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Abstract

Let G be a complete k-partite simple undirected graph with parts of sizes p1 6 p2 · · · 6 pk. Let
Pj =

∑j
i=1 pi for j = 1, . . . , k. It is conjectured that G has distance magic labeling if and only if∑Pj

i=1(n− i+1) > j
(
n+1
2

)
/k for all j = 1, . . . , k. The conjecture is proved for k = 4, extending earlier

results for k = 2, 3.

1 Introduction

Let G = (V,E) be a finite, simple, undirected graph of order n. Denoting [n] = {1, 2, . . . , n}, a distance
magic labeling of G [6] (or sigma labeling [4]) is a bijection f : V → [n] such that for all x ∈ V ,∑

y∈N(x)

f(y) = c (1)

for a constant c, independent of x (N(x) is the set of vertices adjacent to x).
Miller, Rodger and Simanjuntak [6] showed that if G is the 2kr-regular multipartite graph H ×K2k

then G has a distance magic labeling (K2k is the complement of the graph K2k). They also showed that
for the complete symmetric multipartite graph Hn,p with p parts and n vertices in each part, Hn,p has
a distance magic labeling if and only if either n is even or both n and p are odd. In addition, they gave
necessary and sufficient conditions for a complete multipartite graph Kp1,p2,...,pk

(where the parts are not
necessarily of equal sizes) to have a distance magic labeling for k = 2, 3. The result for k = 2 also appears
in [4]. For more results and surveys on distance magic labeling see [2, 3, 5].

It has been observed that the problem of characterizing the complete multipartite graphs which have
a distance magic labeling is equivalent to a problem on partitions of [n]: let V = V1 ∪V2 ∪ · · · ∪Vk be the
parts of G = Kp1,p2,...,pk

with sizes p1, p2, . . . , pk, respectively, so that p1 +p2 + · · ·+pk = n. Then, G has
a distance magic labeling if and only if there exists a bijection f : V → [n] such that for all j = 1, . . . , k,∑

i=1,i6=j

∑
x∈Vi

f(x) = c, where c is a constant. This is equivalent to c =
(
n+1
2

)
−
∑

x∈Vj
f(x) for all

j = 1, . . . , k, or
∑

x∈Vj
f(x) =

(
n+1
2

)
/k for all j = 1, . . . , k. Denote sn,k =

(
n+1
2

)
/k. The problem can be

reformulated as follows:

Problem 1. Let n, k and p1, . . . , pk be positive integers such that p1 + · · ·+ pk = n and sn,k is an integer.
When is it possible to find a partition of the set [n] into k subsets of sizes p1, . . . , pk, respectively, such
that the sum of the elements in each subset is sn,k?

Anholcer, Cichacz and Peterin [1] related this problem to a different problem in vertex labeling: let
G be the graph obtained from the cycle Ck by replacing every vertex vi by a clique K[vi] of some order
pi, and joining all the vertices of each K[vi] with all the vertices of K[vj ] whenever vj is a neighbor of
vi in Ck. Then, consider the problem of finding a closed distance magic labeling of G, that is, a magic
labeling where the sum in (1) includes f(x). Clearly, if the partition in Problem 1 is solved for k, then
G has a closed distance magic labeling. A necessary condition for such a partition to exist was observed
in [1]:

Observation 1.1. Assume the setup of Problem 1 with p1, . . . , pk given in a non-decreasing order. Let
Pj =

∑j
i=1 pi for j = 1, . . . , k. If the mentioned partition of [n] exists, then

Pj∑
i=1

(n− i+ 1) > jsn,k for all j = 1, . . . , k. (2)
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It is conjectured here (Conjecture 1.5) that this condition is sufficient. Before formulating the con-
jecture we shall need some notation and definitions:

Definition 1.2. Let n be a positive integer and let P = {p1, p2, · · · , pk} be a set of positive integers

satisfying
∑k

i=1 pi = n. We say that a partition A = {A1, A2, . . . , Ak} of [n] implements the sequence
{pi}ki=1, if there is a bijection f : A → P such that |Ai| = f(Ai) for all i = 1, . . . , k.

Definition 1.3. For any set of integers A, the sum of A, denoted S(A), is the sum of the elements in A.

