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Abstract

Let G be an edge-colored connected graph. A path of G is called rainbow if

its every edge is colored by a distinct color. G is called rainbow connected if there

exists a rainbow path between every two vertices of G. The minimum number of

colors that are needed to make G rainbow connected is called the rainbow connec-

tion number of G, denoted by rc(G). In this paper, we investigate the relation

between the rainbow connection number and the independence number of a graph.

We show that if G is a connected graph, then rc(G) ≤ 2α(G)− 1. Two examples G

are given to show that the upper bound 2α(G) − 1 is equal to the diameter of G,

and therefore the best possible since the diameter is a lower bound of rc(G).

Keywords: rainbow coloring, rainbow connection number, independence number,

connected dominating set
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1 Introduction

All graphs considered in this paper are simple, finite and undirected. The following

notation and terminology are needed in the sequel. Let u ∈ V and v ∈ V be two distinct

vertices of a graph G = (V,E). The distance between u and v in G, denoted by d(u, v), is

the length of a shortest path connecting them in G. A (u, v)-path is a path with initial

vertex u and terminal vertex v, denoted by P [u, v]. Let PH [u, v] denote the path in H

connecting u and v, where H is the subgraph of G. For two subsets U and W of V ,

a (U,W )-path is a path which starts at a vertex of U and ends at a vertex of W , and

∗Supported by NSFC No.11071130.
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whose internal vertices belong to neither U nor W . We use E[U,W ] to denote the set of

edges of G with one end in U and the other end in W , and e(U,W ) = |E[U,W ]|. Let

G[U ] denote the subgraph of G whose vertex set is U and whose edge set consists of all

such edges of G that have both ends in U . The following notions are from [13]. A set

D ⊆ V (G) is called a k-step connected dominating set of G, if every vertex in G \D is at

a distance at most k from D, where G[D] is connected. The k-step open neighborhood

of a set D is Nk(D) := {x ∈ V (G)|d(x,D) = k}, where k ∈ N . We often use e(G) to

denote the number of edges in a graph G and |G| to denote the order of G. For undefined

terminology and notation, we refer to [1].

Let G = (V,E) be a connected graph with vertex set V and edge set E. A k-edge

coloring of G is a mapping c : E → C, where C is a set of k distinct colors. In [8]

Chartrand, Johns, McKeon and Zhang introduced a new concept about the connectivity

and coloring of a graph, which is given follows. A path of G is called rainbow if every

edge of it is colored by a distinct color. For every two vertices u and v of G, if there

exists a rainbow path between them, we say that G is rainbow connected. The rainbow

connection number rc(G) is defined as the smallest number of colors that are needed to

make G rainbow connected. An edge coloring is called a rainbow coloring if it makes

G rainbow connected. From the definition of rainbow connection, we can see that the

diameter diam(G) ≤ rc(G) ≤ e(G). For more knowledge on the rainbow connection, we

refer to [15, 14].

In [5] Chakraborty, Fischer, Matsliah and Yuster showed that given a graph G, decid-

ing if rc(G) = 2 is NP-complete, in particular, computing rc(G) is NP-hard, which were

conjectured by Caro, Lev, Roditty, Tuza and Yuster [4]. So, to obtain upper bounds for

the rainbow connection number rc(G) of a graph G becomes interesting. Therefore, many

good upper bounds have been obtained in terms of other graph parameters. Caro, Lev,

Roditty, Tuza and Yuster[4] conjectured that if G is a connected graph with n vertices

and δ(G) ≥ 3, then rc(G) < 3
4
n. Schhiermeyer [21] confirmed the conjecture and showed

that if G is a connected graph with n vertices and δ(G) ≥ 3, then rc(G) ≤ 3n−1
4

, and

there are examples to show that 3
4
cannot be replaced with a smaller constant. In [6]

Chandran, Das, Rajendraprasad and Varma obtained a good relation between the rain-

bow connection number and the minimum degree of a graph. They showed that if G is a

connected graph of order n and minimum degree δ(G), then rc(G) ≤ 3n/(δ(G) + 1) + 3,

and the bound is tight up to addictive factors. Later, we [10] studied the relation between

the rainbow connection number and the minimum degree sum, a generalized result of

the minimum degree version. We showed that if G is a graph with k independent ver-

tices, then rc(G) ≤ 3kn
σk(G)+k

+ 6k − 3. In [3], Basavaraju, Chandran, Rajendraprasad and

Ramaswamy investigated the relation between the rainbow connection number and the

radius of a bridgeless graph. They showed that for every bridgeless graph G with radius

rad(G), rc(G) ≤ rad(G)(rad(G) + 2), and gave an example to show that the bound is

tight. In [7] Li, Liu, Chandran, Mathew and Rajendraprasad showed that if G is a 2-

connected graph of order n (n ≥ 3), then rc(G) ≤ ⌈n
2
⌉, and the upper bound is tight for

n ≥ 4. Later, Ekstein et al. [11] got the same result. Li et al. [7] also got some relations
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between the rainbow connection number and the connectivity of a graph. Schiermeyer

[20] obtained a relation between the rainbow connection number of a graph G and the

chromatic number of the complement of G, i.e., rc(G) ≤ 2χ(Ḡ)− 1.

