jBn;r;sj, by dividing both sides of this

inequality by
�
n�2s�1
r�s�1

�
and rearranging, it is su�cient to show that

n

r
� 1 +

�

�� �
+
s

r

�
1� �

�� �

�
Since the last term is negative, it is enough to show n

r � 1 + �
��� . Notice that

�
��� is largest in the

case t = 2, and in this case it simpli�es to �
��� = 1 � 1

s � 3
2 for s � 2. This gives jCn;r;sj � jBn;r;sj for

n
r > 2:5.

Now address the case that 2s + 1 < r + 2. Using the counting methods given above, we �nd that if
t � 4 and s � 2, or t 2 f2; 3g and s � 3, then

jBn;r;sj =
�
2s� 1

s� 1

��
n� 2s� 1

r � s� 1

�
�
�
2s� t

s� 1

��
n� 2s� 2

r � s� 1

�
;

jCn;r;sj =
�
2s� 1

s

��
n� 2s� 1

r � s

�
�
�
2s� t

s

��
n� 2s� 2

r � s

�
:

We wish to show that jCn;r;sj � jBn;r;sj. By rearranging terms and using the identities
�

a
b�1

�
=

b
a�b+1

�
a
b

�
,
�
a�1
b�1

�
= b

a

�
a
b

�
, we �nd that showing jCn;r;sj � jBn;r;sj is equivalent to showing�

2s� 1

s

��
n� 2s� 1

r � s

��
1� r � s

n� r � s

�
��

2s� t

s

��
n� 2s� 2

r � s

��
1� s

s� t+ 1
� r � s

n� r � s� 1

�
:

Notice that we may assume that s > t � 1, because otherwise the
�
2s�t
s

�
in the expression for jCj is

0, in which case it is easy to see that jCn;r;sj � jBn;r;sj. From the expression above, we see that to show

jCn;r;sj � jBn;r;sj, it is su�cient to show that 1 � r�s
n�r�s � 1 � s(r�s)

(s�t+1)(n�r�s�1) , which is easy to show

by simple rearrangements of the inequality. Thus jCn;r;sj � jBn;r;sj.
It remains to check the case that t = 3; s = 2. Notice that in this case jCn;r;sj = 3

�
n�5
r�2

� � �n�6
r�3

�
=

2
�
n�5
r�2

�
+
�
n�6
r�3

�
and jBn;r;sj = 3

�
n�5
r�3

�
. Observe that

�
n�6
r�3

�
= (n�r�2)(n�r�3)

(n�5)(r�2)

�
n�5
r�3

�
; and that for n > '2r we

have that (n�r�2)(n�r�3)
(n�5)(r�2) � 1 (this can be shown by clearing denominators, using the quadratic formula

in a = n
r , and then maximizing with respect to r). Combining this inequality with 2

�
n�5
r�2

� � 2
�
n�5
r�3

�
gives

jCn;r;sj � jBn;r;sj.
We now prove Theorem 5 in the case t � 2.

Proof. By Lemma 9, it is su�cient to show that jS(X)j � jAn;r;s(X)j in the cases (t; s) = (2; 2); (2; 3); (3; 2)
and the case t � 4, s = 2. We �rst address the case t � 4, s = 2. Using the same counting meth-
ods as in Lemma 9, we count jS(X)nAn;r;2(X)j = �

n�3
r�1

� � �n�t�1
r�1

�
and jAn;r;2(X)nS(X)j = �

n�3
r�2

�
.

Since jS(X)nAn;r;2(X)j is decreasing in t, we may assume that t = 4. Thus it is su�cient to show�
n�3
r�1

� � �n�5
r�1

� � �n�3
r�2

� � 0. Multiply this expression by (r�1)!(n�r�1)!
(n�5)! to get that this inequality is

equivalent to

(n� 3)(n� 4)(n� r � 1)� (r � 1)� (n� r � 3)(n� r � 2)(n� r � 1) � 0:

By letting n = ar and expanding, we get a quadratic expression in a. By using the quadratic formula,
and then maximizing with respect to r, we �nd that jS(X)j � jAn;r;s(X)j for a > '2.

