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Abstract

A vertex v ∈ V (G) is said to distinguish two vertices x, y ∈ V (G) of a nontrivial
connected graph G if the distance from v to x is different from the distance from v to
y. A set S ⊂ V (G) is a local metric generator for G if every two adjacent vertices of
G are distinguished by some vertex of S. A local metric generator with the minimum
cardinality is called a local metric basis for G and its cardinality, the local metric

dimension of G. It is known that the problem of computing the local metric dimension
of a graph is NP-Complete. In this paper we study the problem of finding exact values
or bounds for the local metric dimension of strong product of graphs.

Keywords: Metric generator; metric dimension; local metric set; local metric dimension,
strong product graph.

1 Introduction

A metric generator of a metric space (X, d) is a set S ⊂ X of points in the space with the
property that every point of X is uniquely determined by the distances from the elements
of S. The metric dimension dim(X) of (X, d) is the smallest integer t such that there is a
metric generator of cardinality t. A metric generator of cardinality dim(X) is called a metric

basis of X .
The concept of metric dimension of a general metric space first appeared in 1953 in

[3], but it attracted a little attention, except for the case of graphs. Given a simple and
connected graph G = (V,E), defined on the vertex set V and the edge set E, we consider
the function dG : V × V → N ∪ {0}, where dG(x, y) is the length of a shortest path between
u and v and N is the set of positive integers. It is readily seen that (V, dG) is a metric space.

The notion of metric dimension of a graph was introduced by Slater in [27], where the
metric generators were called locating sets. Harary and Melter independently introduced the
same concept in [14], where metric generators were called resolving sets. Applications of
this invariant to the navigation of robots in networks are discussed in [18] and applications
to chemistry in [16, 17]. This invariant was studied further in a number of other papers
including, for instance [1, 5, 6, 9, 12, 15, 19, 25, 28]. Several variations of metric generators
including resolving dominating sets [4], independent resolving sets [7], local metric sets [20],
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strong resolving sets [26], k-metric generators [8], simultaneous metric generators [21], etc.
have since been introduced and studied.

In this article we are interested in the study of local metric generators, also called local
metric sets [20]. A set S of vertices in a connected graph G is a local metric generator for
G if every two adjacent vertices of G are distinguished by some vertex of S, i.e., for every
u, v ∈ V (G) there exists s ∈ S such that dG(u, s) 6= dG(v, s). A local metric generator with
the minimum cardinality is called a local metric basis for G and its cardinality, the local

metric dimension of G, is denoted by diml(G). The following main results were obtained in
[20].

Theorem 1. [20] Let G be a nontrivial connected graph of order n. Then diml(G) = n− 1
if and only if G is complete, and diml(G) = 1 if and only if G is bipartite.

The clique number ω(G) of a graph G is the order of a largest complete subgraph in G.

Theorem 2. [20] Let G be connected graph of order n. Then diml(G) = n − 2 if and only

if ω(G) = n− 1.

The local metric dimension of graphs has been previously studied in [2, 10, 11, 20, 22, 23].
In particular, it was shown in [10, 11] that the problem of computing the local metric
dimension is NP-Complete. This suggests finding the strong metric dimension for special
classes of graphs or obtaining good bounds on this invariant. In this paper we study the
problem of finding exact values or sharp bounds for the local metric dimension of strong
product graphs.

We begin by giving some basic concepts and notations. For two adjacent vertices u and
v of G = (V,E) we use the notation u ∼ v and for two isomorphic graphs G and G′ we
use G ∼= G′. For a vertex v of G, NG(v) denotes the set of neighbors that v has in G, i.e.,
NG(v) = {u ∈ V : u ∼ v}. The set NG(v) is called the open neighborhood of v in G and
NG[v] = NG(v) ∪ {v} is called the closed neighborhood of v in G.

We will use the notationKn, Kr,s, Cn, Nn and Pn for complete graphs, complete bipartite
graphs, cycle graphs, empty graphs and path graphs, respectively.

The strong product of two graphs G = (V1, E1) and H = (V2, E2) is the graph G⊠H =
(V,E), such that V = V1×V2 and two vertices (a, b), (c, d) ∈ V are adjacent in G⊠H if and
only if

a = c and bd ∈ E2, or

b = d and ac ∈ E1, or

ac ∈ E1 and bd ∈ E2.

We would point out that the Cartesian product G�H is a subgraph of G ⊠ H and for
complete graphs Kr ⊠Ks = Krs.

One of our tools will be a well-known result, which states the relationship between the
vertex distances in G⊠H and the vertex distances in the factor graphs.

Remark 3. [13] Let G and H be two connected graphs. Then

dG⊠H((a, b), (c, d)) = max{dG(a, c), dH(b, d)}.

For the remainder of the paper, definitions will be introduced whenever a concept is
needed.
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2 General Bounds

We begin by giving general bounds for the local metric dimension of strong product graphs.

