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Abstract

It is shown that Halin graphs are ∆-edge-choosable and that graphs of

tree-width 3 are (∆ + 1)-edge-choosable and (∆ + 2)-total-colourable.

1 Introduction

In this note we present some results concerning the list chromatic index ch′(G) and
the total chromatic number χ′′(G) of graphs G of tree-width 3 (see Section 2 for
proper definitions). One of the central open questions in the field of list colouring
is known as the list colouring conjecture:

Conjecture 1. For all graphs G it holds that ch′(G) = χ′(G).

Conjecture 1 appeared for the first time in print in 1985 [BH85], but was,
according to Alon [Alo93], Woodall [Woo01] and Jensen and Toft [JT95], suggested
independently by Vizing, Albertson, Collins, Erdös, Tucker and Gupta in the late
seventies. If Conjecture 1 is true we have χ′′(G) ≤ ∆(G) + 3 for all graphs G1.
The total colouring conjecture asserts a little more:

Conjecture 2. For all graphs G it holds that χ′′(G) ≤ ∆(G) + 2.

1If we colour the vertices of G using the colours C = {1, . . . ,∆(G) + 3}, then for each edge

there are still ∆(G) + 1 colours of C available, which permits a total colouring if Conjecture 1

holds.
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Figure 1.1: A graph of tree-width 3 and chromatic index 5.

Conjecture 2 has been promoted independently by Behzad [Beh63] and Viz-
ing [Viz76]. Our first result is a list version of Vizing’s theorem for graphs of
tree-width 3.

Theorem 1. For a graph G of tree-width 3 it holds that ch′(G) ≤ ∆(G) + 1.

There are graphs for which this is a sharp bound, see Figure 1.1. Conjecture 2
has been proved for graphs of maximum degree at most 5 by Kostochka [Kos96]
and Rosenfeld [Ros71]. We will use this and a slight variation of the proof of
Theorem 1 to show Conjecture 2 for graphs of tree-width 3 in Section 3.

Theorem 2. For a graph G of tree-width 3 it holds that χ′′(G) ≤ ∆(G) + 2.

A Halin graph is constructed by taking a planar embedding of a tree without
vertices of degree 2 and connecting all leaves of the tree with a cycle that passes
around the tree in the natural cyclic order. Halin graphs have tree-width 3 [Bod88].
In Section 4 we prove Conjecture 1 for Halin graphs.

Theorem 3. For a Halin graph G it holds that ch′(G) = ∆(G).

While still open in general, Conjecture 1 has been verified for some particular
families of graphs. Galvin proved that ch′(G) = ∆(G) for all bipartite multigraphs
G [Gal95]. Ellingham and Goddyn used a method of Alon and Tarsi to show that
every d-regular, d-edge-colourable, planar multigraph is d-edge-choosable [EG96].
Some years later Juvan, Mohar and Thomas showed that ch′(G) = ∆(G) holds for
series parallel graphs G [JMT99]. This class of graphs can also be characterized in
terms of tree-width. Series parallel graphs have tree-width at most 2. Conversely,
a graph has tree-width at most 2 if and only if every biconnected component is
series parallel [Bod98]. This is why we are interested in list edge-colouring graphs
of tree-width 3. The methods presented here are extended in [Lan] in order to
prove Conjecture 1 for graphs of tree-width 3 and a high maximum degree.

2 Graphs of tree-width 3 are (∆(G) + 1)-choosable

We will mostly use standard notation as seen in [Die10]. All graphs are finite and
simple. The size of a graph G is |V (G)| + |E(G)|. H is smaller than G if its size
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is less than the size of G. For a graph G a tree decomposition (T,V) consists of a
tree T and a collection V = {Vt ; t ∈ V (T )} of bags Vt ⊂ V (G) such that

• V (G) =
⋃

t∈V (T ) Vt,

• for each vw ∈ E(G) there exists a vertex t ∈ V (T ) such that v, w ∈ Vt and

• if v ∈ Vt1 ∩ Vt2 then v ∈ Vt for all vertices t that lie on the path connecting
t1 and t2 in T.