In the case t = 2; s = 2, we have jS(X)nAn;r;2(X)j = �
n�3
r�1

� � �n�5
r�1

�
and jAn;r;2(X)nS(X)j =�

n�3
r�2

�� �n�5
r�2

�
. We may use the same method as in the case t � 4 to get jS(X)j � jAn;r;s(X)j for n > 2r.
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The case t = 3, s = 2 was addressed in Section 2, so it only remains to check the case t = 2; s = 3. In
this case we have jS(X)nAn;r;3(X)j = 2

�
n�5
r�2

�
+ 2
�
n�6
r�3

�
and jAn;r;3(X)nS(X)j = �n�4

r�3

�
+ 2
�
n�5
r�3

�
+
�
n�6
r�4

�
.

We use the same method, as in the case t � 4, but this time we get a polynomial that is cubic in a. Using
the cubic formula and maximizing, we �nd that jS(X)j � jAn;r;2(X)j for a � 2:46.

4.2. The case t = 1

Lemma 10 For t = 1, we have jAn;r;s(X)j = D(n; r; s) + E(n; r; s) where

D(n; r; s) =

min(r+1;2s�1)X
i=s

�
i� 1

s� 1

��
n� i� 1

r � s� 1

�

and

E(n; r; s) =

(�
r+1
s�1

��
n�r�2
r�s

�
+
P2s�1

i=r+3

�
i�2
s�2

��
n�i
r�s
�

2s� 1 � r + 2

0 otherwise.

Proof. We count the number of elements in An;r;s(X) with the s-th element being i. For i � min(r +
1; 2s� 1), there are i� 1 possibilities for the �rst s� 1 elements, one of the elements must be r+ 2, and
there are n � i � 1 possibilities for the remaining r � s � 1 elements. If 2s � 1 < r + 2, all elements of
An;r;s have the s-th element less than r+2, so we have counted all of An;r;s(X). Otherwise, using similar
logic we get the expression for E(n; r; s).

We address D(n; r; s) and E(n; r; s) separately. We �rst consider D(n; r; s).

Lemma 11 D(n; r; s) is decreasing in s.

Proof. In the case that min(r+1; 2s�1) = r+1, notice that for s � i � r+1 we have that 2(s�1) � i�1,
so by increasing s, each term

�
i�1
s�1

��
n�i�1
r�s�1

�
decreases. Also, increasing s decreases the total number of

terms, so in this case it is easy to see that D(n; r; s) is decreasing in s.
Otherwise, consider D(n; r; s) � D(n; r; s + 1). Let Cs = fA 2 F (n; r; f[s; 2s � 1]g) : r + 2 2

A; r + 2 is in position s+ 1 or greaterg. By reviewing the proof of Lemma 10 it is easy to see that
D(n; r; s) counts jCsj. Thus we have D(n; r; s) � D(n; r; s + 1) = jCsnCs+1j � jCs+1nCsj. We �rst ad-
dress the case that r+2 � 2s+2. Notice that CsnCs+1 consists of elements that have the �rst s elements
less that 2s� 1, and the s+1-st element is at least 2s+2. Also, notice that Cs+1nCs consists of elements
that have s-th element equal to 2s, and the s+ 1-st element is 2s+ 1. By considering such elements, we
see that

jCsnCs+1j � jCs+1nCsj =
�
2s� 1

s

��
n� 2s� 2

r � s� 1

�
�
�
2s� 1

s� 1

��
n� 2s� 2

r � s� 2

�
:

It is easy to see that that this is greater than 0. The only remaining case is when 2s + 1 = r + 2,
and in this case we have jCsnCs+1j � jCs+1nCsj =

�
2s�1
s

��
n�2s�1
r�s�1

�
. Thus we see D(n; r; s) is decreasing

in s.

