Skip to main content
Log in

Relations Between Connected and Self-Avoiding Hikes in Labelled Complete Digraphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

A walk in a directed graph is defined as a finite sequence of contiguous edges. Seeing the edges as indeterminates, walks are investigated as monomials and endowed with a partial order that extends to possibly unconnected objects called hikes. Analytical transformations of the weighted adjacency matrix reveal a relation between walks and self-avoiding hikes, giving rise to interesting combinatorial properties such as an expression of the number of ways to travel a walk in function of its self-avoiding divisors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Apostol, T.M.: Modular functions and Dirichlet series in number theory. AMC 10, 12 (1990)

    MathSciNet  Google Scholar 

  2. Barsotti, F., De Castro, Y., Espinasse, T., Rochet, P.: Estimating the transition matrix of a Markov chain observed at random times. Stat. Prob. Lett. 94, 98–105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barsotti, F., Philippe, A., Rochet, P.: Hypothesis testing for Markovian models with random time observations. J. Stat. Plan. Inference 173, 87–98 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blanchard, P., Volchenkov, D.: Random Walks and Diffusions on Graphs and Databases: An Introduction, vol. 10. Springer, New York (2011)

  5. Burioni, R., Cassi, D.: Random walks on graphs: ideas, techniques and results. J. Phys. A Math. Gen. 38(8), R45 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carrington, P.J., Scott, J., Wasserman, S.: Models and Methods in Social Network Analysis, vol. 28. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  7. Cartier, P., Foata, D.: Problemes combinatoires de commutation et réarrangements. In: Lecture Notes in Mathematics, vol. 85 (1969)

  8. Chung, F.R.: Spectral Graph Theory, vol. 92. American Mathematical Soc, Providence (1997)

    MATH  Google Scholar 

  9. Cvetković, D.M., Rowlinson, P., Simic, S.: Eigenspaces of Graphs, vol. 66. Cambridge University Press, Cambridge (1997)

  10. Han, X., Chen, Y., Shi, J., He, Z.: An extended cell transmission model based on digraph for urban traffic road network. In: 2012 15th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 558–563. IEEE (2012)

  11. Harary, F.: The determinant of the adjacency matrix of a graph. SIAM Rev. 4(3), 202–210 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hong-Hao, Z., Wen-Bin, Y., Xue-Song, L.: Trace formulae of characteristic polynomial and Cayley–Hamilton’s theorem, and applications to chiral perturbation theory and general relativity. Commun. Theor. Phys. 49(4), 801 (2008)

    Article  Google Scholar 

  13. Inamura, Y.: Estimating continuous time transition matrices from discretely observed data. In: Bank of Japan Working Paper Series (06) (2006)

  14. Lawler, G.F.: Loop-erased self-avoiding random walk and the laplacian random walk. J. Phys. A Math. Gen. 20(13), 4565 (1987)

    Article  MathSciNet  Google Scholar 

  15. MacRae, E.C.: Estimation of time-varying Markov processes with aggregate data. Econometrica 45(1), 183–198 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Maybee, J.S., Olesky, D., van den Driessche, P., Wiener, G.: Matrices, digraphs, and determinants. SIAM J. Matrix Anal. Appl. 10(4), 500–519 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pittenger, A.O.: Time changes of Markov chains. Stoch. Process. Appl. 13(2), 189–199 (1982). doi:10.1016/0304-4149(82)90034-5

    Article  MathSciNet  MATH  Google Scholar 

  18. Ponstein, J.: Self-avoiding paths and the adjacency matrix of a graph. SIAM J. Appl. Math. 14(3), 600–609 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rota, G.C.: On the foundations of combinatorial theory. In: Classic Papers in Combinatorics, pp. 332–360. Springer, New York (1987)

  20. Zadeh, L.A., Deoser, C.A.: Linear System Theory. Robert E. Krieger Publishing Company, pp. 303–305, USA (1976)

Download references

Acknowledgments

The authors are grateful to Pierre-Louis Giscard for his explanations on the poset structure of hikes, and to an anonymous referee for helpful comments which helped improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Rochet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espinasse, T., Rochet, P. Relations Between Connected and Self-Avoiding Hikes in Labelled Complete Digraphs. Graphs and Combinatorics 32, 1851–1871 (2016). https://doi.org/10.1007/s00373-016-1696-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-016-1696-9

Keywords

Mathematics Subject Classification

Navigation