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PERCOLATION WITH SMALL CLUSTERS ON RANDOM GRAPHS

MUSTAZEE RAHMAN

Abstract. Consider the problem of determining the maximal induced subgraph in a
random d-regular graph such that its components remain bounded as the size of the
graph becomes arbitrarily large. We show, for asymptotically large d, that any such
induced subgraph has size density at most 2(log d)/d with high probability. A matching
lower bound is known for independent sets. We also prove the analogous result for sparse
Erdős-Rényi graphs.

1. Introduction

A subset S of a graph G is a percolation set with clusters of size at most τ if all the
components of the induced subgraph G[S] have size at most τ . For instance, independent
sets have clusters of size one. We consider the following problem on random d-regular
graphs and Erdős-Rényi graphs of average degree d. Given a threshold τ what is the
density, |S|/|G|, of the largest percolation sets S with clusters of size at most τ on the
aforementioned graph ensembles? We say S is a percolation set with small clusters when
we do not want to mention the parameter τ explicitly.

Edwards and Farr [9] study this problem for some general classes of graphs under the
notion of graph fragmentability. They consider a natural τ → ∞ version of the problem
and provide upper and lower bounds on densities of percolation sets with small clusters
for bounded degree graphs. Their bound is sharp for the family of graphs with maximum
degree 3, and optimal, in a sense, for several families of graphs such as trees, planar graphs
or graphs with a fixed excluded minor. However, their bounds are not of the correct order
of magnitude for random d-regular graphs.

For random graphs the correct order of the density of percolation sets with small clusters
can be deduced from just considering the largest independent sets (that is, the τ = 1 case).
Bollobás [4] proved that with high probability the density of the largest independent sets in
a random d-regular graph is at most 2(log d)/d for d ≥ 3. The same bound was proved for
Erdős-Rényi graphs of average degree d by several authors (see [6] Theorem 11.25). Frieze
and  Luczak [10, 11] provided lower bounds of order 2(log d− log log d)/d for large d.

Our main result is that relaxing the problem from independent sets to percolation sets
with small clusters provides no improvement to the maximum density for large d. Roughly
speaking, for both the aforementioned graph ensembles we prove that for any τ and large d,
the density of the largest percolation sets with clusters of size at most τ is bounded above
by 2(log d)/d with high probability. In fact, τ may be taken to be of linear order in the size
of the graph. Precise statements are in Section 1.2.
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1.1. Preliminaries and terminology. Let V (G) and E(G) denote the set of vertices and
edges of a graph G, respectively. For an integer τ ≥ 1 define

ατ (G) = max

{ |S|
|V (G)| : S ⊂ V (G) is a percolation set with clusters of size at most τ

}

.

We say that a sequence of events En, generally associated to Gn,d, occurs with high proba-
bility if P [En] → 1 as n → ∞.

We use the configuration model (see [6] chapter 2.4) to sample a random d-regular graph
Gn,d on n labelled vertices. Recall that Gn,d is sampled in the following manner. Each
of the n distinct vertices emit d distinct half-edges, and we pair up these nd half-edges
uniformly at random. (We tactically assume that nd is even.) These nd/2 pairs of half-
edges can be glued into full edges to yield a random d-regular graph. There are (nd−1)!! =
(nd− 1)(nd− 3) · · · 3 · 1 such graphs.

The resulting random graph Gn,d may have loops and multiple edges, that is, it is a
multigraph. However, the probability that Gn,d is a simple graph is uniformly bounded
away from zero at n → ∞. In fact, Bender and Canfield [7] and Bollobás [5] showed that

P [Gn,d is simple] −→
n→∞

e
1−d2

4 .

Also, conditioned on Gn,d being simple its distribution is a uniform d-regular simple graph
on n labelled vertices. It follows from these observations that any sequence of events that
occur with high probability for Gn,d (as n → ∞) also occurs with high probability for a
uniformly chosen simple d-regular graph.

We denote by ER(n, p) an Erdős-Rényi graph on n vertices and edge inclusion probability
p. In this model every pair of vertices {u, v} is independently included as an edge with
probability p. We are interested in the sparse case when p = d/n for a fixed d.

We set the function h(x) = −x log(x) for 0 ≤ x ≤ 1 with the convention that h(0) = 0.
We will use the following properties of h(x) throughout.

(1) h(xy) = xh(y) + yh(x). (1.1)

(2) h(1 − x) ≥ x− x2/2 − x3/2 for 0 ≤ x ≤ 1.

(3) h(1 − x) ≤ x− x2/2 for 0 ≤ x ≤ 1.

The inequalities in (1.1) follow from Taylor expansion. It is clearly valid for x = 1. For
0 ≤ x < 1 note that − log(1 − x) =

∑

k x
k/k. Hence, − log(1 − x) ≥ x + x2/2, which

implies that h(1 − x) ≥ x− (1/2)x2 − (1/2)x3. Furthermore, − log(1 − x) ≤ x + (1/2)x2 +
(1/3)x3(1 + x + x2 · · · ), which shows that − log(1 − x) ≤ x + (1/2)x2 + x3/(3(1 − x)) for
0 ≤ x < 1. Consequently, h(1 − x) ≤ x− (1/2)x2 − (1/6)x3 ≤ x− (1/2)x2.

1.2. Statement of results.

Theorem 1. Let τ = ǫd
log d
d n where 0 < ǫd ≤ 1 and ǫd → 0 as d → ∞. Given ǫ > 0 there

exists a d0 = d0(ǫ, {ǫd}) such that if d ≥ d0, then with high probability any induced subgraph
of Gn,d with components of size at most τ has size at most

(2 + ǫ)
log d

d
n .

Corollary 1.1. For ǫ > 0 and every fixed τ with respect to n there exits a d0 = d0(ǫ) such
that for d ≥ d0,

P

[

ατ (Gn,d) ≤ (2 + ǫ)
log d

d

]

→ 1 as n → ∞ .
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It can be verified with careful bookkeeping in the proof of Theorem 1 that for every such

fixed τ , ατ (Gn,d) ≤ 2(log d+2−log 2)
d with high probability if d ≥ 12. For Erdős-Rényi graphs

we provide a weaker but more explicit result.