Theorem 4. Let G and H be two connected graphs of order n1 ≥ 2 and n2 ≥ 2, respectively.
Then

3 ≤ diml(G⊠H) ≤ n1 · diml(H) + n2 · diml(G)− diml(G) · diml(H).

Proof. Let V1 and V2 be the set of vertices of G and H , respectively. We claim that S =
(V1×S2)∪ (S1× V2) is a local metric generator for G⊠H , where S1 and S2 are local metric
basis for G and H , respectively.

Let (ui, vj), (uk, vl) ∈ V1 × V2 − S be two adjacent vertices of G ⊠ H . If i = k, then
vj and vl are adjacent in H and there exists b ∈ S2 such that dG⊠H((ui, b), (ui, vj)) =
dH(b, vj) 6= dH(b, vl) = dG⊠H((ui, b), (uk, vl)). So, (ui, vj) and (uk, vl) are distinguished by
(ui, b) ∈ (V1 × S2) ⊂ S. Analogously, if j = l, then ui and uk are adjacent in G and
there exists a ∈ S1 such that dG(a, ui) 6= dG(a, uk) and, as above, (ui, vj) and (uk, vl) are
distinguished by (a, vj) ∈ (S1 × V2) ⊂ S. Finally, if uiuk ∈ E1 and vjvl ∈ E2, then for any
a ∈ S1 such that dG(a, ui) 6= dG(a, uk) we have

dG⊠H((ui, vj), (a, vj)) = dG(ui, a) 6= dG(uk, a) = max{dG(uk, a), 1} = dG⊠H((a, vj), (uk, vl)).

Thus, (ui, vj) and (uk, vl) are distinguished by (a, vj) ∈ S1 × V2 ⊂ S. Then we conclude
that S is a local metric generator for G ⊠ H and, as a consequence, diml(G ⊠ H) ≤ |S| =
n1 · diml(H) + n2 · diml(G)− diml(G) · diml(H).

To prove the lower bound, let B be a local metric basis of G⊠H . Given (u1, v1) ∈ B,
chose u∗ ∈ NG(u1), v

∗ ∈ NH(v1) and define

W = {(u∗, v1), (u1, v
∗), (u∗, v∗)}.

Since (u1, v1) is not able to distinguish any pair of adjacent vertices in W , there exists
(u2, v2) ∈ B − {(u1, v1)}. Let

q = min
(a,b)∈W

{dG⊠H((u2, v2), (a, b))}.

Now, as dG⊠H((a, b), (u2, v2)) ∈ {q, q + 1} for every (a, b) ∈ W , by Dirichlet’s box principle,
there are two vertices (x1, y1), (x2, y2) ∈ W such that

dG⊠H((u2, v2), (x1, y1)) = dG⊠H((u2, v2), (x2, y2)).

Hence, B − {(u1, v1), (u2, v2)} 6= ∅, and the result follows.

Since Kn1
⊠Kn2

∼= Kn1·n2
and for any complete graph Kn, diml(Kn) = n−1, we deduce

diml(Kn1
⊠Kn2

) = n1 · n2 − 1 = n1 · diml(Kn2
) + n2 · diml(Kn1

)− diml(Kn1
) · diml(Kn2

).

Therefore, the upper bound is tight. Examples of non-complete graphs, where the upper
bound is attained, can be derived from Theorem 10.

In order to show that the lower bound is tight, consider two paths Pt and Pt′ , where
t′ ≤ t ≤ 2t′ − 1, V (Pt) = {u1, u2, . . . , ut} and ui ∼ ui+1, for every i ∈ {1, . . . , t − 1}.
Also, take v1, vt′ ∈ V (Pt′) such that dP

t′
(v1, vt′) = t′ − 1. It is not difficult to check that

{(u1, v1), (ut′, vt′), (ut, v1)} is a local metric generator for Pt ⊠ Pt′ , so that Theorem 4 leads
to diml(Pt ⊠ Pt′) = 3.
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3 The Particular Case of Adjacency k-Resolved Graphs

Now we will give some results involving the diameter or the radius of G. The eccentricity

ǫ(v) of a vertex v in a connected graph G is the maximum distance between v and any other
vertex u of H . So, the diameter of G is defined as

D(G) = max
v∈V (G)

{ǫ(v)},

while the radius is defined as
r(G) = min

v∈V (G)
{ǫ(v)}.

Given two vertices x and y in a connected graph G = (V,E), the interval I[x, y] between
x and y is defined as the collection of all vertices which lie on some shortest x − y path.
Given a nonnegative integer k, we say that G is adjacency k-resolved if for every two adjacent
vertices x, y ∈ V , there exists w ∈ V such that

dG(y, w) ≥ k and x ∈ I[y, w], or

dG(x, w) ≥ k and y ∈ I[x, w].

For instance, the path and the cycle graphs of order n (n ≥ 2) are adjacency
⌈

n
2

⌉

-
resolved, the two-dimensional grid graphs Pr�Pt are adjacency

(

⌈ r
2
⌉+ ⌈ t

2
⌉
)

-resolved, and
the hypercube graphs Qk are adjacency k-resolved.