Definition 1.4. Let n and k be positive integer such that sn,k is an integer. We say that the partition
A = {A1, A2, . . . , Ak} of [n] is equitable if S(Ai) = sn,k for all i = 1, . . . , k.

Conjecture 1.5. Let k < n be positive integers such that sn,k is an integer. Let 1 < p1 6 p2 6 · · · 6 pk
be positive integers such that

∑k
i=1 pi = n. There exists an equitable partition of [n] implementing {pi}ki=1

if and only if (2) holds.

This conjecture was in fact proved in [6] for k = 2, 3. The case k = 2 was independently proved in
[4]. The main result in this paper is:

Theorem 1.6. Conjecture 1.5 holds for k = 4.

The approach used for proving Theorem 1.6 also provides simple proofs for the cases k = 2, 3 (Re-
marks 2.8 and 2.12).

Thus, the k-partite complete graphs for which a magic distance labeling exits are characterized for
k 6 4. This also solves the above mentioned closed distance magic labeling problem from [1] for k = 4.

Note that the case where p1 = 1 is left out in Conjecture 1.5, as this case is different and straight-
forward. Suppose p1 = 1. In order for a partition which implements {pi}ki=1 to be equitable, the set of
size 1 must be {n}, and thus, n = sn,k, which is equivalent to k = (n + 1)/2. Since there can be only
one set of size 1 in an equitable partition, all the other sets must be of size 2. Thus, we can partition the
remaining [n− 1] into k − 1 pairs, in the obvious way, to get an equitable partition.

2 Preliminary results and notation

We first introduce some notation and definitions and prove some preliminary results for general k. We
assume that k and n are such that sn,k is an integer.

Notation 2.1. For a partition A = {A1, A2, . . . , Ak} of [n], we denote d(A) =
∑k

i=1(S(Ai)− sn,k)2.

For any set A and an element x we use the notation A− x for A \ {x} and A ∪ x for A ∪ {x}.
Notation 2.2. Let A = {A1, A2, . . . , Ak} be a partition of [n] and suppose a ∈ Ai and b ∈ Aj , where a < b
and i 6= j. We shall denote by χa,b the operator that acts on A by exchanging a and b between Ai and
Aj . The result is a new partition χa,b(A), which we shall denote Aa,b, where Ai is replaced by Ai− a∪ b
and Aj is replaced by Aj − b ∪ a.

Observation 2.3. Let A = {A1, A2, . . . , Ak} be partition of [n]. Suppose a ∈ Ai and b ∈ Aj where
i 6= j. Then, d(Aa,b) = d(A) if b − a = S(Aj) − S(Ai), d(Aa,b) > d(A) if b − a > S(Aj) − S(Ai), and
d(Aa,b) < d(A) if b− a < S(Aj)− S(Ai).

Proof. Let t = b− a and u = S(Aj)− S(Ai). We have d(Aa,b) = d(A) + 2t(t− u).

Definition 2.4. For a given sequence P = {pi}ki=1 satisfying
∑k

i=1 pi = n, let dPmin be the minimal value of
d(A) over all partitions of [n] which implement P. A partition A implementing P, such that d(A) = dPmin

will be called a minimal partition.

Definition 2.5. Let A be a partition of [n] and let A ∈ A. We say that A is low if S(A) < sn,k, A is high
if S(A) > sn,k, and A is exact if S(A) = sn,k.

Observation 2.6. Suppose there is no equitable partition of [n] implementing {pi}ki=1 and let A be a
minimal partition. Then there is no c ∈ [n] such that c is in a low set of A and c+ 1 is in a high set.

Proof. Assume the contrary, so that c ∈ Ai and c + 1 ∈ Aj where Ai is a low set and Aj is a high set.
We have S(Aj)− S(Ai) > 1. So, d(Ac,c+1) < d(A), by Observation 2.3, contradicting the minimality of
A.
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Lemma 2.7. Let P = {pi}ki=1 be such that
∑k

i=1 pi = n and satisfies (2). Suppose there is no equitable
partition implementing P and let A be a minimal partition of [n] implementing P. Then, there exists a
number t in a low set of A such that t+ 1 is in an exact set of A and there exists a number s in an exact
set of A such that s+ 1 in a high set of A.