This paper intends to give a relation between the rainbow connection number and

the independence number of a graph. Recall that an independent set of a graph G is a

set of vertices such that any two of these vertices are non-adjacent in G. The indepen-

dence number α(G) of G is the cardinality of a maximum independent set of G. The

independence number of a graph is an important parameter, and the investigation on the

relations between the independence number and other graph parameters is interesting,

see [2, 9, 12, 16, 17, 18, 19]. We obtain the following result.

Theorem 1 If G is a connected graph, then rc(G) ≤ 2α(G) − 1, and the bound is the

best possible.

Two examples are given to show that our bound 2α(G) − 1 is exactly equal to the

diameter of G, and therefore our bound is the best possible since the diameter is a lower

bound of rc(G). Moreover, for these examples some good bounds in terms of other

parameters can be arbitrarily bad. As we know, even for the chromatic number, every

upper bound is attained yet arbitrarily bad for many graphs. We also give an example,

Example 3, to show that our result rc(G) ≤ 2α(G) − 1 could be arbitrarily bad. This

example also shows that the bounds in terms of other parameters are arbitrarily bad.

Example 1: Let P2t = v1v2v3 · · · v2t−1v2t be a path of length 2t−1, and let G1, G2, · · · , Gt

be t (t ≥ 2) complete graphs with |G1| = 2 and |Gi| = s for 2 ≤ i ≤ t. For every

i with 1 ≤ i ≤ t, we join each vertex of Gi to every vertex of v2i−1 and v2i. The

obtained graph is denoted by G. One can see that G is connected with δ(G) = 3, and

I(G) = {v2, v4, v6, · · · , v2t} is a maximum independent set, that is, α(G) = t. We also

know that the distance d(v1, v2t) = 2t− 1. So, rc(G) ≥ 2t− 1. Now we use 2t− 1 distinct

colors to give G an edge coloring. Let 1, 2, · · · , 2t−1 be 2t−1 distinct colors. We use the

2t−1 colors to color all the edges of P2t, and each edge with a distinct color. Thus, P2t is

rainbow connected. Then we use color 2i− 1 to color every edge of E[V (Gi), {v2i−1, v2i}].

Finally, we use color 1 to color every edge of G[V (Gi)]. One can show that G is rainbow

connected. For each pair (u, v) ∈ (Gi, P2t), either the edge uv2i together with the path in

P2t connecting v2i and v forms a rainbow path, or the edge uv2i−1 together with the path

in P2t connecting v2i−1 and v forms a rainbow path. For each pair (u, v) ∈ (Gi, Gj) with

1 ≤ i < j ≤ t, the edges uv2i and vv2j−1 together with the path in P2t connecting v2i and

v2j−1 form a rainbow path. So, G is rainbow connected, and hence rc(G) ≤ 2t− 1. Thus,

rc(G) = 2t− 1 = 2α(G)− 1. Note that, diam(G) = 2t− 1, rad(G) = t, δ(G) = 3 and for

any v ∈ V (G) \ ({v1, v2} ∪ V (G1)), the degree of v is at least s+ 1.

The following facts can be easily seen. When s is very large, the order n of G is very

large. The upper bounds in [6, 21] can be arbitrarily bad, because 3n/(δ(G) + 1) + 3 =

3n/4 + 3 and 3n−1
4

, both bounds are large by selecting s to be large; When k ≥ 2,
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σk(G) ≥ 3 + s + 1, the bound in [10] is 3kn
σk(G)+k

+ 6k − 3 ≤ 3kn
s+4+k

+ 6k − 3, better than

the bounds of [6, 21], when s is very large, but it is also far from the diameter of G;

The bound in [3] is rad(G)(rad(G) + 2) = t(t + 2), a square of t. However, our result

rc(G) ≤ 2α(G)− 1 is the best, which is equal to diam(G).

Example 2: For 1 ≤ i ≤ 2t (t ≥ 2), let the sets V1, V2, · · · , V2t be pairwise disjoint,

|V1| = |V2| = 2 and for i ≥ 3, |Vi| = s (s ≥ 2). Join each vertex of Vi to every vertex of

Vi+1 for 1 ≤ i ≤ 2t− 1. Suppose that every two vertices of Vi are adjacent for each i. We

denote the resulting graph by G. Note that, G is 2-connected, α(G) = t, diam(G) = 2t−1

and rad(G) = t. For any vertex v ∈ V1, the degree of v is 3, for any vertex v ∈ V2, the

degree of v is s+ 3, for any vertex v ∈ V \ {V1, V2, V2t}, the degree of v is 3s− 1, and for

any vertex v ∈ V2t, the degree of v is 2s − 1. Color each edge in E[Vi, Vi+1] with color i

for 1 ≤ i ≤ 2t− 1 and each edge in G[Vi] with color 1 for 1 ≤ i ≤ 2t. It is not difficult to

check that rc(G) = 2α(G)− 1 = 2t− 1 = diam(G).

One can see the following facts. When s is very large, the order n of G is very large.