Theorem 5. Let H be an adjacency k-resolved graph of order n2 and let G be a non-trivial

graph of diameter D(G) < k. Then diml(G⊠H) ≤ n2 · diml(G).

Proof. Let V1 = {u1, u2, ..., un1
} and V2 = {v1, v2, ..., vn2

} be the set of vertices of G and H ,
respectively. Let S1 be a local metric generator for G. We will show that S = S1 × V2 is a
local metric generator for G⊠H . Let (ui, vj), (ur, vl) be two adjacent vertices of G⊠H . We
differentiate the following two cases.
Case 1. j = l. Since ui ∼ ur and S1 is a local metric generator for G, there exists u ∈ S1

such that dG(ui, u) 6= dG(ur, u). Hence,

dG⊠H((ui, vj), (u, vj)) = dG(ui, u) 6= dG(ur, u) = dG⊠H((ur, vj), (u, vj)).

Case 2. vj ∼ vl. Since H is adjacency k-resolved, there exists v ∈ V2 such that (dH(v, vl) ≥ k

and vj ∈ I[v, vl]) or (dH(v, vj) ≥ k and vl ∈ I[v, vj]). Say dH(v, vl) ≥ k and vj ∈ I[v, vl]. In
such a case, as D(G) < k, for every u ∈ S1 we have

dG⊠H((ui, vj), (u, v)) = max{dG(ui, u), dH(vj, v)}

< dH(v, vl)

= max{dG(u, ur), dH(v, vl)}

= dG⊠H((ur, vl), (u, v)).

Therefore, S is a local metric generator for G⊠H .

Lemma 6. Let H be a connected bipartite graph of order greater than or equal to three.

Then H is adjacency k-resolved for any k ∈ {2, .., r(H)}.
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Proof. Let x, y, w ∈ V (H) such that x ∼ y and dH(x, w) = k, for some k ∈ {2, .., r(H)}.
SinceH does not have cycles of odd length, dH(w, y) 6= k. Thus, either dH(w, y) = dH(w, x)+
dH(x, y) = k + 1 or dH(w, x) = dH(w, y) + dH(y, x) = k. Therefore, the result follows.

Now we derive a consequences of combining Theorem 5 and Lemma 6.

Theorem 7. Let G and H be two connected non-trivial graphs. If H is bipartite and D(G) <
r(H), then diml(G⊠H) ≤ |V (H)| diml(G).

As we will show in Theorem 14, the above inequality is tight.

4 The Role of True Twin Equivalence Classes

Two vertices u and v of a graph G are true twins if NG[u] = NG[v]. Note that if two vertices
u and v of a graph G are true twins, then dG(x, u) = dG(x, v), for every x ∈ V (G)− {u, v}.
We define the true twin equivalence relation R on V (G) as follows:

xRy ←→ NG[x] = NG[y].

If the true twin equivalence classes are U1, U2, ..., Ut, then every local metric generator of G
must contain at least |Ui| − 1 vertices from Ui, for each i ∈ {1, ..., t}. Thus the following
result presented in [20] holds.

Theorem 8. [20] If G is a nontrivial connected graph of order n having t true twin equiva-

lence classes, then diml(G) ≥ n− t.

3

1 2

4

5 6

7

8 9

Figure 1: This graph has t = 7 true twin equivalence classes; two of them are {1, 2} and
{8, 9} and the remain classes are singleton sets. A local metric basis is {1, 9} while a metric
basis is {1, 5, 9}. Thus, diml(G) = n− t = 2 < 3 = dim(G).

Note that the complete graph has only one true twin equivalence class and in any
triangle-free graph all the true twin equivalence classes are singleton. As an example of non-
complete graph G of order n having t true twin equivalence classes, where diml(G) = n− t,

we take G = K1+

(

l
⋃

i=1

Kri

)

, ri ≥ 2, l ≥ 2. In this case G has t = l+1 true twin equivalence

classes, n = 1 +
∑l

i=1 ri and diml(G) =
∑l

i=1(ri − 1) = n − t. Figure 1 shows another
example of graph where the bound given in Theorem 8 is reached.

Lemma 9. Let G and H be two non-trivial connected graphs of order n1 and n2, having t1
and t2 true twin equivalent classes, respectively. Then the vertex set of G⊠H is partitioned

into t1t2 true twin equivalent classes.
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Proof. First of all, we would point out that for any a ∈ V (G) and b ∈ V (H) it holds

NG⊠H [(a, b)] = {(x, y) : x ∈ NG[a], y ∈ NH [b]} = NG[a]×NH [b].

Now, since the result immediately holds for complete graphs, we assume that G 6∼= Kn1

or H 6∼= Kn2
. Let U1, U2, ..., Ut1 and U ′

1, U
′

2, ..., U
′

t2
be the true twin equivalence classes of G

and H , respectively. Since each Ui (and U ′

j) induces a clique and its vertices have identical
closed neighbourhoods, for every a, c ∈ Ui and b, d ∈ U ′

j,

NG⊠H [(a, b)] = NG[a]×NH [b] = NG[c]×NH [d] = NG⊠H [(c, d)].