Theorem 2. For d ≥ 5, let τ = logd(n) − log log log(n) − log(ωn) where ωn → ∞ with n.
With high probability any induced subgraph of ER(n, d/n) with components of size at most
τ has size at most

2

d
(log d + 2 − log 2)n.

Corollary 2.1. If αER(d) = 2
d(log d + 2 − log 2) then for every fixed τ with respect to n,

P
[

ατ (ER(n, d/n)) ≤ αER(d)

]

→ 1 as n → ∞ .

We provide another interpretation of Corollaries 1.1 and 2.1. Bayati, Gamarnik and
Tetali [3] proved that the quantities α1(Gn,d) and α1(ER(n, d/n)) converge almost surely
to non-random limits as n → ∞. Their argument can be used to show that ατ (Gn,d) and
ατ (ER(n, d/n)) also converge almost surely, as n → ∞, to non-random limits ατ (d) and
ατ (ER(d)), respectively.

It is thus natural to consider the limiting values of ατ
d and ατ (ER(d)) as τ → ∞. Define

α∞(d) = sup
τ

ατ (d) and α∞(ER(d)) = sup
τ

ατ (ER(d)).

In a sense these parameters determine the largest size density of percolation sets in Gn,d

and ER(n, d/n) whose components remain bounded as n → ∞. Corollaries 1.1 and 2.1
along with the matching lower bound of Frieze and  Luczak [10, 11] imply that

lim
d→∞

α∞(d)

(log d)/d
= 2 and lim

d→∞
α∞(ER(d))

(log d)/d
= 2.

We briefly discuss what is known about ατ (d) and α∞(d) for small values of d. For
independent sets, McKay [14] proved that α1(3) ≤ 0.4554 and this bound was recently
improved by Barbier et al. [1] to α1(3) ≤ 0.4509. Csóka et al. [8] showed by way of
randomized algorithms that α1(3) ≥ 0.4361 and this was improved to α1(3) ≥ 0.4375 by
Hoppen and Wormald [13].

Hoppen and Wormald [12] also provide a lower bound to the largest size density of an
induced forest in Gn,d, and their construction can be used to get the same lower bound for
α∞(d). An upper bound to the density of induced forests was given by Bau et al. [2] with
numerical values for small d. These upper bounds hold true for α∞(d) as well. On the
other hand it is known that α∞(3) = 3/4 through results on the fragmentability of graphs
by Edwards and Farr [9], and it is conjectured in [2] that α∞(4) = 2/3.

The question of the size density of the largest induced forests in Gn,d can also be treated
with the techniques used to prove Theorem 1. The proof of the theorem can be used with
little modification to show that for large d, the size density of the largest induced forests in
Gn,d is also at most (2 + o(1)) log d

d with high probability. The same conclusion holds for the
size density of the largest k-independent sets in Gn,d for every fixed k. (A k-independent
set is a subset of vertices such that the induced subgraph has maximum degree k.)

We prove Theorem 1 in Section 2 and Theorem 2 in Section 3.

2. Percolation on random regular graphs

The proof of Theorem 1 is based on the following two lemmas. In the following we prove
Theorem 1 by using these lemmas. The lemmas are then proved in Section 2.1 and Section
2.2, respectively.
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A finite (multi)-graph H is k-sparse if |E(H)|/|V (H)| ≤ k, that is, the average degree of
H is at most 2k. For example, finite trees are 1-sparse. Any subgraph of a d-regular graph
is (d/2)-sparse. The first lemma shows that linear sized subgraphs of a random d-regular
graph are likely to be k-sparse so long as their size density is sufficiently small.

Lemma 2.1. Let Gn,d be a random d-regular graph on n vertices. Suppose d ≥ 12 and

3.5 < k ≤ (1 − 1√
2
)d. Set Ck,d = e−4(2k/d)1+

1
k−1 . With high probability, any subgraph in

Gn,d of size at most Ck,d · n is k-sparse. The probability that this property fails in Gn,d is

Ok,d(n3.5−k).

The next lemma shows that k-sparse subgraphs of Gn,d are actually not very large if
k = o(log d) and d is sufficiently large.

Lemma 2.2. Let Gn,d be a random d-regular graph on n vertices. Let k = ǫd log d where
0 < ǫd ≤ 1 and ǫd → 0 as d → ∞. Given any ǫ > 0 there is a d0 = d0(ǫ, {ǫd}) such that if
d ≥ d0, then with high probability any k-sparse induced subgraph of Gn,d has size at most

(2 + ǫ)
log d

d
n .

We do not attempt to provide explicit upper bounds on d0.
Proof of Theorem 1. Let ǫd be as in the statement of the theorem. First we show
that it is possible to choose k ≥ 4 satisfying both the constraints that k = o(log d) and

e−4(2k/d)1+1/(k−1) ≥ ǫd
log d
d for all large d. Let ǫ′d = max{ 4

| log(ǫ′d)|
, 4
log d}. Note that ǫ′d → 0

as d → ∞. We assume that d is large enough that ǫd ≤ e−6. Set k = ǫ′d log d.

We begin by showing that e−4(2k/d)1+1/(k−1) ≥ ǫd
log d
d for all large d. As (2k/d) ≤ 1 we

have

(
2k

d
)1+1/(k−1) ≥ (

2k

d
)1+2/k ≥ (

k

d
)1+2/k ≥

(ǫ′d log d

d

)1+ 2

ǫ′
d
log d .

We now show that (
ǫ′d log d

d )
2

ǫ′
d
log d ≥ ǫ

1/2
d , which would imply that the very last term above

is greater than (ǫ′dǫ
1/2
d ) log dd . Observe that

log
(

(
ǫ′d log d

d
)

2

ǫ′
d
log d

)

=
2

ǫ′d

( log(ǫ′d) + log log d

log d
− 1

)

≥ 2

ǫ′d

( log 4

log d
− 1

)

(as ǫ′d ≥ 4

log d
)

≥ −2

ǫ′d
.