The upper bounds in [6, 7, 21] can be arbitrarily bad, because 3n/(δ(G)+1)+3 = 3n/4+3,

⌈n
2
⌉ and 3n−1

4
are all large by selecting s to be large; When s is very large, the bound in

[10] is 3kn
σk(G)+k

+6k−3 ≤ 3kn
s+6+k

+6k−3, better than the bounds of [6, ?], but it is also far

from diam(G). The bound in [3] is rad(G)(rad(G) + 2) = t(t+2), a square of t, far from

diam(G). However, our result rc(G) ≤ 2α(G)− 1 is the best, which is equal to diam(G).

Example 3: Consider the graph G = K1,1,s with partition sets V1, V2 and V3, and

|V1| = |V2| = 1, and |V3| = s (s > 3). Then G is 2-connected, δ(G) = 2, α(G) = s.

and rc(G) = 3. We can see that the upper bounds of [6, 7, 21] and our result can be

arbitrarily bad, because 3n/(δ(G)+1)+3 = 3n/4+3, 3n−1
4

, ⌈n
2
⌉ and 2s−1 are very large

by selecting s to be large.

2 Proof of Theorem 1

Before proving our main result, we first prove a lemma. Although this lemma can be

found in [6], here we use a new technique to give it another proof.

Lemma 1 Let G be a connected graph with δ(G) ≥ 2, and let D be a connected dominating

set of G. Then rc(G) ≤ rc(G[D]) + 3.

Proof. At first, we use rc(G[D]) different colors to give G[D] a rainbow coloring. Then,

let 1, 2 and 3 be three distinct fresh colors. Since D is a connected dominating set of G,

V (G) = D ∪N(D). We will perform the following procedure:

Procedure 1:

F = N(D), i = 1,

while there exists a vertex wi ∈ F with dG[F ](wi) ≥ 1 do
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Hi = N [wi] ∩ F , F = F \Hi,

i = i+ 1.

While the above procedure ends, we get an empty graph G[F ], and a sequence of vertices

w1, w2, · · · , wt and a sequence of sets H1, H2, · · · , Ht. So, we have partitioned N(D)

into some disjoint subsets H1, H2, · · · , Ht, F . Now we will give colors to the remaining

uncolored edges of G. We use color 1 to color every edge in E[wi, D], and use color 2 to

color every edge in G[N(D)]. Finally, we use color 3 to color every edge in E[Hi\{wi}, D].

It is not difficult to check that G is rainbow connected.

Before giving the proof of Theorem 1, we need the following observation.

Observation. Let G be a graph. If G has a cut edge uv, then we replace uv by a clique

of order at least 3, i.e., we add to G some new vertices w1, w2 . . . , wq with q ≥ 1 such that

u, v, w1, . . . , wq form a complete subgraph. The new graph is denoted by G′, and is called

a blow-up graph of G at the cut edge uv. It is not difficult to check that rc(G′) = rc(G)

and α(G′) = α(G). In this way, we need only to consider graphs without any cut edge,

and therefore without any pendant edge, i.e., its minimum degree is at least 2.

Proof of Theorem 1. If G is a complete graph, then α(G) = 1 and rc(G) = 1, Theorem

1 follows. Now assume that G is a non-complete graph with δ(G) ≥ 2.

We will perform the following procedure to obtain a tree T whose vertex set D is

a connected dominating set of G. Let y0 ∈ V (G) with d(y0) = δ(G). Since G is a

non-complete graph, N2(y0) 6= ∅. We look at the following procedure:

Procedure 2:

D = {y0}, T = y0, X = φ, Y = {y0}.

While N2(D) 6= φ

take any vertex v ∈ N2(D), let P = vhu be a path of length 2,

where h ∈ N1(D) and u ∈ D. Let D = D ∪ V (P ),

T = T ∪ P , X = X ∪ {h}, Y = Y ∪ {v}.

If u ∈ X , we call u an X-knot vertex. Note that N2(D) does not contain any neighbor

of Y . When the above procedure ends, the algorithm runs |X| rounds. Thus we get

V (G) = D∪N1(D), whereD is a connected dominating set. Note that Y is an independent

set and |Y | = |X|+ 1. So |Y | ≤ α(G) and |D| = |Y |+ |X| = 2|Y | − 1. Note that T is a

spanning tree of G[D] and the pendant vertices of T are all in Y , and also note that if x

is an X-knot vertex, then x is adjacent to at least three vertices of T .

In the following, D, T , Y and X are always the same as those obtained in the above

algorithm. In order to continue our proof, we need the following lemmas.

Lemma 2 If there exists a vertex w ∈ N1(D) such that e(w, Y ) = 0, then rc(G) ≤

2α(G)− 1.

Proof. Let I = Y ∪{w}. Then I is an independent set and |I| = |Y |+1. So |Y | = |I|−1 ≤

α(G) − 1. By Lemma 1, we can get that rc(G) ≤ rc(G[D]) + 3 ≤ |D| + 2 = 2|Y | + 1.
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Hence, rc(G) ≤ 2(α(G)− 1) + 1 = 2α(G)− 1.

From the proof of Lemmas 2, we can see that if we can find an independent set I

satisfying |I| = |Y |+ 1, then we will get rc(G) ≤ 2α(G)− 1.