A tree decomposition (T,V) of G has width k, if all bags have a size of at
most k + 1. The tree-width of G is the smallest number k for which there exists
a width k tree decomposition of G. As our proofs are based on minimality it is
important to mention that the graphs of tree-width at most k form a minor-closed
family. We call a width k tree decomposition (T,V) smooth if each bag has size
k + 1, no two bags are identical and for each t1t2 ∈ E(T ) the bags of t1 and
t2 share exactly k vertices. A graph of tree-width k has a smooth width k tree
decomposition [Bod98]. Given a tree decomposition (T,V) of G where T is rooted
in some vertex r ∈ V (T ) we define the height of any vertex t ∈ V (T ) to be the
distance from r to t.

An instance of list edge-colouring consists of a graph G and an assignment
of lists L : E(G) → P(N) that maps the edges of G to lists of colours L(e). A
function C : E(G) → N is called an L-edge-colouring of G, if C(e) ∈ L(e) for each
e ∈ E(G) and no two adjacent edges receive the same colour. G is said to be
k-edge-choosable, if for each assignment of lists L to the edges of G, where all lists
have a size of at least k, there is an L-edge-colouring of G. The list chromatic
index, denoted by ch′(G), is the smallest integer k for which a graph G is k-edge-
choosable.

Let G be a graph and L an assignment of lists to the edges of G. For an L-edge-
colouring C of some subgraph H ⊂ G we call a colour c of the list of an uncoloured
edge e available, if no edge adjacent to e has already been coloured with c. The
set of available colours of e is called the list of remaining colours and denoted by
LC(e). We can always try to colour G greedily, by iteratively colouring the edge
with the smallest list of available colours with an arbitrary available colour.

For a subset of vertices W ⊂ V (G), we denote by G〈W 〉 the graph with vertex
set W ∪ N(W ) and edge set E(G) \ E(G − W ). Let G be a graph with an
assignment of lists L to the edges of G such that each list L(vw) has a size of at
least max(degG(v), degG(w)) + 1. Suppose that for some proper subset of vertices
W ⊂ V (G), we can find an L-edge-colouring C of the graph G −W . In order to
extend C to an L-edge-colouring of G we need to find an LC-colouring of G〈W 〉.
For an edge w1w2 ∈ E(G) with w1, w2 ∈ W we have

|LC(w1w2)| = |L(w1w2)|. (2.1)
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Figure 2.1: The integers on the edges indicate the minimum sizes of the respective
lists.

For an edge vw ∈ E(G) with w ∈ W and v ∈ V (G) \W , we have

|LC(vw)| ≥ |L(vw)| − degG−W (v) ≥ degG〈W 〉(v) + 1, (2.2)

since max(degG(v), degG(w)) ≥ degG(v) = degG−W (v) + degG〈W 〉(v). In the proofs
of the following results, we will generally assume that the size of each list is exactly
the size of its given lower bound. The next theorem has already been mentioned
in the introduction.

Theorem 4 (Galvin, 1994). Let G be a bipartite graph; then ch′(G) = ∆(G).

Lemma 2.1. Let G be a cycle e1, . . ., en with an additional edge f that is incident
exactly to the one vertex of C that e1 and en share. For any assignment of lists L,
where each list has a a size of at least 2 for all edges and the size of the list of e1
is at least 3, there is an L-edge-colouring.

Proof. If there is a colour c ∈ L(en) \ L(f), colour en with c and finish greedily.
This yields L(f) = L(en) and so there is a colour c ∈ L(e1)\(L(f)∪L(en)). Colour
e1 with c and finish greedily.

The next lemma implies Theorem 1.

Lemma 2.2. Let G be a graph of tree-width at most 3 with an assignment of lists
L such that each list L(vw) has a size of at least max(deg(v), deg(w))+1 for each
edge vw ∈ E(G). Then there is an L-edge-colouring of G.