Hence, V (G)× V (H) is partitioned as V (G)× V (H) =
⋃t2

j=1

(
⋃t1

i=1 Ui × U ′

j

)

, where Ui × U ′

j

induces a clique in G⊠H and its vertices have identical closed neighbourhoods. Moreover,
for any (a, b) ∈ Ui × U ′

j and (c, d) ∈ Uk × U ′

l , where i 6= k or j 6= l, we have

NG⊠H [(a, b)] = NG[a]×NH [b] 6= NG[c]×NH [d] = NG⊠H [(c, d)].

Therefore, the true twin equivalence classes of G ⊠ H are of the form Ui × U ′

j, where i ∈
{1, .., t1} and j ∈ {1, .., t2}.

We would point out that the above result was indirectly obtained in [24], proof of
Theorem 2.3.

Theorem 8 and Lemma 9 directly lead to the next result.

Theorem 10. Let G and H be two non-trivial connected graphs of order n1 and n2, having

t1 and t2 true twin equivalence classes, respectively. Then

diml(G⊠H) ≥ n1n2 − t1t2.

By Theorems 1, 4 and 10 we deduce the following result.

Theorem 11. Let G and H be two non-trivial connected graphs of order n1 and n2, having

t1 and t2 true twin equivalence classes, respectively. Then the following assertions hold:

(i) If diml(G) = n1 − t1 and diml(H) = n2 − t2, then diml(G⊠H) = n1n2 − t1t2.

(ii) If diml(G) = n1−t1 and H is bipartite, then n2(n1−t1) ≤ diml(G⊠H) ≤ n2(n1−t1)+t1.

Since any complete graph Kn has only one true twin equivalence class, Theorem 11 leads
to the next result.

Corollary 12. Let H be a connected graph of order n′ ≥ 2 having t true twin equivalent

classes. Then for any integer n ≥ 2,

diml(Kn ⊠H) = nn′ − t.

In particular, if H does not have true twin vertices, then

diml(Kn ⊠H) = n′(n− 1).

Note that if H is an adjacency k-resolved graph, for k ≥ 2, then H does not have true
twin vertices. Therefore, Theorems 10 and 5 lead to the following result.

6



Theorem 13. Let H be an adjacency k-resolved graph of order n2 and let G be a non-trivial

connected graph of order n1, having t1 true twin equivalence classes and diameter D(G) < k.

If diml(G) = n1 − t1, then diml(G⊠H) = n2(n1 − t1).

Our next result can be deduced from Corollary 6 and Theorem 13 or from Theorems 10
and 7.

Theorem 14. Let H be connected bipartite graph of order n2 and let G be a non-trivial

connected graph of order n1, having t1 true twin equivalence classes. If diml(G) = n1 − t1
and D(G) < r(H), then diml(G⊠H) = n2(n1 − t1).

5 The Particular Case of Pt ⊠G

In this section we assume that t is an integer greater than or equal to two and V (Pt) =
{u1, u2, . . . , ut}, where ui ∼ ui+1, for every i ∈ {1, . . . , t−1}. In the proof of the next lemma
we will use the notation Br(x) for the closed ball of center x ∈ V (G) and radius r ≥ 0, i.e.,

Br(x). = {y ∈ V (G) : dG(x, y) ≤ r}.

Lemma 15. Let G be a connected graph and let t ≥ 1 be an integer. Let ui1, ui2, . . . , uib be

the first components of the elements in a local metric basis of Pt⊠G, where i1 ≤ i2 ≤ · · · ≤ ib.

Then the following assertions hold.

(i) i2 ≤ D(G) + 1 and ib−1 ≥ t−D(G).

(ii) For any l ∈ {1, . . . , b− 2}, il+2 ≤ 2D(G) + il.

(iii) i3 ≤ 2D(G) + 1.

Proof. Let B be a local metric basis of Pt⊠G and let ui1 , ui2, . . . , uib be the first components
of the elements in B, where i1 ≤ i2 ≤ · · · ≤ ib. First of all, notice that |B| = b and, by
Theorem 4, b ≥ 3.

We first proceed to prove (i). Suppose, for the contrary, that i2 > D(G) + 1. Let
y, z ∈ V (G) such that (ui1, y) ∈ B and z ∈ NG(y). If i1 6= 1, then no vertex in B is able
to distinguish (u1, y) and (u1, z). Now, if i1 = 1, then no vertex in B is able to distinguish
(u2, y) and (u2, z). So, in both cases we get a contradiction. The proof of ib−1 ≥ t −D(G)
is deduced by symmetry. Hence, (i) follows.

