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A NEW SIMPLE PROOF OF THE AZTEC DIAMOND

THEOREM

MANUEL FENDLER AND DANIEL GRIESER

Abstract. The Aztec diamond of order n is the union of lattice squares in
the plane intersecting the square |x| + |y| < n. The Aztec diamond theorem

states that the number of domino tilings of this shape is 2n(n+1)/2. It was

first proved by Elkies, Kuperberg, Larsen and Propp in 1992. We give a new
simple proof of this theorem.

A domino is a 1 × 2 rectangle in the plane whose corners are lattice points, i.e.
have integer coordinates. A domino tiling of a subset S of the plane is a covering
of S by a set of dominoes whose interiors are disjoint. The problem of counting
the number of domino tilings (or tilings, for short) of a given set S has received
much attention in the last 50 years, partly because of its significance in physics, but
also because of the many beautiful mathematical structures that have appeared in
its study. For example, the number of domino tilings of a 2 × n rectangle is the
nth Fibonacci number, and there is a rather non-trivial formula for the number of
domino tilings of an m×n-rectangle due to Kasteleyn [5], Fisher and Temperley [9],

which for even m = n reads 2n
2/2

n/2
∏

j,k=1

(

cos2 jπ
n+1 + cos2 kπ

n+1

)

. One of the amazing

facts in this area is that when essentially rotating the square by 45 degrees the
number of tilings is given by a much simpler formula.

More precisely, define the Aztec diamond of order n by

An =
⋃

{Q : Q ∩ {(x, y) : |x| + |y| < n} 6= ∅}

where Q ranges over squares [k, k + 1]× [l, l+ 1] with k, l ∈ Z. See Figure 1.

Theorem 1 ([2]). Denote by Tn the number of domino tilings of An. Then

Tn = 2n(n+1)/2 .

See also Remark 4 for a refinement. The first four proofs of this formula were
given in [2], [3], later other proofs appeared in [1], [4] (these two proofs are essentially
identical) and [7]. See [6] and references given there for a more refined discussion
of domino tilings, and [8] for a recent generalization of the theorem.

In this note we give a proof of this theorem which is inspired by the first proof in
[2], but simplifies it in various respects, for example we replace the height function
arguments used there by a very simple direct construction, see Lemma 2.
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Figure 1. The Aztec Diamonds of orders 2 (dashed lines) and 3
(heavy lines). The marked points are nodes (n = 2).

We use induction on n. Clearly T1 = 2, so in order to prove the theorem it
suffices to show that

(1) Tn+1 = 2n+1Tn .

We need a few preparations before we give the proof of this recursion. We fix n

throughout. The strategy is to associate a ’field of arrows’ to each tiling, and then
to relate the fields of arrows arising from An tilings to those arising from An+1

tilings.

Nodes and lattice squares. Consider the two Aztec diamonds An ⊂ An+1. We call
a lattice point (i, j) ∈ An+1 satisfying i + j ≡ n mod 2 a node. In particular, the
extreme points of An+1 are nodes. All other nodes are contained in An and are
called interior nodes. See Figure 1 for the case n = 2. A lattice square will be a
1×1 square contained in An+1 whose corners are lattice points. A boundary square
is a lattice square contained in An+1 but not in An. Notice that each lattice square
has exactly two corners which are nodes, and each interior node is adjacent to four
lattice squares.

Fields of arrows. Suppose in each lattice square of An+1 we draw an arrow pointing
from one corner node to the other. We call this collection of arrows a field of arrows
if it satisfies the following condition.

Arrow field condition: Each interior node N is either:
• attracting: all adjacent arrows point towards N , or
• repelling: all adjacent arrows point away from N , or
• transient: any two collinear arrows adjacent to N point in the
same direction.

See Figure 2 for the six possible local arrow patterns. We call a field of arrows
pointing outward/inward if all arrows in boundary squares point outward/inward,
see Figure 3 (B) and (C) for examples.

From tilings to fields of arrows. We now associate fields of arrows to tilings. More
precisely, we define an outward (resp. inward) pointing field of arrows F (T ) on
An+1 for each tiling T of An+1 (resp. An). This is done domino by domino by the
rule indicated in Figure 3(A).1

1Note that the field of arrows is always defined on all of An+1, even for a tiling of An.
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Figure 2. The six possible local arrow patterns, and how they
arise from domino tilings. The precise position of the dominoes on
dashed lines is inessential.

More explicitly, consider first a tiling T of An+1. Define F (T ) as follows: Each
domino in the tiling has exactly two corners which are nodes. The two arrows
contained in that domino are chosen to point towards these corner nodes. Since
each boundary domino has a corner node lying on the boundary of An+1, all arrows
in boundary squares point outward. Also, by looking at the ways that dominoes can
lie adjacent to any interior node, we see that the arrow field condition is satisfied.
See Figure 2, and Figure 3 (B) for an example.