Proof. We will assume that the lemma is wrong and obtain a contradiction. Let
G be a smallest counterexample to the lemma with an assignment of lists L to the
edges of G for which each L(vw) has a size of at least max(deg(v), deg(w)) + 1 for
each edge vw ∈ E(G) such that there is no L-edge-colouring of G.

If there is a vertex v ∈ V (G) of degree at most 2, we can find an L-edge-
colouring of G − v by minimality and extend this to an L-edge-colouring of G
by colouring the edges adjacent to v greedily from the lists of remaining colours.
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Therefore we might assume that G has a minimum degree of at least 3. This
implies that G has tree-width 3, since the bag of any leaf of a width 2 tree-
decomposition contains a vertex of degree at most 2. Let (T,V) be a smooth
width 3 tree decomposition of G where T is rooted in some arbitrary vertex. Let
t ∈ V (T ) be a vertex of degree at least 2 in T and of maximum height.

Suppose the neighbourhood of t contains at least two leaves t1, t2 ∈ V (T ).
Since (T,V) is smooth, there are vertices v1 ∈ Vt1 and v2 ∈ Vt2 which are uniquely
in Vt1 and Vt2 . We have deg(v1) = deg(v2) = 3, v1 and v2 are not adjacent and
|N(v1) ∪N(v2)| ≤ 4. By minimality we can find an L-edge-colouring of the graph
G− v1 − v2. If v1 and v2 have the same neighbourhood we can extend this to an
L-edge-colouring of G by applying Theorem 4 to the bipartite graph G〈{v1, v2}〉,
as their lists of remaining colours have each a size of at least 3 by (2.2). If v1
and v2 have distinct neighbourhoods, colour the two edges in G〈{v1, v2}〉 that are
adjacent to vertices outside of N(v1) ∩ N(v2) greedily. We can extend this to
an L-edge-colouring of G by applying Theorem 4 as the uncoloured edges form a
4-cycle and their lists of remaining colours have each at least size 2 by (2.2).

So we can assume that t is adjacent to exactly one leaf t0 ∈ V (T ). As (T,V) is
smooth and t has maximum height, there are vertices w0 ∈ Vt0 and w1 ∈ Vt ∩ Vt0

that appear uniquely in Vt0 and Vt ∩ Vt0 . Let Vt = {w1, w2, w3, w4}. Since w0

appears uniquely in the bag of the leaf t0, it has a degree of at most 3. So
deg(w0) = 3 and we may also assume that w0w4 /∈ E(G). Further, since the
neighbours of w1 are either in Vt0 or Vt, w1 has a degree of at most 4.

Now if deg(w1) = 3, we can choose an L-edge-colouring of G − {w0, w1} by
minimality and extend this to an L-edge-colouring of G as follows. If w1w4 is an
edge, colour it with an arbitrary colour and apply Lemma 2.1 to G〈{w0, w1}〉 −
w0w4. So N(w1) = {w0, w2, v1} and we can colour w0w1 with an arbitrary colour
and apply Theorem 4 to the 4-cycle G〈{w0, w1}〉−w0w1. This yields deg(w1) = 4.

We pick a final L-edge-colouring of G − w0 − w1 by minimality. In order to
extend this to an L-edge-colouring of G we need to colour the edges of the graph
G〈{w0, w1}〉 from the lists of remaining colours. This instance of list edge-colouring
is shown in Figure 2.1. The lower bounds on the lists of remaining colours are given
by (2.1) and (2.2). Colour w1w2 with some colour c ∈ L(w1w2) \ L(w1w4), colour
the edge w2w0 greedily and finish as shown in Lemma 2.1. A contradiction.

We are now ready to proof Theorem 1.

of Theorem 1. Let L be an assignment of lists to the edges of G such that each
list has a size of at least ∆(G) + 1. Since for each edge vw ∈ E(G) we have
max(deg(v), deg(w))+1 ≤ ∆(G)+1, there is an L-edge-colouring of G by Lemma 2.2.
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3 Graphs of tree-width 3 are (∆+2)-total-colourable

As mentioned in the introduction Conjecture 2 is true for graphs of maximum
degree at most 5. In this section we handle the case where a graph has tree-width
3, and maximum degree greater than 5 and use this to proof Theorem 2.