We conclude that (
ǫ′d log d

d )
2

ǫ′
d
log d ≥ e−2/ǫ′d , and as ǫ′d ≥ 4

| log(ǫd)| , we deduce that e−2/ǫ′d ≥
e−

1
2
| log(ǫd)| = ǫ

1/2
d .

So far we have seen that (2k/d)1+1/(k−1) ≥ (ǫ′dǫ
1/2
d ) log dd for all large d (large d is required

to ensure that ǫ′d ≤ 1). Now we show that e−4ǫ′d ǫ
1/2
d ≥ ǫd for perhaps larger d. As

ǫ′d ≥ 4
| log(ǫd)| , this holds if | log(ǫd)| ≤ 4e−4ǫ

−1/2
d . Since ǫd ≤ 1, this inequality is the same

as log(ǫ−1
d ) ≤ 4e−4ǫ

−1/2
d . A simple calculation shows that log(x) ≤ 4e−4x1/2 if x ≥ e8/4.

Therefore, e−4ǫ′d ǫ
1/2
d ≥ ǫd whenever ǫd ≤ 4e−8. The latter certainly holds for large d.
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We have thus concluded that it is possible to choose k ≥ 4 satisfying both the constraints
that k = o(log d) and e−4(2k/d)1+1/(k−1) ≥ ǫd

log d
d for all large d. We are now able to finish

the proof. Set k = ǫ′d log d in the following.

Let A = A(Gn,d) be the event that all subgraphs of Gn,d containing at most ǫd
log d
d n

vertices are k-sparse. From the conclusion derived above we see that there exists d1 such
that if d ≥ d1 then k/d < 1 − 1/

√
2 and e−4(2k/d)1+1/(k−1) ≥ ǫd

log d
d . Lemma 2.1 implies

that P [A] → 1 as n → ∞.
Let B = B(Gn,d) be the event that any induced subgraph of Gn,d that is k-sparse contains

at most (2 + ǫ) log dd n vertices. From Lemma 2.2 we conclude that there exists a d2 such
that if d ≥ d2 then P [B] → 1 as n → ∞.

If d ≥ max{d1, d2} then P [A ∩B] ≥ P [A]+P [B]−1 → 1 as n → ∞. Let D = D(Gn,d) be

the event that all induced subgraphs of Gn,d with components of size at most τ = ǫd
log d
d n

have size at most (2 + ǫ) log dd n. We show that A ∩B ⊂ D for all d ≥ max{d1, d2}.
Suppose a d-regular graph G on n vertices satisfies properties A and B. If S ⊂ V (G)

induces a subgraph with components of size at most τ = ǫd
log d
d n then all components of S

are k-sparse because G satisfies property A. Hence, S itself induces a k-sparse subgraph.
As G also satisfies property B we deduce that S contains at most (2 + ǫ) log dd n vertices.
This means that G satisfies property D, as required.

The proof of Theorem 1 is now complete because if d ≥ {d1, d2} then P [D] ≥ P [A ∩B] →
1 as n → ∞.

2.1. Proof of Lemma 2.1. We prove Lemma 2.1 by showing that the expected number
subgraphs of Gn,d that are of size at most Ck,d · n and that are not k-sparse is vanishingly
small as n → ∞. The first moment bound implies that the probability is vanishingly small
as well.

Let Zi,j = Zi,j(Gn,d) be the number of subsets S ⊂ V (Gn,d) such that |S| = i and
e(S) = j. Notice that Zi,j = 0 unless j ≤ (d/2)i.

Let N be the number of subgraphs of Gn,d that have size at most Ck,d · n and that are
not k-sparse. We have

N =

Ck,dn
∑

i=1

(d/2)i
∑

j=ki

Zi,j . (2.1)

In the following sequence of lemmas we compute E [Zi,j] in order to bound to E [N ].

Lemma 2.3. For 1 ≤ i ≤ n and 0 ≤ j ≤ (d/2)i, the expectation of Zi,j is

E [Zi,j] =

(

n

i

)

× (id)!
(

(n− i)d
)

! (nd/2)! 2id−2j

(id− 2j)! j!
(

nd
2 − id + j

)

! (nd)!
. (2.2)

Proof. There are
(n
i

)

subsets S of size i and E [Zi,j ] is the sum over each such S of the
probability that e(S) = j. For a fixed subset S of size i, the probability that e(S) = j is the
number of pairings in the configuration model that satisfy e(S) = j divided by (nd − 1)!!.
The number of such pairings is

(

id

id− 2j

)(

(n − i)d

id− 2j

)

(id− 2j)! (2j − 1)!!
(

(n− 2i)d + 2j − 1
)

!! .
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Therefore, E [Zi,j] equals

E [Zi,j ] =

(

n

i

)

×
( id
id−2j

)((n−i)d
id−2j

)

(id − 2j)! (2j − 1)!!
(

(n− 2i)d + 2j − 1
)

!!

(nd− 1)!!
. (2.3)

We may simplify (2.3) by using (m−1)!! = m!
2m/2(m/2)!

for even integers m ≥ 2 and 0!! = 1.

This simplification leads to (2.2). �

Lemma 2.4. Suppose 1 ≤ k ≤ d/2 and 1 ≤ i ≤ (2k/d)n. For ki ≤ j ≤ (d/2)i, E [Zi,j] is
maximized at j = ki.

Proof. From the equation for E [Zi,j] in (2.2) we deduce that the ratio

E [Zi,j+1]

E [Zi,j]
=

(id− 2j − 1)(id − 2j)

4(j + 1)
(

(n−2i)d
2 + j + 1

) .