We now consider E(n; r; s). Notice that when t = 1, we have jS(X)j = �n�2
r�2

�
, so we begin by showing

that E(n; r; s)=
�
n�2
r�2

�
is negligibly small.

Lemma 12 Let n=r = a, and r � 4. Let Q(n; r; s) = E(n; r; s)=
�
n�2
r�2

�
. For any �xed a � 2:2, maxfQ(n; r; s)grs=2

goes to 0 exponentially in r as r !1, for any s. For a � '2, we have Q(ar; r; s) � 3:25r3=2(:954)r.

Proof. We address each term in E(n; r; s) individually. We begin by using Stirling's approximation, and
then use a computer to �nd the maximal term.

We �rst address

P2s�1
i=r+3

�
i�2
s�2

��
n�i
r�s
�

�
n�2
r�2

� for s < r. We will consider each term in the sum individually, so

the same computations apply to the �rst term of E(n; r; s), and to the case s = r, so we omit the analysis
of those cases.

De�ne q(n; r; i; s) by

q(n; r; i; s) =

�
i�2
s�2

��
n�i
r�s
�

�
n�2
r�2

� =
s(s� 1)n(n� 1)

i(i� 1)r(r � 1)
� i!(n� i)!r!(n� r)!

s!(i� s)!(r � s)!(n� i� r + s)!n!
:



EKR sets for large n and r 7

Recall Stirling's approximation n! � p
2�n (n=e)

n
. Although this only holds for large n, in general we

have
p
2�n (n=e)

n � n! � e
p
n (n=e)

n
. Applying this gives

q(n; r; i; s) � s(s� 1)n(n� 1)e4

i(i� 1)r(r � 1)(2�)2
�
s

i(n� i)r(n� r)

2�s(i� s)(r � s)(n� i� r + s)n

� ii(n� i)n�irr(n� r)n�r

ss(i� s)i�s(r � s)r�s(n� i� r + s)n�i�r+snn
:

Notice that many of the powers of e from Stirling's approximation have canceled. We substitute
n = ar. We wish to �nd for which a this term goes to 0 exponentially in r. To do this, divide numerator
and denominator by r2ar, and pull out an r-th root. We also substitute I = i=r, and S = s=r. We have
also used the fact (s� 1)=(i� 1) � s=i. This gives

q(n; r; i; s) � T (a; r; i; s) =
s2a(ar � 1)e4

i2(r � 1)(2�)2
�
s

i(ar � i)(ar � r)

2�s(i� s)(r � s)(ar � i� r + s)a

�
�

II(a� I)a�I(a� 1)a�1

SS(I � S)I�S(1� S)1�S(a� I � 1 + S)a�I�1+Saa

�r

: (1)

We �rst address B(I; S; a) =
II(a� I)a�I(a� 1)a�1

SS(I � S)I�S(1� S)1�S(a� I � 1 + S)a�I�1+Saa
. Notice that we have

the bounds 1=2 � S � 1 and 1 � I � 2S. Using a computer we compute the maximum of B(I; S; a) for
1=2 � S � 1, 1 � I � 2S, and a � 2:2. This can be done using the function minimized constrained in
SAGE. The maximum occurs at S = 1

2 , I = 1, a = 2:2, for a � 2:2 we have B(I; S; a) � B(1; 12 ; 2:2) =
0:992388. In the case that we restrict a � '2, we get B(I; S; a) � :954. Thus each term in Q(n; r; s) goes
to 0 exponentially in r for a � 2:2. To �nish the proof of the �rst part of the proposition, notice that we
have shown each term in the sum goes to 0 exponentially in r. Since there are at most r � 4 terms, the
sum still goes to 0 exponentially in r.