Lemma 3 If G[D] = T and there exist two vertices w,w′ ∈ N1(D) such that ww′ 6∈ E(G),

e(w, Y ) = 1, e(w′, Y ) = 1, e(w,X) = 0 and e(w′, X) = 0, then rc(G) ≤ 2α(G)− 1.

Proof. Let wy ∈ E(G) and w′y′ ∈ E(G) where y ∈ D and y′ ∈ D. Since G[D] = T , let

PT [y, y
′] denote the only path connecting y and y′ in T . If there do not exist two successive

vertices of X in PT [y, y
′], then let I = {w,w′}∪(V (PT [y, y

′])∩X)∪(Y \(V (PT [y, y
′])∩Y )).

One can see that I is an independent set and |I| = |Y | + 1, and so rc(G) ≤ 2α(G)− 1.

Otherwise, suppose that there exist two successive vertices of X in PT [y, y
′]. By the

structure of T , we can conclude that there must be an X-knot vertex between the two

successive vertices. Then there must be a segment in PT [y, y
′], without loss of generality,

say PT [y, x] ⊂ PT [y, y
′], where x is an X-knot vertex, and in PT [y, x] there is an vertex

x′ of X adjacent to x, and x′, x are the only two successive vertices in PT [y, x]. Then

I = {w}∪(V (PT [y, x
′])∩X)∪(Y \V (PT [y, x

′])∩Y ) is an independent set and |I| = |Y |+1.

So rc(G) ≤ 2α(G)− 1.

Lemma 4 If G[D] = T and there exist vertices w1, w2 ∈ N1(D) and y1, y2 ∈ D such that

w1w2 6∈ E(G), and N(w1) ∩D = N(w2) ∩D = {y, y′}, then rc(G) ≤ 2α− 1.

Proof. Let PT [y, y
′] denote the only path connecting y and y′ in T . If there do not exist

two successive vertices of X in PT [y, y
′], then let I = {w1, w2} ∪ (V (PT [y, y

′])∩X)∪ (Y \

(V (PT [y, y
′]) ∩ Y )). One can see that I is an independent set and |I| = |Y | + 1, and so

rc(G) ≤ 2α(G)− 1. Otherwise, there must exist two successive vertices of X in PT [y, y
′].

By the structure of T , we can conclude that there must be an X-knot vertex between

the two successive vertices. Then there must be a segment in PT [y, y
′], without loss of

generality, say PT [y, x] ⊂ PT [y, y
′], where x is an X-knot vertex, and in PT [y, x] there is

an vertex x′ of X adjacent to x, and x′, x are the only two successive vertices in PT [y, x].

Then I = {w,w′}∪ (V (PT [y, x
′])∩X)∪ ((Y \ ((V (PT [y, x

′])∩Y )∪{y′}) is an independent

set and |I| = |Y |+ 1. So rc(G) ≤ 2α(G)− 1.

Let N1(D) = A ∪ B where w ∈ A if and only if e(w,D) ≥ 2, and w ∈ B if and only

if e(w,D) = 1. By Lemma 2, we can get that every vertex w ∈ B satisfies e(w,X) = 0,

and so e(w, Y ) = 1. By Lemma 3, we can get that G[B] is a complete subgraph. In the

following we will divide two cases to finish our proof.

Case 1. e(G[D]) ≥ e(T ) + 1.

Let a1a2 ∈ E(G[D]) and a1a2 6∈ E(T ). Note that T is a spanning tree of G[D].

So T ∪ a1a2 contains a cycle, say C, and a1a2 ∈ E(C). Let G′ = T ∪ a1a2. Then
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rc(G[D]) ≤ rc(G′). Since rc(G′) ≤ e(T ) − (|C| − 1) + rc(C) and rc(C) ≤ ⌈ |C|
2
⌉ when

|C| ≥ 4, we can get

rc(G′) ≤











e(T )− |C|
2
+ 1, |C| is even

e(T )− |C|−3
2

, |C| is odd and |C| 6= 3

e(T )− 1, |C| = 3

Hence, rc(G[D]) ≤ rc(G′) ≤ e(T )− 1.

Now we color every edge of G in the following way. First, we use rc(G[D]) distinct

colors to rainbow color G[D]. Then let c′, c′′ be two fresh colors. For any vertex w ∈ A,

let w′, w′′ ∈ D with ww′, ww′′ ∈ E(G), set c(ww′) = c′ and c(ww′′) = c′′. For any vertex

b ∈ B, let b′ ∈ D with bb′ ∈ E(G), set c(bb′) = c′. For the remaining uncolored edges of

E(G), we use a used color to color them. Thus we have colored all the edges of G.

We will show that G is rainbow connected. For each pair (u, v) ∈ (N(D) × D), the

edge uu′ together with the path in G′ connecting u′ and v forms a rainbow path, where

c(uu′) = c′ and u′ ∈ D. For each pair (u, v) ∈ (A × A), the edges uu′ and vv′′ together

with the path in G′ connecting u′ and v′′ form a rainbow path, where c(uu′) = c′ and

c(vv′′) = c′′. For each pair (u, v) ∈ (A×B), the edges uu′′ and vv′ together with the path

in G′ connecting u′′ and v′ form a rainbow path, where c(uu′′) = c′′ and c(vv′) = c′. Thus

we have showed that G is rainbow connected.