If i ≤ (2k/d)n then this ratio is at most 1 provided that ki ≤ j ≤ (id)/2. Indeed,
subtracting the denominator from the numerator gives id(id−1)−2(n−2i)d−4−2j(nd+3).
This is non-positive for all ki ≤ j ≤ (id)/2 if and only if

ki ≥
1
2(id)(id − 1) − (n− 2i)d − 2

nd + 3
. (2.4)

In order to show that (2.4) holds for 1 ≤ i ≤ (2k/d)n it suffices to show that ki ≥ (id)2

2nd
because the latter term is larger than the right hand side of inequality (2.4). Since i ≥ 1,

ki ≥ (id)2

2nd if and only if k ≥ id
2n , which is indeed assumed. �

It follows from Lemma 2.4 and (2.1) that

E [N ] ≤
Ck,dn
∑

i=1

(id/2)E [Zi,ki]

≤ dn2 max
1≤i≤Ck,dn

E [Zi,ki] . (2.5)

To get a bound on E [Zi,ki] that is suitable for asymptotic analysis we introduce some
notation. For a graph G and subsets S, T ⊂ V (G) let

m(S, T ) =
|(u, v) : u ∈ S, v ∈ T, {u, v} ∈ E(G)|

2|E(G)| .

The edge profile of S associated to G is the 2 × 2 matrix

M(S) =

[

m(S, S) m(S, Sc)
m(Sc, S) m(Sc, Sc)

]

where Sc = S \ V (G). If |S| = i and e(S) = j then

M(S) =

[ 2j
nd

i
n − 2j

nd
i
n − 2j

nd 1 − 2 i
n + 2j

nd

]

(2.6)

We denote the matrix in the r.h.s. of (2.6) by M(i/n, j/(nd)). Then Zi,j is the number
of S ⊂ V (Gn,d) such that M(S) = M(i/n, j/(nd)). The entropy of a finitely supported
probability distribution π is

H(π) =
∑

x∈support(π)
−π(x) log π(x) . (2.7)
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Lemma 2.5. For 1 ≤ i ≤ n− 1 and 0 ≤ j ≤ id/2, we have that

E [Zi,j] ≤ O(d
√
n) × exp

{

n

[

d

2
H
(

M(i/n, j/(nd))
)

− (d− 1)H
(

i/n, 1 − (i/n)
)

]}

where big O constant is universal.

Proof. We use Stirling’s approximation of m! to simplify (2.2):

1 ≤ m!√
2πm(m/e)m

≤ e1/12m.

First, consider
(

n
αn

)

. For 1 ≤ i ≤ n − 1, Stirling’s approximation shows that
(

n
i

)

≤
√

n/i(n − i) enH(i/n,1−i/n). Since n/i(n− i) ≤ n/(n− 1) ≤ 2 and H(0, 1) = H(1, 0) = 0, we

conclude that
(

n
αn

)

≤ 2 enH(α,1−α).
Now consider the fraction in (2.2), which is the probability that e({1, . . . , i}) = j in Gn,d.

Stirling’s approximation implies that the polynomial order term (in n) for this fraction is
bounded from above, up to an universal multiplicative constant, by

[

d(nd/2)

(id− 2j)j((nd/2) − id + j)

]1/2

. (2.8)

We may assume that each of the terms id−2j, j and (nd/2)− id+j are positive integers.
For if one of these were zero then the corresponding factorial in (2.2) would be 1 and we
could ignore that term from the calculation. So (id − 2j)j((nd/2) − id + j) ≥ 1, which
implies that (2.8) is bounded above by d

√
n.

The term of exponential order (in n) for the fraction in (2.2) is

(id)id
(

(n− i)d
)(n−i)d

(nd)nd/2

(id− 2j)id−2j (2j)j
(

(n− 2i)d + 2j
)((nd/2)−id)+j

(nd)nd
.

This may be written in exponential form as
[

(i/n)(i/n)(1 − (i/n))1−(i/n)

(

(i/n) − 2j
nd

)(i/n)−(2j/nd) ( 2j
nd

)j/nd (
1 − 2(i/n) + 2j

nd

)1/2−(i/n)+j/nd

]nd

= exp

{

n

[

d

2
H
(

M(i/n, j/(nd))
)

− dH
(

i/n, 1 − (i/n)
)

]}

.

Therefore, (2.2) is bounded from above by

O(d
√
n) exp

{

n

[

d

2
H
(

M(i/n, j/(nd))
)

− (d− 1)H
(

i/n, 1 − (i/n)
)

]}

.

�

As we want to bound E [Zi,ki] we analyze of the maximum of (d/2)H(M(i/n, ki/nd)) −
(d− 1)H(i/n, 1 − (i/n)) over the range 1 ≤ i ≤ Ck,d · n. Lemma 2.5 implies that E [Zi,ki] is
bounded from above by

O(d
√
n) × exp {n[(d/2)H(M(i/n, ki/nd)) − (d− 1)H(i/n, 1 − (i/n))]}.

It is convenient to work with the analytic continuation of the terms involving the en-
tropy. Recall that h(x) = −x log x. If we set α = i/n then (d/2)H(M(i/n, ki/nd)) − (d−
1)H(i/n, 1 − (i/n)) equals

(d/2)[h(α(2k/d)) + 2h(α − α(2k/d)) + h(1 − 2α + α(2k/d))] − (d− 1)H(α, 1 − α). (2.9)
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Here α lies in the range 1/n ≤ α ≤ Ck,d. We will show that (2.9) is decreasing in α if
0 ≤ α ≤ Ck,d. We will then evaluate its value at α = 1/n to show that the leading term (in
n) is (1 − k)(log n)/n. This will allow us to conclude Lemma 2.1.

Lemma 2.6. Suppose that 2 ≤ k ≤ (1 − 1/
√

2)d. Then the entropy term in (2.9) is
decreasing as a function of α for 0 ≤ α ≤ Ck,d.

Proof. We differentiate (2.9) to show that it is negative for 0 < α < Ck,d. Notice that the
derivative h′(α) = −1 − log(α). Differentiating (2.9) in α and simplifying gives

d

2

(

h(
2k

d
)+2h(1− 2k

d
)
)

+(k−1) log(α)+(d−1)(− log(1−α))−(d−k)(− log(1−2α+
2k

d
α)) .