Proof. Let Al and Ae be the collections of low and exact sets of A, respectively. Let l = |Al| and e = |Ae|.
Let L =

∑
A∈Al |A| and E =

∑
A∈Ae |A|. If all the elements in the low sets of A are greater than all the

elements in the other sets, then
⋃

A∈Al A = {n− L+ 1, . . . , n− 1, n}, and we have

Pl∑
i=1

(n− i+ 1) =

p1+···+pl∑
i=1

(n− i+ 1) < l · sn,k,

contradicting (2). So there must be an element t in a low set such that t+ 1 is not in a low set. By
Observation 2.6, t+ 1 must be in an exact set. Now, suppose, for contradiction, that all the elements in
the low and exact sets of A are greater than all the elements in the high sets of A. We have

Pl+e∑
i=1

(n− i+ 1) =

p1+···+pl+e∑
i=1

(n− i+ 1) < (l + e)sn,k,

contradicting (2). So, there must be s in a low or exact set such that s + 1 is in a high set. By
Observation 2.6, s must be in an exact set.

Remark 2.8. It follows from Lemma 2.7 that if P satisfies (2) and there is no equitable partition imple-
menting P, then k > 3. This implies Conjecture 1.5 for k = 2.

Lemma 2.9. Let P = {pi}ki=1 be such that
∑k

i=1 pi = n and satisfies (2). If there is no equitable partition
implementing P, then every minimal partition implementing P contains at least one exact set, one low
set with sum sn,k − 1, and one high with sum sn,k + 1.

Proof. Let A be a minimal partition implementing P. By Lemma 2.7, there must be a low set X, an
exact set Z and a number a ∈ X such that a + 1 ∈ Z and an exact set W , a high set Y , and a number
b ∈W such that b+ 1 ∈ Y . Since A is minimal, we must have S(X) = sn,k − 1 and S(Y ) = sn,k + 1, by
Observation 2.3.

In the discussion ahead we shall use diagrams with two horizontal lines. High sets with sum sn,k + 1
appear above the lines, exact sets appear between the lines, and low sets with sum sn,k − 1 are drawn
below the lines. An arrow points from a number to its successor. For example, Figure 1 illustrates the
setup in the proof of Lemma 2.9.

Figure 1

Definition 2.10. We say that two partitions A and A′ of [n] are equivalent, denoted A ≡ A′, if there
exists a bijection f : A → A′ such that S(f(A)) = S(A) for all A ∈ A.

Clearly, if A ≡ A′, then d(A) = d(A′).
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(a) (b) (c) (d) (e)

Figure 2

Lemma 2.11. If A is a minimal partition then the configurations illustrated in Figure 2 are not possible,
given that b 6= a + 1 in all figures, c 6= b + 1 in Figure 2(b), x 6= b + 1 in Figures 2(c) and 2(e), and
x+ 2 6= a in Figures 2(d) and 2(e).

Proof. Suppose the configuration in Figure 2(a) exists. Applying χa,a+1 we obtain an equivalent partition
with b in a low set and b + 1 in a high set, contradicting Observation 2.6. Suppose the configuration in
Figure 2(b) exists. Applying χc,c+1, the element b + 1 gets pushed up to the high set and we obtain a
configuration as in Figure 2(a). Suppose the configuration in Figure 2(c) or Figure 2(d) exists. Applying
χx,x+2, we obtain an equivalent partition with a configuration as in Figure 2(b). If the Configuration in
Figure 2(e) exits, then applying χx,x+2 yields an equivalent partition with a configuration as in Figure 2(a).

In general, if A,B ∈ A, S(B) = S(A) + 1, a ∈ A and a + 1 ∈ B, then, clearly Aa,a+1 ≡ A. Such
actions of the form χa,a+1 will be common in our discussion and we won’t always mention the obvious
fact that the partitions are equivalent.

Remark 2.12. Let P = {p1, p2, p3} be such that p1 + p2 + p3 = n and satisfies (2) for k = 3. Suppose
there is no equitable partition implementing P and let A be a minimal partition implementing P. By
Observation 2.6, Lemma 2.9 and Lemma 2.11(a) we must have the setup illustrated in Figure 3. Note
that we may assume that n ∈ A3 (if n ∈ A2 we apply χt+1,t+2 and if n ∈ A1 we apply χt+1,t+2 ◦ χt,t+1).
Let s be the maximal element in A2 − (t + 1). Since s 6= n and n 6∈ A1 we must have s + 1 ∈ A3, by
Observation 2.6. But this yields a configuration as in Lemma 2.11(a). Thus, Conjecture 1.5 holds for
k = 3.

