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Abstract

This paper studies the rainbow connection number of the power graph ΓG

of a finite group G. We determine the rainbow connection number of ΓG if G
has maximal involutions or is nilpotent, and show that the rainbow connection
number of ΓG is at most three if G has no maximal involutions. The rainbow
connection numbers of power graphs of some nonnilpotent groups are also given.
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1 Introduction

Given a connected graph Γ, denote by V (Γ) and E(Γ) the vertex set and edge set,
respectively. Define a coloring ζ : E(Γ)→ {1, 2, . . . , k}, k ∈ N, where adjacent edges
may be colored the same. A path P is rainbow if any two edges in P are colored
distinct. If Γ has a rainbow path from u to v for each pair of vertices u and v, then
Γ is rainbow-connected under the coloring ζ, and ζ is called a rainbow k-coloring of
Γ. The rainbow connection number of Γ, denoted by rc(Γ), is the minimum k for
which there exists a rainbow k-coloring of Γ.

The rainbow connection number of a graph Γ was introduced by Chartrand et
al. [7]. It was showed in [5, 20] that computing rc(Γ) is NP-hard. Moreover, it has
been proved in [20], that for any fixed t ≥ 2, deciding if rc(Γ) = t is NP-complete.
Some topics on restrict graphs are as follows: oriented graphs [8], graph products
[14], hypergraphs [4], corona graphs [9], line graphs [24], Cayley graphs [21], dense
graphs [22] and sparse random graphs [12]. Most of the results and papers that dealt
with it can be found in [23].

In this paper we study the rainbow connection number of the power graph of
a finite group. We always use G to denote a finite group with the identity e. The
power graph ΓG has the vertex set G and two distinct elements are adjacent if one is
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a power of the other. The concept of a power graph was introduced in [16]. Recently,
many interesting results on power graphs have been obtained, see [2, 3, 6, 10, 11, 17–
19, 25]. A detailed list of results and open questions on power graphs can be found in
[1]. (Since our paper deals only with undirected graphs, for convenience throughout
we use the term “power graph” to refer to an undirected power graph defined as
above, see also [16], Section 3).

A finite group is called a p-group if its order is a power of p, where p is a prime.
In G, an element of order 2 is called an involution. An involution x is maximal if
the only cyclic subgroup containing x is the subgroup 〈x〉 generated by x. Denote
by MG the set of all maximal involutions of G. We use MG to discuss the rainbow
connection number of ΓG.

This paper is organized as follows. In Section 2 we express rc(ΓG) in terms of
|MG| if MG 6= ∅. In Section 3 we show that rc(ΓG) ≤ 3 if MG = ∅. In particular,
we determine rc(ΓG) if G is nilpotent. The rainbow connection numbers of power
graphs of some nonnilpotent groups are also given.

2 MG 6= ∅
In this section we prove the following theorem.

Theorem 2.1 Let G be a finite group of order at least 3. Then

rc(ΓG) =

{
3, if 1 ≤ |MG| ≤ 2;
|MG|, if |MG| ≥ 3.

We begin with the following lemma.

Lemma 2.2 rc(ΓG) ≥ |MG|.

Proof. Let MG = {z1, . . . , zm}. Observe that e is the unique vertex adjacent to zi
in ΓG, where i = 1, . . . ,m. Hence, for each pair of maximal involutions zi and zj , the
path from zi to zj is unique, which is (zi, e, zj). Suppose ζ is a rainbow k-coloring
of ΓG. Then |{ζ({zi, e}) : i = 1, . . . ,m}| = m, and so k ≥ m, as desired. 2

For x ∈ G, let [x] = {y ∈ G : 〈y〉 = 〈x〉}. Then {[x] : x ∈ G} is a partition of G.

Lemma 2.3 rc(ΓG) ≤ max{|MG|, 3}.