First, we deal with the term (d − 1)(− log(1 − α)) − (d − k)(− log(1 − 2α + 2k
d α)) and

show that it is negative for 0 < α < 1/2. We will use the following inequalities for
− log(1−x) which can be deduced from Taylor expansion. If 0 ≤ x ≤ 1/2 then − log(1−x) ≤
x + (1/2)x2 + (2/3)x3. If 0 ≤ x ≤ 1 then − log(1 − x) ≥ x + (1/2)x2 + (1/3)x3. From
these inequalities we conclude that (d− 1)(− log(1 − α)) − (d− k)(− log(1 − 2α + 2k

d α)) is
bounded from above by

(d− 1)(α +
α2

2
+

α3

3
) − (d− k)[2(1 − k

d
)α + 2(1 − k

d
)2α2 +

8

3
(1 − k

d
)3α3] .

The term (1 − k
d ) is positive and decreasing in k if 2 ≤ k ≤ (1 − 1/

√
2)d. Its minimum

value is 1/
√

2. Thus, (1 − k
d )2 ≤ 1/2 and (1 − k

d )3 ≤ 1/
√

8. We deduce from this that

(d− 1)(α +
α2

2
+

α3

3
) − (d− k)[2(1 − k

d
)α + 2(1 − k

d
)2α2 +

8

3
(1 − k

d
)3α3] ≤

(d− 1)(α +
α2

2
+

α3

3
) − d√

2
[
√

2α + α2 +

√
8

3
α3] =

−α− (
√

2 − 1)d + 1

2
α2 − d + 3

3
α3.

The last term is clearly negative for positive α. This shows what we had claimed.
Now we consider the term d

2

(

h(2kd ) + 2h(1 − 2k
d )

)

+ (k − 1) log(α) and show that it is
negative for 0 < α < Ck,d. By property (2) of h(x) from (1.1) we have h(1 − x) ≤ x.

Therefore, h(1 − 2k
d ) ≤ 2k/d and (d/2)[h(2kd ) + 2h(1 − 2k

d )] ≤ k log(d/2k) + 2k. Thus,

d

2

(

h(
2k

d
) + 2h(1 − 2k

d
)
)

+ (k − 1) log(α) ≤ k log(d/2k) + 2k + (k − 1) log(α).

The latter term in increasing in α because k ≥ 2 and it tends to −∞ as α → 0. It is there-

fore negative until its first zero, which is the value α∗ satisfying − log(α∗) = k log(d/2k)+2k
k−1 .

Observe that k log(d/2k)+2k
k−1 ≤ (1 + 1

k−1) log(d/2k) + 4 since k ≥ 2. Consequently, α∗ ≥
e−4(2k/d)1+1/(k−1) and we conclude that (d/2)[h(2kd ) + 2h(1 − 2k

d )] + (k − 1) log(α) is neg-
ative for 0 < α < Ck,d.

The proof is now complete since we have shown that if 2 ≤ k ≤ (1 − 1/
√

2)d then the
derivative of (2.9) is negative for 0 < α < Ck,d . �

Lemma 2.7. Suppose that 2 ≤ k ≤ (1 − 1/
√

2)d and 0 ≤ α ≤ 1. Then the entropy term
(2.9) is bounded from above by

α(k log(d) + 1) + h(α)(1 − k) + (d/2)α3.
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Proof. We use the properties of h(x) from (1.1). We have that h(2kd α) = αh(2kd ) + 2k
d h(α),

h(α− 2k
d α) = αh(1− 2k

d ) + (1− 2k
d )h(α), and h(1−2α+ 2k

d α) ≤ (2α− 2k
d α)− 1

2(2α− 2k
d α)2.

Therefore,

h(α(2k/d)) + 2h(α− α(2k/d)) + h(1 − 2α + α(2k/d)) ≤

α
(

h(
2k

d
) + 2h(1 − 2k

d
) + 2 − 2k

d

)

+ 2h(α)(1 − k

d
) − 2α2(1 − k

d
)2 .

Now, H(α, 1 − α) = h(α) + h(1 − α) ≥ h(α) + α− (1/2)α2 − (1/2)α3 by property (3) of
(1.1). As a result (2.9) is bounded from above by

α
[d

2
h(

2k

d
) + dh(1− 2k

d
) + 1− k

]

− (k− 1)h(α) +α2[
d− 1

2
− d(1− k

d
)2] +

d− 1

2
α3. (2.10)

The term d−1
2 −d(1− k

d )2 is increasing in k and maximized when k = (1−1/
√

2)d, where

it equals −1/2. Thus, α2(d−1
2 −d(1− k

d )2) is negative. The term d
2h(2kd )+dh(1− 2k

d )+1−k
simplifies to k log(d)−k log(2k)+k+1, which is at most k log(d)+1 because k−k log(2k) < 0
if k ≥ 2. Consequently, (2.10) is bounded from above by α(k log(d) + 1) + h(α)(1 − k) +
(d/2)α3 as required.

�

Completion of the proof of Lemma 2.1. Recall that N was defined to be the number
of subsets S ⊂ V (Gn,d) of size at most Ck,d · n such that S is not k-sparse. From (2.5) we
have

E [N ] ≤ dn2 max
i≤i≤Ck,dn

E [Zi,ki] .

By Lemma 2.5, E [Zi,ki] is bounded from above by
O(d

√
n) × exp {n[(d/2)H(M(i/n, ki/nd)) − (d− 1)H(i/n, 1 − (i/n))]}. Now,

max
1≤i≤Ck,dn

(d/2)H(M(i/n, ki/nd)) − (d− 1)H(i/n, 1 − (i/n)) ≤

sup
1
n
≤α≤Ck,d

(d/2)H(M(α, (k/d)α)) − (d− 1)H(α, 1 − α), (2.11)

where α is a continuous parameter. Lemma 2.6 shows that the supremum of (2.11)

is achieved at α = 1/n provided that 2 ≤ k ≤ (1 − 1/
√

2)d. Lemma 2.7 implies that
when 2 ≤ k ≤ (1 − 1/

√
2)d the term in (2.11) is bounded from above at α = 1/n by

1
n(k log(d) + 1) + log(n)

n (1 − k) + d
2n3 . Therefore, we deduce that for 2 ≤ k ≤ (1 − 1/

√
2)d,

E [N ] ≤ O(d2n2.5) exp

{

n
[ 1

n
(k log(d) + 1) +

log(n)

n
(1 − k) +

d

2n3

]

}

.