We now wish to evaluate how quickly this term goes to 0 when a � '2. We �rst use a computer to show
that T (a; r; i; s) is decreasing in a. This can be done by computing the partial derivative @

@aT (a; r; i; s)
and then computing the maximum of the partial derivative, using the same commands as above. We �nd
that the maximum is �7:5454� 10�23, which occurs at (a; r; i; s) = (15:0; 19:1; 18:2; 18:1), so T (a; r; i; s)
is decreasing in a. Maximizing the �rst term and using the value for B(I; S; a) computed above, we �nd
T ('2r; r; i; s) � 3:25

p
r(:954)r. Since q(n; r; i; s) � T (a; r; i; s) and there are less than r terms, we get

Q(ar; r; s; t) � 3:25r3=2(:954)r for a � '2.

We need one more lemma.

Lemma 13 For constants b; c 2 N, with b � c and n = ar, we have

lim
r!1

�
n�b
r�c
�

�
n�2
r�2

� = (a� 1)b�c

ab�2
:

Proof. We expand the binomial coe�cients.�
n�b
r�c
�

�
n�2
r�2

� = (r � 2) � � � (r � c+ 1) � (n� r) � � � (n� r � b+ c� 1)

(n� 2) � � � (n� b+ 1)

=
rc�2(n� r)b�c

nb�2

c�1Y
i=2

r � i

r

b+c�1Y
j=0

n� r � j

n� r

b�1Y
k=2

n

n� k

As r goes to in�nity, the products go to 1, hence

lim
r!1

�
n�b
r�c
�

�
n�2
r�2

� = lim
r!1

rc�2(n� r)b�c

nb�2
=

(a� 1)b�c

ab�2
;

as desired.
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We may now �nish the proof of Theorem 5 in the case t = 1.

Proof. Notice D(n; r; 2) =
�
n�3
r�3

�
+ 2
�
n�4
r�3

�
, so by substituting n = ar,

D(n; r; 2)�
n�2
r�2

� =
r � 2

ar � 2
+

(ar � r)(r � 2)

(ar � 2)(ar � 3)
:

Taking the derivative with respect to a, it is possible to show for any r that this is decreasing in a
when a > '2. By Lemmas 11 and 12, we have that

jAn;r;s(X)j
jS(X)j =

D(n; r; s) + E(n; r; s)�
n�2
r�2

� � D(n; r; 2)�
n�2
r�2

� + 3:25r3=2(:954)r

� r � 2

'2r � 2
+

2(r � 2)('2r � r)

('2r � 2)('2r � 3)
+ 3:25r3=2(:954)r

By using calculus and a computer, we check that this is less than 1 for r � 217.
Thus jAn;r;s(X)j � jS(X)j for n � '2r when r � 217. Using the formula given in Lemma 10, we can

check that n � '2r implies jAn;r;s(X)j � jS(X)j for 4 � r � 217, which completes the proof of Theorem
5.

5. Proof of Theorem 4

To prove Theorem 4, we construct a large compressed family B that contains most intersecting families.
It is not intersecting, but it still satis�es jB(X)j � jS(X)j for su�ciently large n, which implies jA(X)j �
jS(X)j for these values of n. Recall that we may assume that when t = jXj = 1 we have X = fr + 2g,
when t = 2 we have X = f4; r + 2g, when t = 3 we have X = f2; 4; r + 2g, and when t � 4 then
X = f2; : : : ; t; r + 2g.
Proposition 14 Let

B = F (n; r; ff1; r + 1gg) [ F (n; r; ff2; 3; r + 2gg) [
r[

s=3

An;r;s:

Let A be an intersecting family. If A 6� S and A 6� An;r;2, then A � B.
Proof. Consider an element A = fa1; : : : ; arg 2 A. We begin by assuming a1 = 1, and we consider the
maximal possible value for a2. For the sake of contradiction, assume that a2 � r + 2. Since ai > ai�1,
we have ai � r + i for i � 2. Since A 6� S, there exists some B = fb1; : : : ; brg 2 A such that b1 � 2.
By Proposition 7, there exists a pair i; j such that i + j > maxfai; bjg. If i = 1, then 1 + j > bj , which

implies bj = j, since for any B 2 �[n]r �, we have bj � j. This implies b1 = 1, which is a contradiction. So
i � 2 and we have i+ j > ai � r + i, hence j > r, which is impossible. Thus we cannot have a2 � r + 2,
so all A 2 A with smallest element 1 are contained in F (n; r; ff1; r + 1gg).