In the above coloring, we used at most rc(G[D]) + 2 ≤ e(T ) + 1 colors. Hence,

rc(G) ≤ e(T ) + 1, that is rc(G) ≤ |D|. Since |D| = 2|Y | − 1 ≤ 2α(G) − 1, we can get

rc(G) ≤ 2α(G)− 1.

Case 2. e(G[D]) = e(T ).

Let 1, 2, c1, c2 and a be 5 distinct colors, and in the following proof, we use a to color

each edge of E[B,D], and use c1 to color each edge of E(G[B]).

Choose a longest path P in G[D] such that two ends of P are pendant vertices. We

know that the two pendant vertices belong to Y , and |P | ≥ 3. Let P = y1x1x2 · · ·xky2.

We look at two subcases:

Subcase 2.1. V (P ) ⊂ D.

Since P is a longest path and |Y | = |X| + 1, we can get |P | ≥ 4. Choose a pendant

edge in T , say y3x, which is not in P . Let P ′ be a path passing through y3x in T

with |V (P ) ∩ V (P ′)| = 1, and let V (P ) ∩ V (P ′) = {x′}. Without loss of generality, let

|P [y1, x
′]| ≥ 3, and let c(y1x1) = 1, c(x1x2) = c1, c(xky2) = 2 and c(xy3) = c2.

Let A1, A2, A3 and A4 be the subsets of A. w1 ∈ A1 if and only if w1y1 ∈ E(G) and

w1 is adjacent to only one vertex of D \ {y1, y2}. Let c(w1y1) = c2 and c(w1w
′
1) = 2 where

w′
1 ∈ D; w2 ∈ A2 if and only if w2y2 ∈ E(G) and w2 is adjacent to only one vertex of

D \ {y1, y2}. Let c(w2y2) = c2 and c(w2w
′
2) = 1 where w′

2 ∈ D; w3 ∈ A3 if and only if
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w3y1 ∈ E(G), w3y2 ∈ E(G) and e(w3, D) = 2. Let c(w3y1) = 2 and c(w3y2) = 1. w4 ∈ A4

if and only if w4 is adjacent to at least two vertices w′
4 and w′′

4 of D \ {y1, y2}. Assume

that the distance between w′
4 and y1 in T is not more than the distance between w′′

4 and

y1 in T . Let c(w4w
′
4) = a and c(w4w

′′
4) = 1. Let B1, B2 and B3 be the subsets of B.

b1 ∈ B1 if and only if b1 is only adjacent to y1; b2 ∈ B2 if and only if b2 is only adjacent

to y2; b3 ∈ B3 if and only if b3 is only adjacent to some vertex of Y \ {y1, y2}. Thus we

get A = A1 ∪ A2 ∪ A3 ∪ A4, B = B1 ∪ B2 ∪ B3. From Lemma 4 we know that G[A3] is

a complete subgraph, and from Lemma 3 we get that G[B] is a complete subgraph. It is

easy to check that for any vertex of N(D) is rainbow connection to any vertex of D.

Subsubcase 2.1.1. B1 6= φ, B2 6= φ and B3 6= φ.

First, we will show that G[A1], G[A2] and G[A4] is rainbow connected, respectively.

For each pair (u, v) ∈ (A1 × A1), let u′, v′ ∈ D with uu′, vv′ ∈ E(G), if u′ 6= v′, then

without loss of generality, we assume that the path in T from v′ to y1 does not contain

the edge y3x. Thus the edges uy1 and vv′ together with the path in T connecting y1 and

v′ form a rainbow path between u and v; if u′ = v′ and v′y2 ∈ E(G), then the edges

uy1 and vy2 together with the path P form a rainbow path between u and v; if u′ = v′

and u′y2 ∈ E(G), similarly, there is a rainbow path between them; if u′ = v′ and assume

that v′y2 6∈ E(G) and u′y2 6∈ E(G), then from Lemma 4, we can get uv ∈ E(G). So for

each pair (u, v) ∈ (A1 × A1), there is a rainbow path connecting them. For each pair

(u, v) ∈ (A2 × A2), similar to (u, v) ∈ (A1 × A1), we can get a rainbow path between u

and v; For each pair (u, v) ∈ (A4 × A4), the edges uu′ and vv′ together with the path in

T connecting u′ and v′ form a rainbow path, where c(uu′) = a and c(vv′) = 1.

Second, we will show that for any vertex u ∈ A1, there is a rainbow path connecting

it to any vertex of A2 ∪ A3 ∪ A4 ∪ B. For each pair (u, v) ∈ (A1 × (A2 ∪ A4)), the edges

uu′ and vv′ together with the path in T connecting u′ and v′ form a rainbow path, where

c(uu′) = 2 and c(vv′) = 1. For each pair (u, v) ∈ (A1 × A3), uy1v is a rainbow path. For

each pair (u, v) ∈ (A1 × B1), uy1v is a rainbow path. For each pair (u, v) ∈ (A1 × B2),

the edges uy1 and vy2 together with the path P form a rainbow path. For each pair

(u, v) ∈ (A1 × B3), the edges uu′ and vv′ together with the path in T connecting u′ and

v′ form a rainbow path, where c(uu′) = 2 and c(vv′) = a.