If n ≥
√
d then we see that E [N ] ≤ O(dk+2)n3.5−k. In particular, if k > 3.5 then

E [N ] → 0 as n → ∞. Hence, P [N ≥ 1] ≤ E [N ] → 0 and this is precisely the statement of
Lemma 2.1.

2.2. Density of k-sparse graphs: proof of Lemma 2.2. We begin with the following
elementary lemma about the density of k-sparse sets.

Lemma 2.8. Let S be a k-sparse set in a finite d-regular graph G. Then |S|/|G| ≤ d
2d−2k .

Proof. Set |G| = n, and so |E(G)| = nd/2. Consider the edge-profile M(S) of S. We have
that |S|/n = m(S, S)+m(S, Sc). Since S is k-sparse, m(S, S) ≤ 2k|S|/(nd). The number of
edges from S to Sc is at most d|Sc| because Gn,d is d-regular. Therefore, m(S, Sc) ≤ |Sc|/n.

Consequently, |S|/n ≤ (2kd − 1)|S|/n + 1, which implies that |S|/n ≤ d
2d−2k . �
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Let E denote the event that Gn,d contains an induced k-sparse subgraph of size αn. We
bound the probability of E by using the first moment method as well. We will call a subset
S ⊂ V (Gn,d) k-sparse if it induces a k-sparse subgraph. By definition, any k-sparse set S
has the property that e(S) ≤ k|S|.

Let Z = Z(α,Gn,d) be the number of k-sparse sets in Gn,d of size αn. Recall the notation
Zi,j from Section 2.1. Let Zj = Zαn,j(Gn,d) be the number of subsets S ⊂ Gn,d such that
|S| = αn and the number of edges in Gn,d[S] is j. Then

E [Z] =

kαn
∑

j=0

E [Zj] . (2.12)

From Lemma 2.3 we see that E [Zj ] is of exponential order in n. So the sum in (2.12) is
dominated by the largest term. From Lemma 2.3 applied to i = αn and j we conclude that

E [Zj ] =

(

n

αn

)

× (αnd)!
(

(1 − α)nd
)

! (nd/2)! 2αnd−2j

(αnd− 2j)! j!
(

(1−2α)
2 nd + j

)

! (nd)!
. (2.13)

Lemma 2.9. If α > 2k
d then the expectation of Zi is maximized at i = kαn, for all

sufficiently large n. Note that kαn is the maximum number of edges contained in a k-
sparse set.

Proof. We argue as in the proof of Lemma 2.4. From the equation for E [Zj] in (2.13) we
deduce that

E [Zj+1]

E [Zj]
=

(αnd− 2j − 1)(αnd − 2j)

4(j + 1)
(

(1−2α)
2 nd + j + 1

) .

This ratio is at least 1 for all 0 ≤ j ≤ kαn if n is sufficiently large and α > 2k/d. Indeed,
subtracting the denominator from the numerator gives αnd(αnd− 1) − 2(1 − 2α)nd− 4 −
2j(nd + 3). This is non-negative for all 0 ≤ j ≤ kαn if and only if

kαn ≤
1
2 (αnd)(αnd − 1) − (1 − 2α)nd − 2

nd + 3
. (2.14)

If the inequality in (2.14) fails to hold for all sufficiently large n then after dividing
through by n and letting n → ∞ we conclude that kα ≥ (1/2)α2d. This implies that
α ≤ 2k/d, which contradicts our assumption.

�

From Lemma 2.5 applied to E [Zi,j] for i = αn and j = kαn we conclude that

E [Zj ] ≤ O(
√
n) exp

{

n

[

d

2
H
(

M(α, j/nd)
)

− (d− 1)H
(

α, 1 − α
)

]}

. (2.15)

For the rest of this section we assume that α ≥ (log d)/d and d is large enough such that
(log d)/d > 2k/d. This will hold since k = o(log d). If α < (log d)/d then there is nothing
to prove. We conclude from Lemma 2.9, (2.15) and (2.12) that

E [Z] ≤ (kn)E [Zkαn]

≤ O(kn3/2) exp

{

n

[

d

2
H
(

M(α,
k

d
α)

)

− (d− 1)H
(

α, 1 − α
)

]}

. (2.16)
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Note that M(α, kdα) equals

M(α,
k

d
α) =

[

2kα
d α− 2kα

d
α− 2kα

d 1 − 2α + 2kα
d

]

.

This matrix may depend on n through α. If it does then we replace α by its limit supremum
as n → ∞. By an abuse of notation we denote the limit supremum by α as well.

For d ≥ 3 define αd = αd,k by

αd = sup
{

α : 0 ≤ α ≤ 1 and
d

2
H
(

M(α,
k

d
α)

)

− (d− 1)H(α, 1 − α) ≥ 0
}

.

Thus, if α > αd then from the continuity of the entropy function H we conclude that for

all sufficiently large n the function d
2H

(

M(α, kdα)
)

−(d−1)H
(

α, 1−α
)

< 0. Consequently,

from (2.16) we conclude that lim supn→∞ P [E] ≤ lim supn→∞ E [Z] = 0. We devote the rest

of this section to bounding the entropy functional in order to show that αd ≤ (2 + ǫ) log dd
for all large d.

First, we show that αd → 0 as d → ∞. Suppose otherwise, that lim supd→∞ αd =
α∞ > 0. Lemma 2.8 implies that α∞ ≤ 1/2 because αd ≤ d/(2d − 2k) and k = o(log d).
After passing to an appropriate subsequence in d, noting that 2k/d → 0 as d → ∞ due to
k = o(log d), and using the continuity of H we see that

lim
d→∞

1

2
H
(

M(αd,
k

d
αd)

)

−H(αd, 1 − αd) =
1

2
H
(

M(α∞, 0)
)

−H(α∞, 1 − α∞) .