For a tiling T of An define F (T ) by putting arrows in the lattice squares of An

by the same rule as for An+1, and in addition putting inward pointing arrows in
all boundary squares of An+1. Then the arrow field condition is satisfied for the
same reason as before, since the arrows in boundary squares may be thought of as
arising from horizontal dominoes added along the outside boundary of An.

The core of the argument is the proof of the following lemma. Denote by r(F)
the number of repelling nodes for a field of arrows F .

Lemma 2 (Number of tilings for a fixed field of arrows). Given an inward (resp.
outward) pointing field of arrows F , there are precisely 2r(F) domino tilings T of
An (resp. An+1) satisfying F (T ) = F .

In particular, every outward (resp. inward) pointing field of arrows arises from
some tiling of An+1 (resp. An).

Proof. First consider an outward pointing field of arrows F . For each lattice square,
draw the two sides of the square which lie in the direction of its arrow in bold face,
see Figure 4. Note that if F comes from a tiling then these bold face lines must be
boundary lines of dominoes.
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Figure 3. (A) A single domino with nodes and arrows; (B) resp.
(C) Outward resp. inward pointing field of arrows (n = 2), and
tilings of An+1 resp. An from which they arise. In the 2×2 squares
containing a dashed cross, the position of dominoes can be either
horizontal or vertical.

The union B of all these bold lines divides An+1 into components (the connected
components of An+1 \ B).

Claim: Each component is either a 1 × 2 rectangle or a 2× 2 square, where the
latter are precisely those 2× 2 squares having repelling nodes at their center.

Proof of Claim: Consider a lattice square S. W.l.o.g. assume that the lower left
corner P and the upper right corner Q of S are nodes, and that the arrow of S
points towards P . Since F is outward pointing, the node Q must be an interior
node. It can be either repelling or transient. If it is repelling then the component
containing S is the 2 × 2 square centered at Q (Figure 4(A)). If it is transient
then there are two possibilities for the arrows adjacent to Q, and in both cases the
component containing S is a 1×2 rectangle (Figure 4(B) and (C)). This proves the
claim.

The claim implies that F determines the tilings T having F (T ) = F , except for
the choice of having two vertical or two horizontal dominoes in each 2 × 2 square.
Conversely, any tiling that fits into the decomposition will have F as field of arrows.
Since the number of 2×2 squares is r(F), the lemma is proved in the case of outward
pointing F .

Now consider an inward pointing field of arrows F . Define B as above. Since F
is inward pointing, the boundary of An is a subset of B. Now the same argument as
above, only looking at components contained in An, shows that there are precisely
2r(F) tilings of An having F as field of arrows. �

The other ingredient in the proof is the following lemma.
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Figure 4. Determining components from fields of arrows, Lemma 2

Lemma 3. For any outward pointing field of arrows on An+1 let r be the number
of repelling nodes and a the number of attracting nodes. Then

r − a = n+ 1 .

Proof. The interior nodes of An+1 lie on n + 1 lines running south-west to north-
east, and on each line there are n+ 2 arrows. See Figure 3(B).

We claim that on each line there is one more repellent node than there are
attracting nodes. Since there are n+ 1 lines, this will imply the lemma.

To prove the claim, fix one line L and consider the sequence of arrows on L

and their changes of direction when traversing L from south-west to north-east.
Each arrow points forward (f) or backward (b). Changes b-f happens precisely at
repelling nodes, and changes f-b at attracting nodes. There is no change of direction
at transient nodes. Since the first arrow points b and the last arrow points f, there
must be one more change b-f than f-b, which was to be shown. �

Proof of the recursion (1). Let O (resp. I) be the sets of outward (inward) pointing
fields of arrows on An+1. Reversing the direction of each arrow preserves the arrow
field condition and therefore defines the map

(2) flip : O → I

which is its own inverse, hence bijective. For any F ∈ O, the attracting nodes of F
are the repelling nodes of flip(F), hence Lemma 3 implies that r(F) = r(flip(F))+
n+1. Lemma 2 then implies that the number of tilings of An+1 corresponding to F
equals 2n+1 times the number of tilings of An corresponding to flip(F). Summing
over all F ∈ O yields (1).

Figures 3 (B) and (C) show an example of an outward pointing field of arrows
and its flip.

Remark 4. The flip defined in (2) is the same map as the domino shuffling map
defined in the fourth proof in [3], although the definition of that map is different and
requires proof of well-definedness, which is obvious in our setting.2 Also, as shown
there, it is straight-forward to prove a refinement of Theorem 1: The number of
domino tilings of An having exactly 2k horizontal dominoes is

(n(n+1)
2

k

)

2In this correspondence, the nodes in this paper correspond to odd vertices in [3].
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for k = 0, . . . , n(n+1)
2 . The central observation in the inductive proof of this fact

is the following: The numbers of horizontal 1 × 2 components corresponding to a
field F ∈ O (as in the proof of Lemma 2) and to the field flip(F) are the same (in
Figure 3 (B) and (C) there are two such components). This is obvious from Figure
4 (B) and (C) since the flip rotates these patterns by 180 degrees.
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