Now assume that A � [s; 2s� 1] for some s � 2. If s � 3, then A 2 An;r;s � B. Thus we may assume
s = 2. If a1 = 1, we know A 2 B by the previous paragraph, so we may assume a1 = 2, which implies
a2 = 3. To show A 2 F (n; r; ff2; 3; r + 2gg), we argue as in the previous paragraph. If a3 � r + 3, then
ai � r + i for i � 3. Since A 62 An;r;2, there exists some B 2 A with B 6� [2; 3]. This implies b2 � 4. By
Proposition 7, there exists a pair i; j with i + j > maxfai; bjg. As in the previous paragraph, if i � 3,
then j > r which is impossible, so i 2 f1; 2g.

We �rst show we cannot have i = 1. If i = 1, then we cannot have j = 1 since a2 = 2. If j � 2, then
notice that since i = 1, we have 1 + j > bj , but we always have bj � j, so bj = j. Since bj < bj+1, this
implies b2 = 2, which contradicts b2 � 4. Thus i 6= 1. Now we show we cannot have i = 2. Assume that
i = 2. If j = 1, then we have 3 > a2 = 3 which is impossible, hence j � 2. However, if j � 2, then we
have 2 + j > bj � j, so bj 2 fj; j + 1g. Since bj�1 � bj � 1, this implies b2 2 f2; 3g, which is false. Thus
i 62 f1; 2g. This is impossible if a3 � r + 3, so we have a3 � r + 2, so A 2 F (n; r; f2; 3; r + 2g).

We now prove Theorem 4.
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Proof. As in the proof of Theorem 5, we �rst consider the case t � 2, then the case t = 1. We con-
sider jB(X)nS(X)j and jS(X)nB(X)j. For all t, we have jS(X)nB(X)j =

�
n�r�2
r�2

�
, since the small-

est element of a set in SnB must be 1 and the second largest must be at least r + 2, and if it in-
tersects X, then it must be r + 2. There are

�
n�r�2
r�2

�
choices for the remaining elements. To count

jB(X)nS(X)j, notice that F (n; r; ff1; r+1gg)nS(X) = ;. Also, F (n; r; ff2; 3; r+2gg) � F (n; r; ff2; 3gg),
and jF (n; r; ff2; 3gg)nS(X)j = �n�4

r�3

�
+
�
n�5
r�3

�
. To count the remaining elements of B(X)nS(X) it is possible

to show that jAn;r;s(X)nS(X)j is decreasing in s by using the same argument as in Lemma 9 (i.e. Consider
Bn;r;s = (An;r;s+1(X)nS(X))n(An;r;s(X)nS(X)) and Cn;r;s = (An;r;s(X)nS(X))n(An;r;s+1(X)nS(X)),
and count jCn;r;sj and jBn;r;sj using the method of Lemma 9, and check that jCn;r;sj � jBn;r;sj). This
gives

jB(X)nS(X)j � �n�4
r�3

�
+
�
n�5
r�3

�
+ jAn;r;3(X)nS(X)j+ rjAn;r;4(X)nS(X)j

� �
n�4
r�3

�
+ 3
�
n�5
r�3

�
+

r
��

n�5
r�4

�
+ 3
�
n�6
r�4

�
+
�
n�7
r�5

�
+ 6
�
n�7
r�4

�
+ 3
�
n�8
r�5

��
:

Divide by
�
n�2
r�2

�
. Notice that by Lemma 13, for large r the right hand side is approximately

a� 1

a2
+

3(a� 1)2

a3
+ r

�
a� 1

a3
+

3(a� 1)2

a4
+

(a� 1)2

a5
+

6(a� 1)3

a5
+

3(a� 1)3

a6

�
:

Notice that if we take a = cr, then this goes to 0, hence jB(X)nS(X)j is arbitrarily small for large r.
Also, it is easy to check that

�
n�r�2
r�2

�
=
�
n�2
r�2

�
is increasing in n for any �xed r. So it is su�cient to �nd

an r for which the inequality holds. Notice that�
n�r�2
r�2

�
�
n�2
r�2

� =
(n� r � 2)(n� r � 3) � � � (n� 2r + 1)

(n� 2)(n� 3) � � � (n� r + 1)
:

Since n�r�b
n�b = 1� r

n�b � 1� r
n�r , for 2 � b � r � 1, we get that

�
n�r�2
r�2

�
�
n�2
r�2

� �
�
1� r

n� r

�r�2

:

Take n = cr2 for some constant c. Then some simple manipulations give that

�
1� r

n� r

�r�2

=

 �
1� 1

cr � 1

�cr�1�
1� 1

cr � 1

�1�2c
!1=c

:

As r !1, this goes to e�1=c. Thus for n = cr, jS(X)=B(X)j=�n�2
r�2

�
does not go to 0, but jB(X)=S(X)j !

0 as r !1, so for any c, there exists a value rc such that for n > cr2, we have that jS(X)j � jA(X)j for
all compressed, intersecting families A. In particular, by using calculus and a computer (i.e. by checking
that jB(X)nS(X)j=�n�2

r�2

�
and (1� r

n�r )
r�2 are decreasing in r for su�ciently large r, then �nding when

their sum is less than 1) we �nd that when c = 1 we have r1 = 36 and for c = 2 we have r2 = 6.
The cases for t = 3 and t � 4 are very similar to the case t = 2. We still have jS(X)nB(X)j =�

n�r�2
r�2

�
, but the number of elements in F (n; r; f2; 3; r + 2g)(X) that aren't in F (n; r; f1; r + 2g)(X) is

now
�
n�3
r�2

�� �n�r�2
r�2

�
, and using the same methods as above, this goes to 1� e�1=c as r !1. As above,

(jAn;r;3(X)nS(X)j+rjAn;r;4(X)nS(X)j)=�n�2
r�2

�! 0, so we just need to choose c so that e�1=c > 1�e�1=c.

This is satis�ed for c > 1
log 2 . Thus for n > cr2, we have that jS(X)j � jA(X)j for all compressed,

intersecting families A. In particular, when t � 3, c = 2 we use a computer to �nd that it holds with
r2 = 4.

The case t = 1 is similar to the previous cases, though we also have to address the contribution from
the E(n; r; s) term. However, as shown in Lemma 12, the term E(n; r; s)=

�
n�2
r�2

�
is negligibly small. Using

a similar method to the one used in Lemma 12, we �nd E(2r2; r; s) � :3er2�2r2+r+3r�4r2+2r+6, which
allows us to use a computer to �nd that r2 = 4.
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6. A generating function for jA(X)j

In this section, we introduce a generating function that can be used to compute jA(X)j for any compressed
family A and X � [n]. This method of calculating jA(X)j is much faster in practice than enumerating
elements of A and checking if each intersects X. In our experiments, the method given below was ap-
proximately 40 times as fast.

Before beginning we note that for any non-empty set of generators G � 2[n], we may obtain a set of
generators G0 � �[n]r � such that F (n; r;G) = F (n; r;G0) and jG0j � jGj. Indeed, consider G = fg1; : : : ; gkg 2
G with k � r. Notice that if gi � n�r+ i, then for A = fa1; : : : ; arg � G the inequality ai � gi is trivially
satis�ed. So we may replace gi by n � r + i in G without changing the set of elements generated by G.
Then if k < r we replace G by G[ [n� (r� k)+ 1; n] to get a set with size r. Let G0 be the family of sets
obtained in this way, along with the elements of G with size r. Notice we have F (n; r;G) = F (n; r;G0).
Thus we may assume any set of generators is a family.