However, (1/2)H(M(x, 0))−H(x, 1−x) = (1−x) log(1−x)− (1/2)(1− 2x) log(1− 2x),
and this is negative for 0 < x ≤ 1/2. This can be seen by noting that the derivative of the
expression is negative for x > 0 and the expression vanishes at x = 0. Therefore, for all
large d along the chosen subsequence we have d

2H
(

M(αd,
k
dαd)

)

− (d−1)H(αd, 1−αd) < 0;
a contradiction.

We now analyze the supremum of the entropy functional for large d in order to bound
αd. From the properties of h(x) in (1.1) we deduce that

H
(

M(α)
)

= h

(

2kα

d

)

+ 2h

(

α− 2kα

d

)

+ h

(

1 − 2α +
2kα

d

)

≤ 2[h(α) + α− α2] +
2k

d
[α− h(α) + α log(

d

2k
) + 2α2] , (2.17)

H(α, 1 − α) = h(α) + α− 1

2
α2 + O(α3). (2.18)

From (2.17) and (2.18) we see that d
2H(M(α)) − (d− 1)H(α, 1 − α) is at most

− d

2
α2 + k[α− h(α) + α log

( d

2k

)

+ 2α2] + α + h(α) + O(dα3). (2.19)

Now, k(α + 2α2) + α ≤ 4kα and log(d/2k) ≤ log(d/k). Hence, (2.19) is at most

− d

2
α2 + k[α log(d/k) − h(α)] + h(α) + 4kα + O(dα3). (2.20)

Let us write α = β log d
d where β ≥ 1. In terms of β, h(α) = β log2 d−log d log log d

d +h(β) log dd .

Since β ≥ 1, h(β) ≤ 0, and we get that −d
2α

2 + h(α) ≤ (−β2

2 + β) log
2 d
d . The term
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α log(d/k) − h(α) equals β log d(log log d−log k)
d + β log β log d

d . Substituting k = ǫd log d and
combining these inequalities together we see that (2.20) is bounded from above by

[1 − (1/2)β + ǫd log β − ǫd log(ǫd) + 4ǫd]β
log2 d

d
+ O(

β3 log3 d

d2
). (2.21)

As β = od(d/(log d)) the term β3(log3 d)/d2 is of order od(β2(log2 d)/d) as d → ∞.
Therefore, (2.21) is of the form 1 − (1/2 − od(1))β + ǫd log β − ǫd log(ǫd) + 4ǫd for large d.
Elementary calculus shows that in order for 1− [(1/2) − δ]β + δ log β − δ log(δ) + Cδ to be
non-negative β must satisfy β ≤ 2 − 2δ log(δ) + 4Cδ, provided that 0 ≤ δ ≤ 1.

We conclude that there is a function δ(d) = δ(ǫd) such that δ(d) → 0 as d → ∞ and

(2.21) is negative unless β ≤ 2 + δ(d). As a result, we have αd ≤ (2 + δ(d)) log d
d and the

latter is bounded by (2 + ǫ) log dd for all large d. This completes the proof of Lemma 2.2.

3. Percolation on Erdős-Rényi graphs

Lemma 3.1. The expected number of cycles of length no more than τ in ER(n, d/n) is at
most dτ log τ .

Proof. Let Cℓ denote the number of cycles of length ℓ ≥ 3 in ER(n, d/n). Note that

E [Cℓ] =
(n
ℓ

)

ℓ!
2ℓ(d/n)ℓ, and

(n
ℓ

)

ℓ!
2ℓ (d/n)ℓ ≤ dℓ

2ℓ . The number of cycles of length at most τ is

C≤τ = C3 + · · · + Cτ . Note that
∑τ

ℓ=3 1/(2ℓ) ≤
∫ τ
2

1
t dt = log(τ/2) ≤ log τ . Thus,

E [C≤τ ] =
τ

∑

ℓ=3

E [Cℓ] ≤
τ

∑

ℓ=3

dℓ

2ℓ
≤ dτ log τ.

�

Let Xn,τ be the number of cycles of length at most τ in ER(n, d/n). It follows from
Lemma 3.1 that if τ = logd(n) − log log log(n) − log(ωn) then E [Xn,τ ] = O(n/ωn).

3.1. Proof of Theorem 2. Let E denote the event that ER(n, d/n) contains a percolation
set of size αn with clusters of size at most τ . We can assume that α > (2e)/d, for otherwise,
there is nothing to prove due to d ≥ 5. We bound the probability of E by using the first
moment method. From this we will show that if αn is bigger than the bound in the
statement of Theorem 2 then P [E] → 0 as n → ∞.

Set µn = E [Xn,τ ] = O(n/ωn) for τ in the statement of Theorem 2. Fix δ > 0 and note
that P [Xn,τ ≥ µn/δ] ≤ δ from Markov’s inequality.

Let Z = Z(α,ER(n, d/n)) be the number of percolation sets in ER(n, d/n) of size αn
with clusters of size at most τ . From the observation above we have that

P [E] ≤ P [E ∩ {Xn,τ ≤ µn/δ}] + δ ≤ E [Z;Xn,τ ≤ µn/δ] + δ (3.1)

where E [Z;Xn,τ ≤ µn/δ] denotes the expectation of Z on the event {Xn,τ ≤ µn/δ}. To
prove the theorem it suffices to show that for any δ > 0 the expectation E [Z;Xn,τ ≤ µn/δ]
vanishes to zero as n → ∞ provided that αn is bigger than the bound stated in the
statement of Theorem 2. For then we have that lim supn→∞ P [E] ≤ δ for any δ > 0, and
thus, P [E] → 0.

We now make a crucial observation about percolation sets with small clusters. Let S be
a percolation set with clusters of size at most τ . If we remove an edge from every cycle
of the induced graph ER[S] of length at most τ then the components of ER[S] become
trees. In that case the number of remaining edges in ER[S] is at most |S|. Therefore, the
number of edges in ER[S] is at most |S| + (µn/δ). This bound is useful as it shows that
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the subgraph included by percolation sets with small clusters is much more sparse relative
to the original graph.