Third, we will show that for any vertex u ∈ A2, there is a rainbow path connecting

it to any vertex of A3 ∪ A4 ∪ B. For each pair (u, v) ∈ (A2 × A4), the edges uu′ and vv′

together with the path in T connecting u′ and v′ form a rainbow path, where c(uu′) = 1

and c(vv′) = a. For each pair (u, v) ∈ (A2 × A3), uy2v is a rainbow path. For each pair

(u, v) ∈ (A2 ×B1), the edges uy2 and vy1 together with the path P form a rainbow path.

For each pair (u, v) ∈ (A2×B2), uy2v is a rainbow path. For each pair (u, v) ∈ (A2×B3),

the edges uu′ and vv′ together with the path in T connecting u′ and v′ form a rainbow

path, where c(uu′) = 1 and c(vv′) = a.

Fourth, we will show that for any vertex u ∈ A3, there is a rainbow path connecting

it to any vertex of A4 ∪ B. For each pair (u, v) ∈ (A3 × A4), the edges uy1 and vv′
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together with the path in T connecting y1 and v′ form a rainbow path, where c(uy1) = 2

and c(vv′) = a. For each pair (u, v) ∈ (A3 × B1), uy1v is a rainbow path. For each pair

(u, v) ∈ (A3 × B2), uy2v is a rainbow path. For each pair (u, v) ∈ (A3 × B3), the edges

uy1 and vv′ together with the path in T connecting y1 and v′ form a rainbow path.

Finally, we will show that for any vertex u ∈ A4, there is a rainbow path connecting

it to any vertex of B. For each pair (u, v) ∈ (A4 × B1), the edges uu′, vb2 and b2y2
together with the path in T connecting u′ and y2 form a rainbow path, where c(uu′) = 1

and b2 ∈ B2. For each pair (u, v) ∈ (A4 × B2), the edges uu′ and vy2 together with the

path in T connecting u′ and y2 form a rainbow path, where c(uu′) = 1. For each pair

(u, v) ∈ (A4 × B3), the edges uu′ and vv′ together with the path in T connecting u′ and

v′ form a rainbow path, where c(uu′) = 1 and c(vv′) = a.

Thus, we have proved that G is rainbow connected.

From the proof above, we can see the following facts: for any vertex of A there is a

rainbow path connecting it to any vertex of G, and the internal vertex of the rainbow

path does not contain any vertex of B; for any vertex of B2, there is a rainbow path

connecting it to any vertex of G, and the rainbow path does not contain any vertex of

B1 ∪ B3; for any vertex of B3, there is a rainbow path connecting it to any vertex of G,

and the rainbow path does not contain any vertex of B1 ∪ B2. Hence, in the following

proof, we can assume that B3 = φ and B2 = φ.

Subsubcase 2.1.2. B1 6= φ.

We still use the above mentioned subsets A1, A2, A3, A4 and B1, and we still color

the edges of G in the above way except for setting c(w4w
′
4) = a and c(w4w

′′
4) = 2. Thus

we only need to show that for any vertex of A4, there is a rainbow path connecting it to

any vertex of G. We will give the proof as follows. For each pair (u, v) ∈ (A4 × A4), the

edges uu′ and vv′ together with the path in T connecting u′ and v′ form a rainbow path,

where c(uu′) = a and c(vv′) = 2. For each pair (u, v) ∈ (A4 ×A3), the edges uu′ and vy1
together with the path in T connecting u′ and y1 form a rainbow path, where c(uu′) = a.

For each pair (u, v) ∈ (A4 × A2), the edges uu′ and vv′ together with the path in T

connecting u′ and v′ form a rainbow path, where c(uu′) = a and c(vv′) = 1. For each pair

(u, v) ∈ (A4×A1), the edges uu
′ and vv′ together with the path in T connecting u′ and v′

form a rainbow path, where c(uu′) = a and c(vv′) = 2. For each pair (u, v) ∈ (A4 × B1),

the edges uu′ and vy1 together with the path in T connecting u′ and y1 form a rainbow

path, where c(uu′) = 2. Hence, we have showed that G is rainbow connected.

Subcase 2.2. V (P ) = D.

Since V (P ) = D and |Y | = |X|+1, P is a (Y,X)-alternate path. Let A1, A2, A3, A4,

B1, B2 and B3 be the above mentioned subsets.

Subsubcase 2.2.1. |P | = 3.
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Let P = y1x1y2. We use color 1 to color edge y1x1 and use color 2 to color y2x1. Let

A1, A2, A3, B1 and B2 be the above mentioned subsets. Note that: A4 = φ, B3 = φ,

G[A1 ∪ B1] is a complete subgraph, and G[A2 ∪ B2] is a complete subgraph. For any

w1 ∈ A1 and w2 ∈ A2, let c(w1y1) = a, c(w1x1) = 1, c(w2y2) = a and c(w2x1) = 2. It

is obvious that for each vertex of A ∪ B, there is a rainbow path connecting it to any

vertex of P . For each pair (u, v) ∈ (A1 × A2), ux1v is a rainbow path. For each pair

(u, v) ∈ (A1 × A3), uy1v is a rainbow path. For each pair (u, v) ∈ (A1 × B2), ux1y2v is

a rainbow path. For each pair (u, v) ∈ (A2 × A3), uy2v is a rainbow path. For each pair

(u, v) ∈ (A2 × B1), ux1y1v is a rainbow path. For each pair (u, v) ∈ (A3 × B1), uy1v is a

rainbow path. For each pair (u, v) ∈ (A3 × B2), uy2v is a rainbow path. Thus, we have

showed that G is rainbow connected.