Proof. Suppose that {[x1], . . . , [xs]} and {[xs+1], . . . , [xs+t]} are partitions of {x ∈
G : |x| is even, |x| ≥ 4} and {x ∈ G : |x| is odd, |x| ≥ 3}, respectively. For 1 ≤ i ≤
s, let ui be the involution in 〈xi〉. Write MG = {z1, . . . , zm} and

E1 = {{e, x} : x ∈ ∪s+ti=1([xi] \ {xi})} ∪ {{ui, xi} : i = 1, . . . , s},
E2 = {{e, xi} : i = 1, . . . , s+ t} ∪ (∪si=1{{ui, x} : x ∈ [xi] \ {xi}}),
E3 = E(ΓG) \ (E1 ∪ E2 ∪ {{e, zj} : j = 1, . . . ,m}).

The sets of edges E1, E2 and {{e, zj} : j = 1, . . . ,m} are showed in Figure 1.
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Figure 1: The set of edges E1 ∪ E2 ∪ {{e, zj} : j = 1, . . . ,m}

Let k = max{|MG|, 3}. Define a coloring

ζ : E(ΓG) −→ {1, . . . , k}, f 7−→
{
i, if f ∈ Ei, where i = 1, 2, 3;
j, if f = {e, zj}, where j = 1, . . . ,m.

In order to get the desired inequality, we only need to show that ζ is a rainbow k-
coloring of ΓG. Pick a pair of nonadjacent vertices v and w of ΓG. It suffices to find a
rainbow path from v to w under the coloring ζ. If ζ({e, v}) 6= ζ({e, w}), then (v, e, w)
is a desired rainbow path. Now suppose ζ({e, v}) = ζ({e, w}). Then {v, w} 6⊆
(MG∪{e}). Without loss of generality, we may assume that v ∈ V (ΓG)\(MG∪{e}).
As shown in Figure 1, there exists a vertex v′ ∈ V (ΓG) \ (MG ∪ {e}) such that

{ζ({e, v}), ζ({e, v′}), ζ({v, v′})} = {1, 2, 3},

which implies that (v, v′, e, w) is a rainbow path, as desired. 2

Combining Lemmas 2.2 and 2.3, we get the following.

Proposition 2.4 If |MG| ≥ 3, then rc(ΓG) = |MG|.

For a prime p, let sp(G) denote the number of subgroups of order p in G.

Lemma 2.5 ([13, Section 4, I]) Let p be a prime dividing the order of G. Then

sp(G) ≡ 1 (mod p).

Lemma 2.6 Let p be a prime dividing |G|. If rc(ΓG) = 2, then sp(G) = 1.

Proof. Suppose for the contrary that sp(G) 6= 1. It follows from Lemma 2.5 that
sp(G) ≥ 3. Let 〈y1〉, 〈y2〉 and 〈y3〉 be pairwise distinct subgroups of order p in G.
Note that, for i 6= j, there is no cyclic subgroup containing 〈yi〉 and 〈yj〉. Hence,
the path from yi to yj with length 2 is unique, which is (yi, e, yj). For any rainbow
k-coloring ζ of ΓG, we deduce that ζ({e, y1}), ζ({e, y2}) and ζ({e, y3}) are pairwise
distinct, which implies that k ≥ 3, contrary to rc(ΓG) = 2. 2

By Lemmas 2.2, 2.3 and 2.6, we get the following result.
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Proposition 2.7 If |MG| = 2, then rc(ΓG) = 3.

Proposition 2.8 If |G| ≥ 3 and |MG| = 1, then rc(ΓG) = 3.

Proof. It follows from Lemma 2.3 that rc(ΓG) ≤ 3. Suppose for the contrary that
rc(ΓG) ≤ 2. If rc(ΓG) = 1, then ΓG is a complete graph, and so G is a cyclic group
of prime power order by [6, Theorem 2.12], contrary to |G| ≥ 3 and |MG| = 1. In
the following assume that rc(ΓG) = 2.

Suppose that G is a 2-group. By Lemma 2.6, the involution is unique, which
implies that G is cyclic or generalised quaternion by [15, Theorem 5.4.10 (ii)], a
contradiction.

Suppose that |G| has a prime divisor p at least 3. Let x be an element of G with
|x| = p. Write MG = {z}. It follows from Lemma 2.6 that 〈x〉 and 〈z〉 are normal
subgroups in G. Note that 〈x〉 ∩ 〈z〉 = 〈e〉. So 〈x〉〈z〉 is a cyclic group, contrary to
the fact that z is maximal. 2

Proof of Theorem 2.1 follows from Propositions 2.4, 2.7 and 2.8.