An instance of list total colouring consists of a graph G and an assignment
of lists L : V (G) ∪ E(G) → P(N) to the vertices and edges of G. A function
C : V (G) ∪ E(G) → N is called an L-total-colouring of G, if C(v) ∈ L(v) for
each v ∈ V (G), C(e) ∈ L(e) for each e ∈ E(G), no two adjacent vertices receive
the same colour, no two adjacant edges receive the same colour and no edge has
the same colour as one of its ends. G is said to be k-total-choosable, if for each
assignment of lists L to the vertices and edges of G, where all lists have a size of
at least k, there is an L-total-colouring of G.

Let G be a graph and L an assignment of lists to the edges and vertices of G.
For an L-total-colouring C of some subgraph H ⊂ G we call a colour c of the list
of an uncoloured edge e available, if no edge adjacent to e and no endvertex of e
has already been coloured with c. Similarly we call a colour c of the lists of an
uncoloured vertex v available, if none of the edges and vertices adjacent to v have
already been coloured with c. The set of available colours of an edge or vertex x
is called list of remaining colours and denoted by LC(x). We can always try to
colour G greedily, by iteratively colouring the edge or vertex with the smallest list
of available colours with an arbitrarily available colour.

For ∆ ≥ 1, let G be a graph with an assignment of lists L to the edges and
vertices of G such that the list of each edge vw and each vertex w has a size
of at least ∆ + 2. Suppose that for some proper subset of vertices W ⊂ V (G),
we can find an L-total-colouring C of the graph G − W . In order to extend C
to an L-total-colouring of G we need to find an LC-colouring of G〈W 〉. Since
∆ ≥ degG(v) = degG−W (v) + degG〈W 〉(v), we have for an edge vw ∈ E(G) with
w ∈ W and v ∈ V (G) \W

|LC(vw)| ≥ |L(vw)| − degG−W (v)− 1 ≥ degG〈W 〉(v) + 1. (3.1)

For any vertex w ∈ W we have

|LC(w)| ≥ |L(w)| − |N(w) \W |. (3.2)

The proof of the following lemma mirrors the proof of Lemma 2.2.

Lemma 3.1. Let G be a graph of tree-width at most 3 with an assignment of
lists L to the vertices and edges of G such that each list has a size of at least
max(5,∆(G)) + 2. Then G has an L-total-colouring.
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Proof. We will assume the lemma is wrong and obtain a contradiction. Let G be a
smallest counterexample to the lemma with an assignment of lists L to the vertices
and edges of G for which each list has a size of at least ∆ := max(5,∆(G)) + 2
such that there is no L-total-colouring of G.

If there is a vertex v of degree at most 2, we can find a L-total-colouring of
G − v by minimality. By (3.1) and (3.2) the lists of remaining colours of G〈{v}〉
retain sizes large enough to extend this colouring greedily. Therefore we might
assume that G has a minimum degree of at least 3. As before it follows that G has
tree-width 3. Let (T,V) be a smooth width 3 tree decomposition of G where T is
rooted in some arbitrary vertex and let t ∈ V (T ) be a vertex of degree at least 2
in T of maximum height.

Suppose the neighbourhood of t contains at least two leaves t1, t2 ∈ V (T ).
Since (T,V) is smooth and t has maximum height, there are vertices v1 ∈ Vt1 and
v2 ∈ Vt2 that are uniquely in Vt1 respectively Vt2 . We have deg(v1) = deg(v2) = 3,
v1 and v2 are not adjacent and |N(v1)∪N(v2)| ≤ 4. By minimality we can find an
L-total-colouring of the graph G−v1−v2. If v1 and v2 have the same neighbourhood
we first apply Theorem 4 to the bipartite graph induced by the edges adjacent to
v1 and v2. This is possible since the lists of remaining colours have sizes of at least
3 by (3.1). The lists of the vertices v1 and v2 retain at least one available colour
by (3.2). So we can finish colouring greedily to extend this to an L-edge-colouring
of G. If v1 and v2 have distinct neighbourhoods, colour the two uncoloured edges
adjacent to vertices outside of N(v1)∩N(v2) greedily. We apply Theorem 4 to the
bipartite graph induced by the edges between {v1, v2} and N(v1) ∩ N(v2), which
is possible because their lists of remaining colours have each a size of at least 2
by (3.1). As before colour the vertices v1 and v2 greedily to extend this to an
L-edge-colouring of G.