Figure 3

3 Some lemmas for the case k = 4

Lemma 3.1. Let P = {pi}4i=1 be such that
∑4

i=1 pi = n and satisfies (2). If there is no equitable partition
of [n] implementing P, then every minimal partition implementing P has one low set with sum sn,4 − 1,
one high set with sum sn,4 + 1, and two exact sets.
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Proof. By Lemma 2.9 there is one low set and one high set with the indicated properties, and one exact
set. Since the sum of all the elements is 4sn,4, the fourth set must be exact.

Definition 3.2. Let A be a partition of [n] implementing the sequence {pi}ki=1 and assume A is not
equitable. We define the width of A, denoted ω(A), as the minimal value of y− x over all x, y ∈ [n] such
that y > x and such that y is in a high set of A and x is in a low set. If there are no such x and y we
define ω(A) =∞.

Lemma 3.3. Let P = {pi}4i=1 be such that
∑4

i=1 pi = n and satisfies (2) for k = 4. Suppose there is no
equitable partition of [n] implementing P. Then, there exists a minimal partition of [n] with finite width.

Proof. Let A = {A1, . . . , A4} be a minimal partition of [n] implementing {pi}4i=1 and assume ω(A) =∞.
We shall show that there is an equivalent partition with finite width. By Lemma 3.1, we may assume that
S(A1) = sn,4 − 1, S(A2) = S(A3) = sn,4 and S(A4) = sn,4 + 1. By Lemma 2.7 there exist a ∈ A1 such
that a+ 1 ∈ A2 ∪A3, and b ∈ A2 ∪A3 such that b+ 1 ∈ A4. We may assume that a+ 1 ∈ A2. If b ∈ A2,
then, by Lemma 2.11(a), we must have b = a+ 1. But then ω(A) 6 2, contradicting our assumption. So,
we must have b ∈ A3. If there exist z < w such that z ∈ A2 and w ∈ A4, then z 6= a+1, since ω(A) =∞.
Applying χa,a+1 will yield an equivalent partition with finite width, since it has z in a low set and w in
a high set. If there are z < w such that z ∈ A1 and w ∈ A3, then w 6= b, since ω(A) =∞, and applying
χb,b+1 will yield another equivalent partition with finite width. Thus, there must exist z < w such that
z ∈ A2 and w ∈ A3 (otherwise, all the elements of A1 ∪A2 are greater than all the elements in A3 ∪A4,
contradicting (2)). If w = b, then z < b + 1 ∈ A4 and we have already considered such a setting. So we
assume w 6= b. In this case we can apply χa, a+ 1 ◦ χb,b+1 and obtain an equivalent partition with w in
the high set and z in the low set, and thus, of finite width.

Lemma 3.4. Let A = {X,Y, Z,W} be a minimal partition of [n] implementing {pi}4i=1, of minimal
width among all such minimal partitions. Assume that S(X) = sn,4 − 1, S(Y ) = sn,4 + 1 and S(Z) =
S(W ) = sn,4. Let x ∈ X and y ∈ Y satisfy y − x = ω(A). Suppose x + 1 ∈ A and y − 1 ∈ B, where
A,B ∈ {Z,W}. Then

(i) y − x = 2 or 3, and y − x = 2 if and only if A = B.

(ii) A− (x+ 1) contains no element a such that a− 1 ∈ X

(iii) A− (x+ 1) contains no element a such that a+ 1 ∈ (X − x).

(iv) B − (y − 1) contains no element b such that b+ 1 ∈ Y

(v) B − (y − 1) contains no element b such that b− 1 ∈ (Y − y).

(vi) If A = B, then Y − y contains no element c such that c+ 1 ∈ X − x.

Figure 4 indicates in dotted lines the illegal configurations of (ii)-(vi) for the two cases implied by (i).
Note that in Figure 4(b) the cases (ii) and (iv) are already known from Lemma 2.11(a).