To prove (ii) we proceed by contradiction. Suppose that il+2 > 2D(G) + il for some l ∈
{1, . . . , b−2}. In such a case we have that il+1 > D(G)+il or il+2 > D(G)+il+1. We suppose
that il+1 > D(G) + il, being the second case analogous. We now take y, z ∈ V (G) such that
(uil+1

, y) ∈ B and z ∈ NG(y). Notice that (uil+D(G), y) and (uil+D(G), z) are adjacent.We
differentiate the following cases for (uik , w) ∈ B. If k ≤ l, then il +D(G)− ik ≥ D(G) and
so

dPt⊠G((uik , w), (uil+D(G), y)) = il +D(G)− ik = dPt⊠G((uik , w), (uil+D(G), z)).

If k = l + 1 and il+1 6= il+2, then w = y and since il+1 > D(G) + il, we have

dPt⊠G((uik , w), (uil+D(G), y)) = ik − il −D(G) = dPt⊠G((uik , w), (uil+D(G), z)).

If k = l + 1 and il+1 = il+2, then from the assumption il+2 > 2D(G) + il we have that
ik − il −D(G) > D(G) and so

dPt⊠G((uik , w), (uil+D(G), y)) = ik − il −D(G) = dPt⊠G((uik , w), (uil+D(G), z)).

7



If k ≥ l + 2, then the assumption il+2 > 2D(G) + il leads to ik − il −D(G) > D(G) and so

dPt⊠G((uik , w), (uil+D(G), y)) = ik − il −D(G) = dPt⊠G((uik , w), (uil+D(G), z)).

Hence, no vertex in B is able to distinguish (uil+D(G), y) from (uil+D(G), z), which is a con-
tradiction. Therefore, the proof of (ii) is complete.

Finally, we proceed to prove (iii). If i1 = 1, then by (ii) we obtain i3 ≤ 2D(G) + 1.
Hence, we assume that i1 > 1. For contradiction purposes, suppose that i3 > 2D(G) + 1.
We differentiate two cases for (ui1 , v1), (ui2, v2) ∈ B.

Case 1: i1 + i2 − 2 > dG(v1, v2). In this case |Bi1−1(v1) ∩ Bi2−1(v2)| ≥ 2 and so we take
α, β ∈ Bi1−1(v1)∩Bi2−1(v2) such that α ∼ β. For the pair of adjacent vertices (u1, α), (u1, β)
we have

dPt⊠G((ui1, v1), (u1, α)) = i1 − 1 = dPt⊠G((ui1, v1), (u1, β))

and
dPt⊠G((ui2, v2), (u1, α)) = i2 − 1 = dPt⊠G((ui2, v2), (u1, β)).

So, neither (ui1, v1) nor (ui2, v2) distinguishes (u1, α) from (u1, β). Furthermore, for ir ≥
i3 > 2D(G) + 1 and (uir , vr) ∈ B we have

dPt⊠G((uir , vr), (u1, α)) = ir − 1 = dPt⊠G((uir , vr), (u1, β)).

Therefore, no vertex (uir , vr) ∈ B distinguishes (u1, α) from (u1, β), which is a contradiction.

Case 2: i1 + i2 − 2 ≤ d(v1, v2). In this case we have

(D(G)+2−i1)+(D(G)+2−i2) = 2D(G)+2−(i1+i2−2) ≥ 2D(G)+2−d(v1, v2) ≥ D(G)+2.

Hence, there exist α, β ∈ BD(G)+2−i1(v1) ∩ BD(G)+2−i2(v2) such that α ∼ β. For the pair of
adjacent vertices (uD(G)+2, α), (uD(G)+2, β) we have

dPt⊠G((ui1, v1), (uD(G)+2, α)) = D(G) + 2− i1 = dPt⊠G((ui1, v1), (uD(G)+2, β))

and

dPt⊠G((ui2, v2), (uD(G)+2, α)) = D(G) + 2− i2 = dPt⊠G((ui2, v2), (uD(G)+2, β))

So, neither (ui1, v1) nor (ui2, v2) distinguishes (uD(G)+2, α) from (uD(G)+2, β). For ir ≥ i3 >

2D(G) + 1 and (uir , vr) ∈ B we have

dPt⊠G((uir , vr), (uD(G)+2, α)) = ir − (D(G) + 2) = dPt⊠G((uir , vr), (uD(G)+2, β)).

Thus, no vertex (uir , vr) ∈ B distinguishes (uD(G)+2, α) from (uD(G)+2, β), which is a contra-
diction.

Theorem 16. For any connected G and any integer t ≥ 2D(G) + 1,

diml(Pt ⊠G) ≥

⌈

t− 1

D(G)

⌉

+ 1.
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Proof. Let B be a local metric basis of Pt⊠G and let ui1 , ui2, . . . , uib be the first components
of the elements in B, where i1 ≤ i2 ≤ · · · ≤ ib. We differentiate two cases.

Case 1. b odd. In this case b− 1 is even and by Lemma 15 (i) and (ii) we have

i2 ≤ D(G) + 1, i4 ≤ 3D(G) + 1, . . . , ib−1 ≤ (b− 2)D(G) + 1.