Subsubcase 2.2.2. |P | ≥ 5.

Let c(y1x1) = 1, c(x1y
′
1) = c1, c(y2x2) = 2 and c(x2y

′
2) = c2 where y′1, y

′
2 ∈ V (P ). We

color the edges of G in the following way: We use a to color each edge of E[B,D], and

use c1 to color each edge of G[B]. For any w1 ∈ A1, let c(w1y1) = 2 and c(w1w
′
1) = a

where w′
1 ∈ D; For any w2 ∈ A2, let c(w2y2) = 1 and c(w2w

′
2) = a where w′

2 ∈ D;

For any w3 ∈ A3, let c(w3y1) = 2 and c(w3y2) = 1; For any w4 ∈ A4, assume that the

distance between w′
4 and y1 in P is not more than the distance between w′′

4 and y1 in P ,

let c(w4w
′
4) = a and c(w4w

′′
4) = 1 where w′

4, w
′′
4 ∈ D. We will divide three cases to show

that G is rainbow connected.

Subsubsubcase 2.2.2.1. B1 6= φ, B2 6= φ and B3 6= φ.

First, we can easily check that for each vertex of A ∪ B, there is a rainbow path

connecting it to any vertex of P .

Second, we will show that G[A1], G[A2] and G[A4] are rainbow connected, respectively.

For each pair (u, v) ∈ (A1 × A1), the edges uy1 and vv′ together with the path in T

connecting y1 and v′ form a rainbow path, where c(uy1) = 2 and c(vv′) = a; For each pair

(u, v) ∈ (A2×A2), the edges uy2 and vv′ together with the path in T connecting y2 and v′

form a rainbow path, where c(uy2) = 1 and c(vv′) = a; For each pair (u, v) ∈ (A4 × A4),

the edges uu′ and vv′ together with the path in T connecting u′ and v′ form a rainbow

path, where c(uu′) = 1 and c(vv′) = a.

Third, we will show that for each vertex of A1, there is a rainbow path connecting

it to any vertex of A2 ∪ A3 ∪ A4 ∪ B. For each pair (u, v) ∈ (A1 × A2), the edges uu′

and vy2 together with the path in T connecting u′ and y2 form a rainbow path, where

c(uu′) = a. For each pair (u, v) ∈ (A1 × A3), the edges uu′ and vy1 together with the

path in T connecting u′ and y1 form a rainbow path, where c(uu′) = a. For each pair

(u, v) ∈ (A1×A4), the edges uy1 and vv′ together with the path in T connecting y1 and v′

form a rainbow path, where c(vv′) = a. For each pair (u, v) ∈ (A1×B1), uy1v is a rainbow

path. For each pair (u, v) ∈ (A1×B2), uy1b1v is a rainbow path, where b1 ∈ B1. For each

pair (u, v) ∈ (A1 ×B3), the edges uy1 and vv′ together with the path in T connecting y1
and v′ form a rainbow path.
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Fourth, we will show that for each vertex of A2, there is a rainbow path connecting it to

any vertex of A3∪A4∪B. For each pair (u, v) ∈ (A2×A3), the edges uu
′ and vy1 together

with the path in T connecting u′ and y1 form a rainbow path, where c(uu′) = a. For each

pair (u, v) ∈ (A2 × A4), the edges uy2 and vv′ together with the path in T connecting y2
and v′ form a rainbow path, where c(vv′) = a. For each pair (u, v) ∈ (A2 × B1), uy2b2v

is a rainbow path, where b2 ∈ B2. For each pair (u, v) ∈ (A2 × B2), uy2v is a rainbow

path. For each pair (u, v) ∈ (A2 × B3), the edges uy1 and vv′ together with the path in

T connecting y1 and v′ form a rainbow path.

Fifth, we will show that for each vertex of A3, there is a rainbow path connecting it

to any vertex of A4 ∪B. For each pair (u, v) ∈ (A3 ×A4), the edges uy1 and vv′ together

with the path in T connecting y1 and v′ form a rainbow path, where c(vv′) = a. For each

pair (u, v) ∈ (A3 × B1), uy1v is a rainbow path. For each pair (u, v) ∈ (A3 × B2), uy2v

is a rainbow path. For each pair (u, v) ∈ (A3 × B3), the edges uy1 and vv′ together with

the path in T connecting y1 and v′ form a rainbow path.