(a) (b)

Figure 4
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Proof. First note that A exists by Lemma 3.3. (i) The existence of z ∈ A satisfying x+ 1 < z < y is not
possible since z would be in the low set of Ax,x+1 while y is in the high set, contradicting the minimality
of ω(A). Similarly, the existence of w ∈ B such that x < w < y − 1 would imply that w is in the high
set of Ay−1,y and x in the low set. Again, a contradiction. Thus, y− x 6 3. If x+ 1 and y− 1 are in the
same set, then they are equal, by Lemma 2.11(a), and in this case y − x = 2.

Now, let a ∈ A − (x + 1). (ii) If a − 1 ∈ X, then Aa,a−1 has x + 1 in a low set and y in a high set,
contradicting the minimality of ω(A). (iii) If a + 1 ∈ X − x we apply χx,x+1 and obtain a setup as in
(ii). The proofs of (iv) and (v) are similar.

(vi) Suppose such c ∈ Y − y exists. Note that Ax,x+2 ≡ A, but now c is in the low set and c+ 1 is in
the high set, contradicting Observation 2.6.

Lemma 3.5. Let A = {Ai}4i=1 be a minimal partition of [n] implementing {pi}4i=1, of minimal width
among all such minimal partitions. Then, the configurations illustrated in Figure 5 are not possible,
assuming x+ 2 6= d (Figures 5(d) and 5(f)) and x 6= d+ 2 (Figures 5(e) and 5(f)).

(a) (b) (c) (d) (e) (f)

Figure 5

Proof. Assume the configuration in Figure 5(a) exists. Since there is symmetry between the roles of x
and d, we may assume that x > d. Assume there exists c 6= n in A2 − (x+ 1) such that c+ 1 6∈ A2. We
have c+ 1 6∈ A1 − x (Lemma 3.4(iii)), c+ 1 6∈ A3 (Lemma 2.11(b)) and c+ 1 6∈ A4 (Lemma 2.11(a)).

Thus, we must have c+1 = x. Let k > 0 be minimal such that c−k ∈ A2 but c−k−1 6∈ A2 (assuming
there exists such k) and denote u = c− k. We have, u− 1 6∈ A1, by Lemma 3.4(ii), and u− 1 6∈ A4, by
Lemma 3.4(v). If u− 1 ∈ A3 it contradicts Lemma 2.11(b). We conclude that such k does not exist.

Thus, if A2 contains any element smaller than x, it must contain {1, 2, . . . , x− 1}. This is impossible,
since d < x. Hence, such c does not exist and we must have that A2 = {x + 1, n − l, . . . , n} for some
l > 0. Let u = n− l. As in the previous paragraph, u− 1 6∈ A1 ∪ (A4 − (x+ 2)) ∪A3. So, we must have
u− 1 = x+ 2. That is, A2 = {x+ 1, x+ 3, . . . , n}.

Using a similar argument as for A2 above we conclude that A3 = {1, 2, . . . , d − 1, d + 1}. Thus,
A1 ∪ A4 = {d, d + 2, . . . , x, x + 2}. Since d + 2 ∈ A4 and x ∈ A1, there must exist a ∈ A4 such that
a + 1 ∈ A1. This would contradict Lemma 3.4(vi), unless a = d + 2 and a + 1 = x. In this case we
must have A1 = {x, d} and A4 = {x + 2, d + 2}. Hence, S(A1) = x + d and S(A4) = x + d + 4. This
yields a contradiction since S(A1) = S(A4) − 2. We conclude that a configuration as in Figure 5(a) is
not possible.

Now, if a configuration as in Figure 5(b) exists, applying χx,x+1 yields an equivalent partition with
a configuration similar to the one in Figure 5(a). If a configuration as in Figure 5(c) exists, applying
χx+1,x+2 yields a configuration similar to the one in Figure 5(a). If a configuration as in Figure 5(d)
exists, applying χx,x+2 yields an equivalent partition with a configuration similar to the one in Figure 5(c).
If a configuration as in Figure 5(e) exists, applying χx,x+2 yields a configuration similar to the one in
Figure 5(b). Finally, If a configuration as in Figure 5(f) exists, applying χx,x+2 yields a configuration
similar to the one in Figure 5(a).