Thus we can assume that t is incident to exactly one leaf t0 ∈ V (T ). Since
(T,V) is smooth, there are vertices w0 ∈ Vt0 and w1 ∈ Vt ∩ Vt0 that appear
uniquely in Vt0 respectively Vt ∩ Vt0 . By minimality there is an L-total-colouring
C of G− w0w1. Delete the colour of w0 from C. As deg(w0) = 3 and deg(w1) ≤ 4
we can finish greedily. Contradiction.

4 Halin graphs are ∆-edge-choosable

To show the case where ∆(G) = 3 of Theorem 3 we will use a result of Ellingham
and Goddyn [EG96].

Theorem 5. Let G be a d-regular planar graph. If G is d-edge-colourable, then G
is d-edge-choosable.

The next Lemma is a corollary to the 4 Colour Theorem, which is equivalent
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to the statement that every bridgeless cubic planar graph chromatic index 3. We
include it for sake of completeness.

Lemma 4.1. Let G be a 3-regular Halin graph. Then G is 3-edge-colourable.

Proof. We will assume that the lemma is wrong and obtain a contradiction. Con-
sider a smallest counterexample G to the lemma with a tree T and a cycle C that
passes along the leaves of T . The cycle C has at least 4 vertices, since otherwise G
is the complete graph on 4 vertices and we are done. Choose an arbitrary vertex
to be the root of T and let v be a vertex of maximum height among the vertices
of degree 3 in T . By maximality v has exactly two neighbours v1 and v2 that
lie on the cycle C. As C has at least 4 vertices, there are distinct vertices v0,
v3 ∈ V (C) to which v1 respectively v2 are adjacent. Let G1 be the graph obtained
from G−v1 by adding the edge v0v2 and v2w, where w is the third neighbour of v.
G1 is a 3-regular Halin graph smaller than G. So by minimality there is an edge-
colouring C1 of G1 using the colours {1, 2, 3}. We can extract an edge-colouring of
G− v1 − v2 − v from the edge-colouring of G1 and extend this greedily to an edge
colouring of G using only the colours {1, 2, 3}. A contradiction.

For a graph G with an assignment of lists L to the edges of G and e, f ∈ E(G)
we call two colours c1 ∈ L(e) and c2 ∈ L(f) compatible if c1 = c2 or if for each
edge g that is adjacent to both e and f the list L(g) contains at most one of the
two colours c1 and c2. The following lemma turns out to be quite useful in order
solve instance of list edge-colourings of small graphs. The idea for the proof can
be extracted from [CL08].

Lemma 4.2. Let G be a graph with an assignment of lists L to the edges of G and
v1v2, w1w2 ∈ E(G) two edges that are not adjacent. If it holds that

|L(v1v2)||L(w1w2)| >
∑

viwj∈E(G)

⌊
|L(viwj)|

2
⌋⌈
|L(viwj)|

2
⌉

then there are two compatible colours c1 ∈ L(v1v2) and c2 ∈ L(w1w2).

Proof. If the lists of the edges v1v2 and w1w2 share a colour c we are done. There-
fore assume that L(v1v2)∩L(w1w2) = ∅. This yields that there are |L(v1v2)||L(w1w2)|
pairs of distinct colours (c1, c2) with c1 ∈ L(v1v2) and c2 ∈ L(w1w2). But an edge

viwj ∈ E(G) for 1 ≤ i, j ≤ 2 can contain both colours of at most ⌊
|L(viwj)|

2
⌋⌈

|L(viwj)|

2
⌉

of those pairs. So if the above inequation holds we can find the desired two com-
patible colours c1 ∈ L(v1v2) and c2 ∈ L(w1w2).