Case 2. b even. In this case b− 1 is odd and by Lemma 15 (iii) and (ii) we have

i3 ≤ 2D(G) + 1, i5 ≤ 4D(G) + 1, . . . , ib−1 ≤ (b− 2)D(G) + 1.

According to the two cases above and Lemma 15 (i) we have

t−D(G) ≤ ib−1 ≤ (b− 2)D(G) + 1.

Therefore, b ≥ t−1
D(G)

+ 1.

From now on we say that a set W ⊂ V (G⊠H) resolves the set X ⊆ V (G⊠H) if every
pair of adjacent vertices in X is distinguished by some element in W .

Lemma 17. Let G and H be two connected nontrivial graphs such that H is bipartite. Let

u1, u2, u3 ∈ V (G) and v1, v2 ∈ V (H) such that u2 ∈ IG[u1, u3], dG(u1, u2) ≤ dH(v1, v2) =
D(H) and dG(u2, u3) ≥ D(H). Then, for any shortest path P from u1 to u2, the set B =
{(u1, v1), (u2, v2), (u3, v1)} resolves V (P )× V (H).

Proof. Let P be a shortest path form u1 to u2 and let (ui, vj), (uk, vl) ∈ V (G⊠H) be two adja-
cent vertices such that ui, uk ∈ V (P ). Without lost of generality, we assume that dG(ui, u1) ≤
dG(uk, u1). Notice that from this assumption we have that dG(ui, u3) ≥ dG(uk, u3). We dif-
ferentiate the following two cases:

Case 1: ui ∼ uk. As dG(u2, u3) ≥ D(H) and ui, uk ∈ V (P ), we have D(H) ≤ dG(u3, uk) <
dG(u3, ui) and so dG⊠H((u3, v1), (ui, vj)) = dG(u3, ui) > dG(u3, uk) = dG⊠H((u3, v1), (uk, vl)).

Case 2: i = k. In this case vj ∼ vl and, as H is a bipartite graph, dH(v1, vj) 6= dH(v1, vl) and
dH(v2, vj) 6= dH(v2, vl). We assume, without lost of generality, that dH(v1, vj) < dH(v1, vl).
Notice that

dH(v1, vj) + dH(vj , v2) ≥ dH(v1, v2) = D(H) ≥ dG(u1, u2) = dG(u1, ui) + dG(ui, u2).

Hence, dH(v1, vj) ≥ dG(u1, ui) or dH(vj, v2) > dG(u2, ui). If dH(v1, vj) ≥ dG(u1, ui), then

dG⊠H((u1, v1), (ui, vj)) = dH(v1, vj) < dH(v1, vl) = dG⊠H((u1, v1), (uk, vl)).

Now, if dH(vj, v2) > dG(u2, ui), then dH(vl, v2) ≥ dG(u2, ui) = dG(u2, uk) and so

dG⊠H((u2, v2), (ui, vj)) = dH(v2, vj) 6= dH(v2, vl) = dG⊠H((u2, v2), (uk, vl)).

According to the cases above, the result follows.

Theorem 18. For any connected bipartite graph G and any integer t ≥ 2D(G) + 1,

diml(Pt ⊠G) =

⌈

t− 1

D(G)

⌉

+ 1.
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Proof. Let G and Pt be as in the hypotheses. From α =
⌊

t−1
D(G)

⌋

and two diametral vertices

a, b ∈ V (G) we define a set Bα as follows.
If α = t−1

D(G)
, then

Bα = {(u1, a), (uD(G)+1, b), (u2D(G)+1, a), (u3D(G)+1, b), . . . , (uαD(G)+1, b)}

for α is odd and

Bα = {(u1, a), (uD(G)+1, b), (u2D(G)+1, a), (u3D(G)+1, b), . . . , (uαD(G)+1, a)}

for α even.
If α < t−1

D(G)
, then

Bα = {(u1, a), (uD(G)+1, b), (u2D(G)+1, a), (u3D(G)+1, b), . . . , (uαD(G)+1, b), (ut, a)}

for α odd and

Bα = {(u1, a), (uD(G)+1, b), (u2D(G)+1, a), (u3D(G)+1, b), . . . , (uαD(G)+1, a), (ut, b)}

for α even. We would point out that, in any case, |Bα| =
⌈

t−1
D(G)

⌉

+ 1.

We will show that Bα is a local metric generator for Pt ⊠ G. In order to see that, let
(ui, vj) and (uk, vl) be two adjacent vertices belonging to V (Pt ⊠ G) − Bα. We consider,
without lost of generality, that i ≤ k and we differentiate the following three cases for k.

• 1 ≤ k ≤ D(G)+1. Let T1 = {u1, . . . , uD(G)+1}×V (G). In this case (ui, vj), (uk, vl) ∈ T1

and, by Lemma 17 the set {(u1, a), (uD(G)+1, b), (u2D(G)+1, a)} ⊂ Bα resolves T1.