Let M = M(α, τ, δ,ER(n, d/n)) be the number of subsets S ⊂ ER(n, d/n) such that
|S| = αn and the number of edges in ER[S] is at most |S| + (µn/δ). Notice that the

number of edges in ER[S] is distributed as the binomial random variable Bin(
(|S|

2

)

, d/n).
The observation above implies that

E [Z;Xn,τ ≤ µn/δ] ≤ E [M ] (3.2)

=

(

n

αn

)

P

[

Bin

((

αn

2

)

, d/n

)

≤ αn + (µn/δ)

]

.

Lemma 3.2. Let Bin(m, p) denote a binomial random variable with parameters m ≥ 1 and
0 ≤ p ≤ 1. If 0 < p ≤ 1/2 and 0 < µ ≤ 1 then the following bound holds.

P [Bin(m, p) ≤ µmp] = O(
√
mp) × exp

{

−m
[

µp log µ + (1 − µ)p− µp2
]}

.

Proof. The quantities P [Bin(m, p) = k] =
(m
k

)

pk(1 − p)m−k are non-decreasing in k if k ≤
mp. Therefore,

P [Bin(m, p) ≤ µmp] = P [Bin(m, p) ≤ ⌊µmp⌋] ≤ µmpP [Bin(m, p) = ⌊µmp⌋] .

We can estimate P [Bin(m, p) = ⌊µmp⌋] by
( m
µmp

)

pµmp(1−p)m−µmp with a multiplicative

error term of constant order. Stirling’s approximation implies
(

m
µmp

)

is bounded from above

by O((mµp(1−µp))−1/2) emH(µp). Therefore, after some algebraic simplifications and using
1 − µp ≥ 1/2 we deduce that

P [Bin(m, p) ≤ µmp] ≤ O((mp)−1/2) em[−µp log µ−(1−µp)(log(1−µp)−log(1−p))] . (3.3)

We now provide an upper bound to the exponent on the r.h.s. of (3.3). Note that
x ≤ − log(1 − x) ≤ x + x2 for 0 ≤ x ≤ 1/2. As µp ≤ p < 1/2, it follows from these two
inequalities that log(1 − µp) − log(1 − p) ≥ p− µp− µ2p2. Hence,

−µp log µ− (1 − µp)(log(1 − µp) − log(1 − p)) ≤ −µp log µ− (1 − µ)p + µp2 .

The conclusion of the lemma follows upon substituting the bound above into the exponent
on the r.h.s. of (3.3).

�

We now use Lemma 3.2 to provide an upper bound to P
[

Bin(
(αn

2

)

, d/n) ≤ αn + (µn/δ)
]

.

We require that n ≥ 2d and have that µ = [αn + (µn/δ)]
/

[
(αn

2

)

(d/n)].
Recall that α > 2e/d. With this assumption and for n ≥ 2d it is easy to show that

µ ≤ 2/(dα)+Od(1/ωn). For all large n we thus have µ ≤ e−1. From Lemma 3.2 we deduce:

P

[

Bin

((

αn

2

)

, d/n

)

≤ αn + (µn/δ)

]

≤ O(
√
nd) e−(αn

2 ) d
n
[µ log(µ)+1−µ− d

n
]. (3.4)

We now simplify the exponent in (3.4). The function x → x log x is decreasing for
0 ≤ x ≤ e−1. Hence, as µ ≤ 2/(dα) + Od(1/ωn) ≤ e−1, we have µ log(µ) ≥ ( 2

dα +

Od(1/ωn)) log
(

2
dα + Od(1/ωn)

)

. From this lower bound on µ log(µ) it follows easily that

µ log(µ) + 1 − µ ≥ 2

dα
log

( 2

dα

)

+ 1 − 2

dα
−Od(1/ωn).
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Also,
(

αn
2

)

(d/n) ≥ α2d
2 n − Od(1). Combining these estimates we gather that the exponent

in (3.4) is bounded from above by

− n

(

α log
( 2

αd

)

+
α2d

2
− α

)

+ Od

(

max{n/ωn, 1}
)

. (3.5)

Now we can provide an upper bound to E [M ] from (3.2). Stirling’s approximation implies
( n
αn

)

≤ 2enH(α,1−α). Combining this with the bound on the binomial probability that is on
the r.h.s. of (3.2), derived from the inequalities in (3.4) and (3.5), we have

E [M ] ≤ Od(
√
n) e

n
[

H(α,1−α)+α log( 2
αd

)+α2d
2

−α
]

+Od(max{n/ωn,1}).

Now, H(α, 1 − α) + α log( 2
αd ) + α2d

2 − α = h(1 − α) + α(1 + log(d/2)) − (d/2)α2. From

(3) of (1.1) we have h(1 − α) ≤ α. Consequently, h(1 − α) + α(1 + log(d/2)) − (d/2)α2 ≤
α(2 + log(d/2) − (d/2)α). This implies that

E [M ] ≤ Od(
√
n) eαn

[

2+log(d/2)−(d/2)α
]

+Od(max{n/ωn,1}).

From (3.1) and (3.2) we have P [E] ≤ E [Z;Xn,τ ≤ µn/δ] + δ ≤ E [M ] + δ, and thus,

P [E] ≤ Od(
√
n) eαn

[

2+log(d/2)−(d/2)α
]

+Od(max{n/ωn,1}) + δ.

If 2 + log(d/2) − (d/2)α < 0 then lim supn→∞ P [E] ≤ δ for all δ > 0. This implies
P [E] → 0 as n → ∞, and thus, with high probability ER(n, d/n) does not contain induced
subgraphs of size larger than αn such that their components have size at most τ = logd(n)−
log log log(n) − log(ωn). The condition 2 + log(d/2) − (d/2)α < 0 is equivalent to α >
2
d (log d + 2 − log 2), which is precisely the bound in the statement of Theorem 2.
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