Remark that the inequality holds if all involved lists have a size of exactly k,
where k is an odd number. The next lemma implies that Halin graphs of maximum
degree ∆ ≥ 4 are ∆-edge-choosable.
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Figure 4.1: The integers on the edges indicate the minimum sizes of the respective
lists.
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Figure 4.2: The integers on the edges indicate the minimum sizes of the respective
lists.

Lemma 4.3. Let G be a Halin graph with an assignment of lists L to the edges
of G such that for each edge vw ∈ E(G) the list L(vw) has a size of at least
max(deg(v), deg(w), 4). Then there is an L-edge-colouring of G.

Proof. We will assume that the lemma is wrong and obtain a contradiction. Con-
sider a smallest counterexample G to the lemma with a tree T and a cycle C that
passes along the leaves of T . Let L(vw) be an assignment of lists to the edges
vw ∈ E(G), where each list has a size of at least max(deg(v), deg(w), 4) such that
there is no L-edge-colouring of G. We can assume that G is not a complete graph
on four vertices by Theorem 5 and hence C has at least 4 vertices. Choose an ar-
bitrary vertex to be the root of T and let v be a vertex of maximum height among
the vertices of degree at least 3 in T . By maximality v has deg(v)− 1 neighbours
that lie on the cycle C.

If deg(v) ≥ 4 then v has three neighbours w1, w2 and w3 ∈ V (C) with say
N(w2) = {v, w1, w3} and N(w1) = {v, w0, w2}. We denote by G1 the graph ob-
tained from G− w1 by adding the edge w0w2. Observe that G1 is a Halin graph,
smaller than G and the degrees of w0, w2 and v did not increase. Hence there is
an L-edge-colouring C1 of G1 by minimality (where an arbitrary list of size 4 was
assigned to w0w2). We can extract an L-colouring of the graph G−w1 −w2 −w3

from C1. In order to extend this to an L-edge-colouring of G we need colour the
graph G〈{w1, w2, w3}〉 from the lists of remaining colours. The lower bounds on
the sizes of these lists are given by (2.1) and (2.2). This instance of list edge-

9



Figure 4.3

colouring is shown in Figure 4.1. By Lemma 4.2 we can find two compatible
colours c1 ∈ L(vw1), c2 ∈ L(w2w3). Colour the respective edges with c1 and c2
and finish greedily.

Thus we might assume that deg(v) = 3 and so v has exactly two neighbours
v1 and v2 ∈ V (C). As C has at least 4 vertices, there are distinct vertices v0,
v3 ∈ V (C) to which v1 respectively v2 are adjacent. Further, v is adjacent to
neither v0 nor v2. Let G2 be the graph obtained from G − v1 − v by adding
the edge v0v2 and v2w, where w is the third neighbour of v. As before, G2 is
still a Halin graph, smaller than G and the degree of v0 and v2 did not increase.
So by minimality there is an L-edge-colouring C2 of G2 (where arbitrary lists of
size max(4, deg(w)) was assigned to v0v2 and v2w). We can extend C2 to an L-
edge-colouring of G by colouring the graph G〈{v1, v2}〉 from the lists of remaining
colours, which lower bounds are given by (2.1) and (2.2). Colour the edge between
v and the vertex distinct from v1 and v2 greedily. The remaining instance of list
edge-colouring is shown in Figure 4.2. Colour the edge v0v1 greedily and apply
Lemma 2.1 to the rest. A contradiction.

Note that the lower bound of 4 on the list size in this result is necessary. For
the graph shown in Figure 4.3 the lists L(vw) = {1, . . . ,max(deg(v), deg(w))} for
each edge vw do not permit an L-edge-colouring.

Proof of Theorem 3. Let L be an assignment of lists to the edges of G such that
each list has a size of at least ∆(G). If ∆(G) ≥ 4, there is an L-colouring of G
by Lemma 4.3. Otherwise G is planar, 3-regular and can be 3-edge-coloured by
Lemma 4.1. Hence there is an L-colouring of G by Theorem 5.
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