• pD(G) + 2 ≤ k ≤ (p + 1)D(G) + 1, for some integer p ∈ {1, ..., α − 1}. Let Tp =
{upD(G)+1, . . . , u(p+1)D(G)+1}× V (G). In this case (ui, vj), (uk, vl) ∈ Tp and we can take
x, y ∈ {a, b} so that Xp = {(u(p−1)D(G)+1, x), (upD(G)+1, y), (u(p+1)D(G)+1, x)} is a subset
of Bα. Thus, by Lemma 17 we can conclude that Xp resolves Tp.

• αD(G)+2 ≤ k ≤ t. Let Tt = {uαD(G)+1, . . . , ut}×V (G). As above, (ui, vj), (uk, vl) ∈ Tt

and we can take x, y ∈ {a, b} so that the setXt = {(u(α−1)D(G)+1, x), (uαD(G)+1, y), (ut, x)}
is a subset of Bα. Thus, by Lemma 17 we can conclude that Xt resolves Tt.

According to the three cases above we have diml(Pt ⊠ G) ≤
⌈

t−1
D(G)

⌉

+ 1. Therefore, by

Theorem 16 we conclude the proof.

The authors of [24] conjectured that for any integers t and t′ such that 2 ≤ t′ < t, the
metric dimension of Pt ⊠ Pt′ equals

⌈

t+t′−2
t′−1

⌉

. We are now able to prove the conjecture.

Theorem 19. For any integers t and t′ such that 2 ≤ t′ < t,

dim(Pt ⊠ Pt′) =

⌈

t + t′ − 2

t′ − 1

⌉

.

Proof. As pointed out in Section 2, for t′ ≤ t ≤ 2t′ − 1, diml(Pt ⊠ Pt′) = 3. Now, since
diml(Pt ⊠ Pt′) ≤ dim(Pt ⊠ Pt′), if t ≥ 2t′ − 1, then by Theorem 18 we obtain the lower
bound dim(Pt ⊠ Pt′) ≥

⌈

t+t′−2
t′−1

⌉

. The upper bound was obtained in [24]. Therefore, the
result follows.
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6 The Particular Case of Ct ⊠G

In this section we assume that t is an integer greater than or equal to three and V (Ct) =
{u1, u2, . . . , ut}, where u1 ∼ ut and ui ∼ ui+1, for every i ∈ {1, . . . , t− 1}.

Lemma 20. Let G be a connected graph and let t ≥ 3 be an integer. Let ui1, ui2, . . . , uib be the

first components of the elements in a local metric basis of Ct ⊠G, where i1 ≤ i2 ≤ · · · ≤ ib.

Then for any l ∈ {1, . . . , b}, dCt
(uil+2

, uil) ≤ 2D(G), where the subscripts of i are taken

modulo b.

Proof. Let B be a local metric basis of Ct⊠G and let ui1, ui2, . . . , uib be the first components
of the elements in B, where i1 = 1 ≤ i2 ≤ · · · ≤ ib. First of all, notice that |B| = b and, by
Theorem 4, b ≥ 3.

We proceed by contradiction. Suppose that dCt
(uil+2

, uil) > 2D(G) for some l ∈
{1, . . . , b}. In such a case we have that dCt

(uil+1
, uil) > D(G) or dCt

(uil+2
, uil+1

) > D(G).
We suppose that dCt

(uil+1
, uil) > D(G), being the second case analogous. We now take

y, z ∈ V (G) such that (uil+1
, y) ∈ B and z ∈ NG(y). Notice that (uil+D(G), y) and (uil+D(G), z)

are adjacent. We differentiate the following cases for (uik , w) ∈ B. If k 6= l + 1, then
dCt

(uil+D(G), uik) ≥ D(G) and so

dCt⊠G((uik , w), (uil+D(G), y)) = dCt
(uil+D(G), uik) = dCt⊠G((uik , w), (uil+D(G), z)).

If k = l + 1 and il+1 6= il+2 then w = y and since dCt
(uil+1

, uil) > D(G), we have

dCt⊠G((uik , w), (uil+D(G), y)) = dCt
(uik , uil+D(G)) = dCt⊠G((uik , w), (uil+D(G), z)).

If k = l + 1 and il+1 = il+2 then from the assumption dCt
(uil+2

, uil) > 2D(G) we have that
dCt

(uik , uil+D(G)) > D(G) and so

dCt⊠G((uik , w), (uil+D(G), y)) = dCt
(uik , uil+D(G)) = dCt⊠G((uik , w), (uil+D(G), z)).

Hence, no vertex inB is able to distinguish the adjacent vertices (uil+D(G), y) and (uil+D(G), z),
which is a contradiction. Therefore, the proof is complete.

Theorem 21. For any connected graph G and any integer t ≥ 1,

diml(Ct ⊠G) ≥

⌈

t

D(G)

⌉

.