For n ≥ 3, let D2n denote the dihedral group of order 2n, where

D2n = 〈a, b : an = b2 = 1, bab = a−1〉.

Zn2 denotes the elementary abelian 2-group. Note thatMD2n = {b, ab, a2b, . . . , an−1b}
and MZn

2
consists of all nonidentity elements. By Theorem 2.1, we get the following.

Example 1 For n ≥ 3, we have rc(ΓD2n) = n and rc(ΓZn
2
) = 2n − 1.

3 MG = ∅
In this section we study the rainbow connection number of ΓG when G has no
maximal involutions.

For a positive integer n, let D(n) be the set of all divisors of n. Denote by
φ the Euler’s totient function. In view of [26, Part VIII, Problem 45], one has
φ(n) ≥ |D(n)| − 2. For x ∈ G, recall that [x] = {y ∈ G : 〈y〉 = 〈x〉}. Write

E1(〈x〉) =

|D(|x|)|−2⋃
i=1

{{xi, y} : y ∈ 〈x〉, |y| = di}, (1)

where [x] = {x1, . . . , xφ(|x|)} and D(|x|) = {1, d1, . . . , d|D(|x|)|−2, |x|} (see Figure 2).

Figure 2: The partition of V (Γ〈x〉) and the set of edges E1(〈x〉)
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Theorem 3.1 Let G be a finite group with no maximal involutions.
(i) If G is cyclic, then

rc(ΓG) =

{
1, if |G| is a prime power;
2, otherwise.

(ii) If G is noncyclic, then rc(ΓG) = 2 or 3.

Proof. (i) Write G = 〈x〉. If |x| is a prime power, then ΓG is a complete graph by
[6, Theorem 2.12], and so rc(ΓG) = 1. Now suppose that |x| is not a power of any
prime. Then rc(ΓG) ≥ 2. With reference to (1), write E1 = E1(〈x〉). It is clear that
E1 ⊆ E(ΓG). Let E2 = E(ΓG) \ E1. Define a coloring

ζ : E(ΓG) −→ {1, 2}, f 7−→ i if f ∈ Ei.

In order to get the desired result, we only need to show that ζ is a rainbow 2-coloring.
For any pair of nonadjacent vertices v and w, there exist distinct indices i and j in
{1, . . . , |D(|x|)| − 2} such that |v| = di and |w| = dj . It follows from Figure 2 that
(v, xi, w) is a rainbow path under the coloring ζ, as desired.

(ii) It is immediate from Lemma 2.3. 2

We first give two examples for computing rc(ΓG) when G is noncyclic with no
maximal involutions. The generalized quaternion group is defined by

Q4n = 〈x, y : xn = y2, x2n = 1, y−1xy = x−1〉, n ≥ 2. (2)

Example 2 If n is odd, then rc(ΓQ8×Zn) = 2.

Proof. There are exactly three maximal cyclic subgroup in Q8 × Zn, which we
denote by 〈x1〉, 〈x2〉 and 〈x3〉. It is easy to see that |x1| = |x2| = |x3| = 4n. Let C
be a subgroup of order 2n in 〈x1〉. Then C = 〈xi〉 ∩ 〈xj〉 for 1 ≤ i < j ≤ 3. Write
D(n) = {d1, . . . , dt}. Let Bi, Ci and Di be the set of generators of the subgroup of
order 4di in 〈x1〉, 〈x2〉 and 〈x3〉, respectively. Consequently, we have

V (ΓQ8×Zn) = C ∪
t⋃
i=1

(Bi ∪ Ci ∪Di),

E(ΓQ8×Zn) = E(Γ〈x1〉) ∪ E(Γ〈x2〉) ∪ E(Γ〈x3〉).

The partition of V (ΓQ8×Zn) is showed in Figure 3, where u is the unique involution.
With reference to (1), there exists a unique vertex x′3 ∈ [x3] such that {u, x′3} ∈
E1(〈x3〉). Write

E′1 =
t⋃
i=1

({{e, x} : x ∈ Bi} ∪ {{u, x} : x ∈ Ci}),

E1 = E′1 ∪ E1(〈x1〉) ∪ E1(〈x2〉) ∪ (E1(〈x3〉) \ {{u, x′3}}).
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Figure 3: The partition of V (ΓQ8×Zn) and the set of edges E′1

It is clear that E1 ⊆ E(ΓQ8×Zn). Write E2 = E(ΓQ8×Zn) \ E1. Define a coloring

ζ : E(ΓQ8×Zn) −→ {1, 2}, f 7−→ k if f ∈ Ek.