For a family A, consider the function fA de�ned by

fA(x1; : : : ; xn) =
X
B2A

Y
i2B

xi:

Notice that fA(1; : : : ; 1) = jAj. Let

�i;X =

(
1 i =2 X

0 i 2 X
:

We de�ne fA(x1; : : : xn)jX=0 = fA(�1;Xx1; �2;Xx2; : : : ; �n;Xxn). Notice that

fA(x1; : : : ; xn)� fA(x1; : : : xn)jX=0 = fA(X)(x1; : : : ; xn):

For A of the form A = F (n; r; ffa1; : : : ; argg) we denote fA by fa1;:::;ar . Proposition 15 gives a
recursive method for computing fa1;:::;an .

Proposition 15 For a compressed family A = F (n; r; ffa1; : : : ; argg), we have

fa1;:::;ar (x1; : : : ; xn) =

arX
i=r

xiffminfaj ;i+j�rggr�1j=1
(x1; : : : ; xn�1);

where fminfaj ; i+ j � rggr�1
j=1 denotes the r� 1 element set where the j-th element is minfaj ; i+ j � rg.

Proof. Consider B 2 A = F (n; r; ffa1; : : : ; argg) with largest element i. Notice we must have r � i � ar,
and bj � aj because B � fa1; : : : ; arg. Since bj � bj+1 � 1, and the largest element of B is i, the j-th
element is at most i+j�r. Combining these observations, we have fb1; : : : ; br�1g � fminfaj ; i+j�rggr�1

j=1.
Conversely, every B such that br = i and fb1; : : : ; br�1g � minfaj ; i+j�rg is in A since A is compressed,
which gives the desired expression.

Remark 16 Observe that B � G = fg1; : : : ; grg and B � H = fh1; : : : ; hrg if and only if B �
fminfgi; higgri=1. Thus by the preceding proposition, we may obtain fA with A = F (n; r;G) for any
set of generators G using the principle of inclusion-exclusion. For example with G = fG;Hg,

fF (n;r;fG;Hg) = fF (n;r;fGg) + fF (n;r;fHg) � fF (n;r;ffminfgi;higgri=1g):

7. Concluding Remarks

Theorems 4 and 5 each serve an important purpose. Previously, there was no known relation between n
and r that guarantees that one of the eventually EKR sets classi�ed by Barber is EKR. Theorem 4 gives
such a bound. However, it is unlikely that the bound given in Theorem 4 is tight, and Theorem 5 gives
a suggestion for the optimal bound.

One possible method for proving Conjecture 3 is by answering the following question, a slight variant
of one posed in [2].

Question 17 Given X, is there a short list of families, one of which maximizes jA(X)j?
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A natural choice for such a list is A = fAn;r;sgrs=1, and this list would be especially useful because of
Theorem 5. However, this does not hold in general, for example when X = f4; r+2g, r = 5, and n = 11,
we have

jAn;r;1(X)j = jS(X)j = 140;

jAn;r;2(X)j = 121;

jAn;r;3(X)j = 136;

jAn;r;4(X)j = 140;

jAn;r;5(X)j = 105;

but
jF (n; r; ff2; 3; 4g; f3; 4; 6; 7gg)(X)j = 142:

One may still hope that A provides such a list for certain values of n and r.
Another possible direction for research concerns t-intersecting families. We say a family A is t-

intersecting if for any A;B 2 A, we have jA \Bj � t.

Question 18 Can our results be generalized to t-intersecting families?

For t-intersecting families, [2] suggests considering

A(s;X) = fA 2 A : jA \Xj � sg
and asks for which X do we have jA(s;X)j � jStn;r(s;X)j for all compressed and t-intersecting A, where
Stn;r = fA 2 �[n]r � : [t] � Ag. We suspect it is possible to use similar techniques to those used in [2] and
this paper to obtain partial results in this more general case.
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