Proof. If 3D(G) ≥ t ≥ 1, then
⌈

t
D(G)

⌉

≤ 3 and, by Theorem 4, the result follows. From

now on we take t > 3D(G). Let ui1 , ui2, . . . , uib be the first components of the elements in
a local metric basis B of Ct ⊠ G, where i1 = 1 ≤ i2 ≤ · · · ≤ ib. First of all, notice that
t + 1 − ib−1 = dCt

(ui1 , uib−1
) and so Lemma 20 leads to ib−1 ≥ t + 1 − 2D(G). We now

differentiate two cases.

Case 1. b even. In this case b− 1 is odd and by Lemma 20 we have

i3 ≤ 2D(G) + 1, i5 ≤ 4D(G) + 1, . . . , ib−1 ≤ (b− 2)D(G) + 1.

Hence, t + 1− 2D(G) ≤ ib−1 ≤ (b− 2)D(G) + 1, so that b ≥ t
D(G)

.
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Case 2. b odd. By Lemma 20 we have

i3 ≤ D(G) + 1, i4 ≤ 3D(G) + 1, . . . , ib ≤ (b− 1)D(G) + 1.

Now, since t + i2 − ib = dCt
(ui2, ub) ≤ 2D(G), we have

i2 ≤ 2D(G)− t + ib ≤ (b+ 1)D(G)− t+ 1.

Hence,

i2 ≤ (b+ 1)D(G)− t+ 1, i4 ≤ (b+ 3)D(G)− t + 1, . . . , ib−1 ≤ (2b− 2)D(G)− t+ 1.

Thus, t + 1− 2D(G) ≤ ib−1 ≤ (2b− 2)D(G)− t+ 1, so that b ≥ t
D(G)

.

Theorem 22. For any connected bipartite graph G and any integer t ≥ 4D(G),

diml(Ct ⊠G) ≤

⌈

t

D(G)

⌉

+ 1.

Furthermore, if
⌈

t
D(G)

⌉

is even, then

diml(Ct ⊠G) =

⌈

t

D(G)

⌉

.

Proof. Let G and Ct be as in the hypotheses. From α =
⌈

t
D(G)

⌉

and two diametral vertices

a, b ∈ V (G) we define a set Bα as follows. If α is even, then

Bα = {(u1, a), (uD(G)+1, b), (u2D(G)+1, a), (u3D(G)+1, b), . . . , (u(α−1)D(G)+1, b)}

and, if α is odd, then

Bα = {(u1, a), (uD(G)+1, b), (u2D(G)+1, a), (u3D(G)+1, b), . . . , (u(α−1)D(G)+1, a), (u(α−1)D(G)+1, b)}.

Notice that |Bα| = α, for α even, and |Bα| = α + 1, for α odd. We will show that Bα

is a local metric generator for Ct ⊠ G. In order to see that, let (ui, vj), (uk, vl) be a pair of
adjacent vertices belonging to V (Ct⊠G)−Bα. We consider, without lost of generality, that
i ≤ k and we differentiate the following three cases for k.

• 2 ≤ k ≤ D(G)+1. Let T1 = {u1, . . . , uD(G)+1}×V (G). In this case (ui, vj), (uk, vl) ∈ T1

and, by Lemma 17 the set {(u1, a), (uD(G)+1, b), (u2D(G)+1, a)} ⊂ Bα resolves T1.

• pD(G) + 2 ≤ k ≤ (p + 1)D(G) + 1, for some integer p ∈ {1, ..., α − 2}. Let Tp =
{upD(G)+1, . . . , u(p+1)D(G)+1} × V (G). In this case (ui, vj), (uk, vl) ∈ Tp and we can
take x, y ∈ {a, b} such that Xp = {(u(p−1)D(G)+1, x), (upD(G)+1, y), (u(p+1)D(G)+1, x)} is
a subset of Bα. Thus, by Lemma 17 we can conclude that Xp resolves Tp.

• (α− 1)D(G) + 2 ≤ k ≤ t+ 1. Let Tt = {u(α−1)D(G)+1, . . . , ut+1} × V (G). In this case,
(ui, vj), (uk, vl) ∈ Tt and we take the set Xt = {(u(α−1)D(G)+1, b), (u1, a), (uD(G)+1, b)} ⊂
Bα. By Lemma 17 we can conclude that Xt resolves Tt.

According to the three cases above Bα is a local metric generator for Ct ⊠ G and so
diml(Ct ⊠G) ≤ |Bα|. Therefore, by Theorem 21 we conclude the proof.
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the local metric dimension of corona product graphs, Electronic Notes in Discrete Math-
ematics 46 (0) (2014) 27–34.
URL http://www.sciencedirect.com/science/article/pii/S1571065314000067

[3] L. M. Blumenthal, Theory and applications of distance geometry, Second edition,
Chelsea Publishing Co., New York, 1970.

[4] R. C. Brigham, G. Chartrand, R. D. Dutton, P. Zhang, Resolving domination in graphs,
Mathematica Bohemica 128 (1) (2003) 25–36.
URL http://mb.math.cas.cz/mb128-1/3.html
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