4 Proof of Theorem 1.6

We assume, for contradiction, that dPmin > 0 for the given {pi}4i=1. Let A = {A1, A2, A3, A4} be a minimal
partition of [n] implementing {pi}4i=1, such that ω(A) is minimal among all such minimal partitions. By
Lemma 3.1, we may assume that S(A1) = sn,4 − 1, S(A2) = S(A3) = sn,3 and S(A4) = sn,4 + 1. Let
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x ∈ A1 and y ∈ A4 be such that y−x = ω(A). We may assume that x+ 1 ∈ A2. By Lemma 3.4(i), there
are only two cases to consider: y − x = 2 and y − x = 3.

First assume y − x = 2. That is, x ∈ A1, x+ 1 ∈ A2 and x+ 2 ∈ A4. It will be convenient to notice
that we have the same setup as in Figure 4(b), with X = A1, A = B = A2 and Y = A4. Let B1 = A1−x,
B2 = A2 − (x+ 1), B3 = A3 and B4 = A4 − (x+ 2). We may make two assumptions:

Assumption 1: n 6∈ A1

Assumption 2: maxA2 < maxA4 .
(If n ∈ A1 we apply χx,x+2, which ensures both assumptions. If n 6∈ A1 and Assumption 2 does not

hold, we apply χx+1,x+2.)
Let mi be the maximal elements in Bi for i = 1, . . . , 4. By our assumptions, m1,m2 < n. By

Lemma 2.11(a), m2 + 1 6∈ A4 and by Lemma 3.4(iii), m2 + 1 6∈ B1. Thus, either m2 + 1 ∈ A3 or
m2 + 1 = x. Suppose m2 + 1 ∈ A3. By Assumption 2, there exists k > 1 such that m2 + k ∈ A3 and
m2 + k+ 1 6∈ A3 (otherwise m2 + 1,m2 + 2, . . . , n are all in A3 and m2 would be larger than any element
of A4). Suppose m2 + k + 1 ∈ A4. If k = 1 it contradicts Lemma 3.5(b), and if k > 1 it contradicts
Lemma 2.11(b). Now, suppose m2 +k+1 ∈ A1 and m2 +k+1 6= x. If k = 1 it contradicts Lemma 3.5(e),
and if k > 1 we contradict Lemma 2.11(c). Thus, m2 + k + 1 = x for some k > 0. In any case we have
x− 1 ∈ A2 ∪A3. In particular, x− 1 6∈ A1.

Now, by Lemma 2.11(a), m1 + 1 6∈ A2, and by Observation 2.6, m1 + 1 6∈ A4. It follows that
m1 + 1 ∈ A3. Suppose there exists l > 1 such that m1 + l ∈ A3 and m1 + l + 1 6∈ A3. Note that
m1 + l+ 1 6= x, since we already know that m2 +k+ 1 = x. Since m1 is maximal in A1−x, we must have
m1+l+1 ∈ A2∪A4. Suppose m1+l+1 ∈ A4. If l = 1, then m1+2 ∈ A4 and we contradict Lemma 3.5(a).
If l > 1, then m1+1 6= m1+ l and we contradict Lemma 2.11(a). Now, suppose m1+ l+1 ∈ A2. If l = 1 it
contradicts Lemma 3.5(c). If l > 1, it contradicts Lemma 2.11(b). We conclude that m1 + 1, . . . , n ∈ A3

and thus, m4 < n.
We have m4 + 1 6∈ A2, by Assumption 2, and m4 + 1 6∈ A1, by Lemma 3.4(vi) and the fact that

x − 1 ∈ A2 ∪ A3. So, we must have m4 + 1 ∈ A3 and there exists t > 1 such that m4 + t ∈ A3 and
m4 + t+ 1 6∈ A3 (since m1 + 1, . . . , n ∈ A3). Clearly, m4 + t+ 1 6= x+ 2, so m4 + t+ 1 can only be in A1,
by Assumption 2. Now, m4 + t+ 1 6= x, since m2 + k+ 1 = x. So, m4 + t+ 1 ∈ B1. If t = 1 it contradicts
Lemma 3.5(f), and if t > 1, we have a contradiction to Lemma 2.11(e). This concludes the case where
y − x = 2.

Now assume y − x = 3. By Lemma 3.4, we have x + 1 ∈ A2, x + 2 ∈ A3 and y = x + 3 ∈ A4.
It will be convenient to notice that we have a setup similar to the one in Figure 4(a), with X = A1,
A = A2, B = A3, Y = A4 and y = x + 3. Let B1 = A1 − x,B2 = A2 − (x + 1), B3 = A3 − (x + 2) and
B4 = A4 − (x+ 3).