For i = 1, 2, 3, let ∆i be the subgraph of Γ〈xi〉 induced by V (Γ〈xi〉)\{e, u}. Similar
to the proof of Theorem 3.1 (i), we deduce that ζ|E(∆i) is a rainbow 2-coloring of ∆i.
If vertices v and w satisfy u 6∈ {v, w} and {v, w} 6⊆ V (∆i) for any i ∈ {1, 2, 3}, then
(v, e, w) or (v, u, w) is a rainbow path under ζ from Figure 3. If v is a vertex that is
not adjacent to u, there exists a vertex x′′3 ∈ [x3]\{x′3} such that {x′′3, v} ∈ E1(〈x3〉),
and so (u, x′′3, v) is a rainbow path under ζ. It follows that ζ is a rainbow 2-coloring
of ΓQ8×Zn . This completes the proof. 2

Example 3 If n ≥ 3, then rc(ΓQ4n) = 3.

Proof. With reference to (2), we have y−1 = xny and (xiy)−1 = x2n−iy for i ∈
{1, . . . , n− 1}, which implies that

V (ΓQ4n) = {e, x, . . . , x2n−1} ∪ (

n−1⋃
i=0

{xiy, (xiy)−1}),

E(ΓQ4n) = E(Γ〈x〉) ∪
n−1⋃
i=0

E(Γ〈xiy〉),

as shown in Figure 4. It follows from Theorem 3.1 that rc(ΓQ4n) = 2 or 3. Suppose

Figure 4: ΓQ4n

for the contrary that there exists a rainbow 2-coloring ζ of ΓQ4n .
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Assume that n = 3. Without loss of generality, let ζ({e, x2}) = 1. Then
ζ({e, xiy}) = 2 for i ∈ {0, 1, 2}. Hence, for 0 ≤ i < j ≤ 2, the rainbow path from xiy
to xjy is (xiy, x3, xjy), which implies that ζ({y, x3}), ζ({xy, x3}) and ζ({x2y, x3})
are pairwise distinct, a contradiction. Therefore rc(ΓQ12) = 3.

In the following, assume that n ≥ 4. Let ∆ be the induced subgraph of ΓQ4n on
the vertices {e, x, y, xy, x2y, x3y, xn}. Then ζ|E(∆) is a rainbow 2-coloring of ∆.

We claim that there exists a rainbow path from e to xn with length 2 under
ζ|E(∆) in ∆. In fact, if ζ|E(∆)({e, xiy}) = ζ|E(∆)({xiy, xn}) for each i ∈ {0, 1, 2, 3},
then there exist two distinct indices j and k in {0, 1, 2, 3} such that

ζ|E(∆)({e, xjy}) = ζ|E(∆)({xjy, xn}) = ζ|E(∆)({e, xky}) = ζ|E(∆)({xky, xn}),

which implies that there is no rainbow path from xjy to xky under ζ|E(∆) in ∆, a
contradiction. Hence, the claim is valid.

Let ∆0 be the graph obtained from ∆ by deleting the edge {e, xn}. Then ∆0

is isomorphic to the complete bipartite graph K2,5. By the claim above, we have
rc(K2,5) = 2, contrary to [7, Theorem 2.6]. 2

For a noncyclic group G with no maximal involutions, it is difficult for us to de-
termine which groups G satisfy rc(ΓG) = 2. However, we give a sufficient condition.

Proposition 3.2 If G is a group of order pnq for positive integer n, where p, q are
distinct primes and p < q, such that the following conditions hold, then rc(ΓG) = 2.

(i) Each Sylow p-subgroup is cyclic and the Sylow q-subgroup is unique.
(ii) The intersection of all Sylow p-subgroups is of order pn−1.
(iii) pn−1 ≥ q.