Finally, we will show that for each vertex of A4, there is a rainbow path connecting it

to any vertex of B. For each pair (u, v) ∈ (A4 ×B1), the edges uu
′, vb2 and b2y2 together

with the path in T connecting y2 and u′ form a rainbow path, where c(uu′) = 1. For each

pair (u, v) ∈ (A4 × B2), the edges uu′ and vy2 together with the path in T connecting

u′ and y2 form a rainbow path, where c(uu′) = 1. For each pair (u, v) ∈ (A4 × B3), the

edges uu′ and vv′ together with the path in T connecting u′ and v′ form a rainbow path,

where c(uu′) = 1.

Hence, we have showed that G is rainbow connected.

From the proof above, we can see the following facts: for any vertex of A there is a

rainbow path connecting it to any vertex of G, and the internal vertex of the rainbow

path does not contain any vertex of B; for any vertex of B3, there is a rainbow path

connecting it to any vertex of G, and the rainbow path does not contain any vertex of

B1 ∪B2. Hence, in the following proof we can assume that B3 = φ.

Subsubsubcase 2.2.2.2. B1 = φ and B2 6= φ.

We still make use of the above coloring way except for the edges of E[A1, D]. We now

color the edges of E[A1, D] as follows: For any vertex w1 ∈ A1, if w1x1 ∈ E(G), then

let c(w1y1) = a and c(w1x1) = 1; if w1x1 6∈ E(G), then let w′
1 ∈ D \ {y1, x1, y2} with

w1w
′
1 ∈ E(G), and let P [y1, w

′
1] be a subpath of P , z ∈ V (P [y1, w

′
1]) with zw′

1 ∈ E(G),

then let c(w1y1) = c(zw′
1), c(w1w

′
1) = 1. From the coloring, one can easily check that

G[A1] is rainbow connected.

Now, we show that for each vertex of A1, there is a rainbow path connecting it to any

vertex of A2 ∪A3 ∪A4 ∪B. For each pair (u, v) ∈ (A1× (A2 ∪A4)), the edges uu
′ and vv′

together with the path in T connecting u′ and v′ form a rainbow path, where c(uu′) = 1

and c(vv′) = a. For each pair (u, v) ∈ (A1 × A3), uy1v is a rainbow path. For each pair

(u, v) ∈ (A1 × B2), the edges uu′ and vy2 together with the path in T connecting u′ and
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y2 form a rainbow path, where c(uu′) = 1.

Thus we have proved that G is rainbow connected.

Subsubcase 2.2.2.3 B1 6= φ and B2 = φ.

We still make use of the above coloring way except for the edges of E[A2, D] and the

edges of E[A4, D]. For any vertex w4 ∈ A4, we let c(w4w
′
4) = a and c(w4w

′′
4) = 2. For any

vertex w2 ∈ A2, we will color the edges of E[A2, D] in the following way: If w2x2 ∈ E(G),

then let c(w2y2) = a and c(w2x2) = 2; If w2x2 6∈ E(G), then let w′
2 ∈ D \ {y1, x2, y2} with

w2w
′
2 ∈ E(G), and let P [y2, w

′
2] be a subpath of P , z′ ∈ V (P [y2, w

′
2]) with z′w′

2 ∈ E(G),

then let c(w2y2) = c(z′w′
2). One can easily check that G[A2] and G[A4] are rainbow

connected, respectively.

Then, we will show that for each vertex of A2, there is a rainbow path connecting it

to any vertex of A1 ∪ A3 ∪ A4 ∪ B. For each pair (u, v) ∈ (A2 × (A1 ∪ A4)), the edges

uu′ and vv′ together with the path in T connecting u′ and v′ form a rainbow path, where

c(uu′) = 2 and c(vv′) = a. For each pair (u, v) ∈ (A2 × A3), uy2v is a rainbow path. For

each pair (u, v) ∈ (A2×B1), the edges uu
′ and vy1 together with the path in T connecting

u′ and y1 form a rainbow path, where c(uu′) = 2.

Finally, we will show that for each vertex of A4, there is a rainbow path connecting

it to any vertex of A1 ∪ A3 ∪ B. For each pair (u, v) ∈ (A4 × A1), the edges uu′ and vv′

together with the path in T connecting u′ and v′ form a rainbow path, where c(uu′) = 2

and c(vv′) = a. For each pair (u, v) ∈ (A4 × A3), the edges uu′ and vy1 together with

the path in T connecting u′ and y1 form a rainbow path, where c(uu′) = a. For each pair

(u, v) ∈ (A4 × B1), the edges uu′ and vy1 together with the path in T connecting u′ and

y1 form a rainbow path, where c(uu′) = 2.

Thus we have proved that G is rainbow connected.

In the above coloring, we used e(T ) + 1 colors. Hence, rc(G) ≤ e(T ) + 1, and so we

can get rc(G) ≤ 2α(G)− 1.

Combining the above Cases 1 and 2, we have completed the proof of Theorem 1.

Since the independence number α(G) is at most the number of cliques that partition

the vertex set of a graph G, and the minimum of such partitions is the chromatic number

of the complement Ḡ of G, we can get the following corollary, which is Theorem 10 of

[20].

Corollary 1 (Theorem 10, [20] ) Let G be a connected graph with chromatic number

χ(G). Then rc(G) ≤ 2χ(Ḡ)− 1.
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