Let z ∈ B1 and assume z 6= n. We know that z + 1 6∈ A4 by Observation 2.6, z + 1 6∈ A2 by
Lemma 3.4(ii), and z + 1 6∈ A3 by Lemma 2.11(a). Thus, z + 1 ∈ A1. Now, let z ∈ B2 and z 6= n. We
have, z+1 6∈ A4 by Lemma 2.11(a), and z+1 6∈ B1 by Lemma 3.4(iii). Also, z+1 6∈ A3, by Lemma 2.11(b).
Thus, z+1 ∈ B2 or z+1 = x. It follows that either B1 or B2 is equal to {t, t+1, . . . , x−1} for some t > 1
and the other is equal to {s, s + 1, . . . , n} for some s > x + 3. We may assume A1 = {x, s, s + 1, . . . , n}
and A2 = {t, t+ 1, . . . , x− 1, x+ 1} (by applying χx,x+1 if necessary).

Let z > 1 be an element of B4. We have z−1 6∈ A1 by Observation 2.6, z−1 6∈ A2 by Lemma 2.11(a),
and z − 1 6∈ A3 by Lemma 3.4(iv). Thus, z − 1 ∈ A4. Let z > 1 be an element of B3. We have
z − 1 6∈ A1 by Lemma 2.11(a), z − 1 6∈ B4 by Lemma 3.4(v), and z − 1 6∈ A2, by Lemma 2.11(b). Thus,
z − 1 ∈ B3 or z − 1 = x+ 3. We conclude that either B3 or B4 is equal to {1, 2, . . . , t− 1} and the other
is equal to {x + 4, . . . , s − 1} for the same t and s as above. Since none of the Ai’s has size 1, we must
have that 1 < t 6 x − 1 and x + 3 < s 6 n. By applying χx+2,x+3 if necessary, we may assume that
A3 = {1, 2, . . . , t− 1, x+ 2} and A4 = {x+ 3, x+ 4, . . . , s− 1} (Figure 6(a)).

Note that sn,4 = S(A4)− 1 > (x+ 3) + (x+ 4)− 1 = 2x+ 6. Thus, |A2| > 2, that is, t < x− 1. Let A′
be partition consisting of A′1 = A1, A

′
2 = A2 \{t, x+1}∪{t−1, x+2}, A′3 = A3 \{t−1, x+2}∪{t, x+1},

and A′4 = A4 (Figure 6(b)). Note that S(A′i) = S(Ai) for i = 1, . . . , 4, and thus A′ is also minimal
with the same minimal width. Since t < x − 1, we have t + 1 ∈ A′2 and we have a contradiction to
Lemma 2.11(b). This completes the proof.

Remark 4.1. In the case k = 2 there is yet another simple proof:
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(a) (b)

Figure 6

Suppose p1 + p2 = n, p1 6 p2 and
∑p1

i=1(n − i + 1) > sn,2 (Condition (2)). Consider the following
two partitions of [n]: A = {A1, A2} and B = {B1, B2}, such that |Ai| = |Bi| = pi, for i = 1, 2,
A1 = {1, . . . , p1} and B1 = {n − p1 + 1, . . . , n}. We have |A1| < sn,2 since p1 6 p2 and |B1| > sn,2 by
(2). We show that we can switch from A to B by a sequence of operations of the form χa,a+1. Thus, at
some point along the way we must have an equitable partition.

We start with partition A and apply χ1,2 ◦χ2,3 ◦ · · · ◦χp1−1,p1
◦χp1,p1+1. This results in the partition

consisting of {2, 3, . . . , p1, p1 + 1} and {1, p1 + 2, . . . , n}. Then, we apply χ2,3 ◦ · · · ◦ χp1+1,p1+2, resulting
in {3, 4, . . . , p1 + 2} and {1, 2, p1 + 3, . . . , n}, and so on. Eventually we arrive at partition B.

It might be possible to generalize this continuity approach to higher k’s by applying a higher dimen-
sional continuity technique, such as Sperner’s theorem. The problem is to define the right division into
(k − 1)-dimensional simplices.
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