Proof. Note that the number of Sylow p-subgroups is q. Suppose that {P1, . . . , Pq}
is the set of all Sylow p-subgroups, and Q is the unique Sylow q-subgroup. Then
∩qi=1Pi and Q are cyclic and normal in G. Hence, there exists an element x of order
pn−1q such that (∩qi=1Pi)Q = 〈x〉, and so the set of all cyclic subgroups of G is

{P1, . . . , Pq} ∪ {〈y〉 : y ∈ 〈x〉}.

For 1 ≤ i ≤ q, let Ai be the set of all generators of Pi. By (iii) we choose pairwise
distinct elements u1, . . . , uq−1 in (∩qi=1Pi) \ {e}. With reference to (1), write

E′1 = {{e, y} : y ∈
q⋃
i=1

Ai} ∪
q−1⋃
i=1

{{ui, y} : y ∈ Ai},

E1 = E′1 ∪ E1(〈x〉).

The set E′1 is showed in Figure 5. It is clear that E1 ⊆ E(ΓG). Let E2 = E(ΓG)\E1.
Define a coloring

ζ : E(ΓG) −→ {1, 2}, f 7−→ k if f ∈ Ek.

In order to get the desired result, we only need to show that ζ is a rainbow
2-coloring of ΓG. It follows from Theorem 3.1 that ζ|E(Γ〈x〉) is a rainbow 2-coloring

7



Figure 5: V (ΓG) and the set of edges E′1

of Γ〈x〉. Pick any pair of nonadjacent vertices z and w such that {z, w} 6⊆ V (Γ〈x〉).
It suffices to find a rainbow path from z to w under ζ. Without loss of generality,
assume that z ∈ ∪qi=1Ai. If w ∈ ∪qi=1Ai, then there exist indices i and j in {1, . . . , q}
with i < j such that z ∈ Ai and w ∈ Aj , and so (z, ui, w) is a desired rainbow path.
If w ∈ V (Γ〈x〉), then (z, e, w) is a desired rainbow path. 2

By Proposition 3.2, we have the following example.

Example 4 Let G = 〈a, b : a27 = b7 = e, a−1ba = b2〉 ∼= Z27nZ7. Then rc(ΓG) = 2.

The following sufficient condition for rc(ΓG) = 3 is immediate from Theorem 3.1
and Lemma 2.6.

Proposition 3.3 Suppose that G is a noncyclic group with no maximal involutions.
If there exists a prime p dividing |G| such that the subgroup of order p in G is not
unique, then rc(ΓG) = 3.

Finally, we determine the rainbow connection number of the power graph of a
nilpotent group.

Corollary 3.4 Let G be a noncyclic nilpotent group with no maximal involutions.
Then

rc(ΓG) =

{
2, if G is isomorphic to Q8 × Zn for some odd number n;
3, otherwise.

Proof. It follows from Theorem 3.1 that rc(ΓG) = 2 or 3. Suppose rc(ΓG) = 2.
Then for any prime p dividing |G|, the subgroup of order p in G is unique by
Proposition 3.3. By [15, Theorem 5.4.10 (ii)], the Sylow p-subgroups are cyclic for
any odd prime p, which implies that 2 is a divisor of |G| and the Sylow 2-subgroup
is isomorphic to Q2m for m ≥ 3. Hence we get G ∼= Q2m ×Zn for some odd number
n. Let H be a subgroup of G that is isomorphic to Q2m .

We claim that for any pair of nonadjacent vertices x and y of ΓH , there does not
exist a vertex in G \H adjacent to both x and y in ΓG. Suppose for the contrary
that {{x, z}, {y, z}} ⊆ E(ΓG) for some z ∈ G \H. Then x = zs and y = zt for some
integers s and t, which implies that x, y ∈ 〈z〉. Note that |x| and |y| are powers of

8



2. It follows that |x| is divisible by |y|, or |y| is divisible by |x|. Since x, y ∈ 〈z〉, one
has 〈x〉 ⊆ 〈y〉 or 〈y〉 ⊆ 〈x〉. Thus x and y are adjacent, a contradiction. Hence, the
claim is valid. By the claim, one gets rc(ΓH) = 2. It follows from Example 3 that
m = 3, and so G ∼= Q8 × Zn. By Example 2, we get the desired result. 2
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