On graph theory Mertens' theorems

Takehiro HASEGAWA (up date 01/Mar/2014)
Shiga University, Otsu, Shiga 520-0862, Japan
Seiken SAITO
Waseda University, Shinjuku, Tokyo 169-8050, Japan

October 17, 2018

Abstract

In this paper, we study graph-theoretic analogies of the Mertens' theorems by using basic properties of the Ihara zeta-function. One of our results is a refinement of a special case of the dynamical system Mertens' second theorem due to Sharp and Pollicott.

2010 Mathematical Subject Classification: 11N45, 05C30, 05C38, 05C50
Key words and phrases: Ihara zeta-functions, Mertens' theorem, Primes in graphs

1 Introduction

Throughout this paper, we use the notation in the textbook [11] of Terras for graph theory and the (Ihara) zeta-function, and we often refer to basic facts included in this textbook.

In 1874 , Mertens proved the so-called Mertens' first/second/third theorems (the equalities $(5)(13)(14)$ in [7, respectively). In 1991, Sharp studied the dynamical-systemic analogues of Mertens' second/third theorems (Theorem 1 in [10]), and in 1992, Pollicott improved the error terms in the theorems of Sharp as follows (Theorem and Remark in 9]):

- Dynamical system Mertens' second theorem: For a hyperbolic (and so geodesic) flow (which is not necessarily topologically weak-mixing) restricted to a basic set with closed orbits τ of least period $\lambda(\tau)$ and topological entropy $h>0$, as $x \rightarrow \infty$,

$$
\begin{aligned}
\sum_{N(\tau) \leq x} \frac{1}{N(\tau)}=\log (\log x) & +\gamma+\log \left(\operatorname{Res}_{s=1} \zeta(s)\right) \\
& -\sum_{\tau} \sum_{n \geq 2} \frac{1}{n} \cdot \frac{1}{N(\tau)^{n}}+O\left(\frac{1}{\log x}\right)
\end{aligned}
$$

where $N(\tau)=e^{h \lambda(\tau)}, \gamma$ is the Euler-Mascheroni constant,

$$
\zeta(s)=\prod_{\tau}\left(1-\frac{1}{N(\tau)^{s}}\right)^{-1}
$$

and $\operatorname{Res}_{s=1} \zeta(s)$ denotes the residue of ζ at $s=1$.

- Dynamical system Mertens' third theorem: For the same flow, as $x \rightarrow \infty$,

$$
\prod_{N(\tau) \leq x}\left(1-\frac{1}{N(\tau)}\right)=\frac{e^{-\gamma}}{\operatorname{Res}_{s=1} \zeta(s)} \cdot \frac{1}{\log x}\left(1+O\left(\frac{1}{\log x}\right)\right)
$$

(For the notation of dynamical systems, see the textbook [8] of Parry-Pollicott.) Note that Sharp and Pollicott did not explicitly write the dynamical system Mertens' first theorem.

From the second theorem of Pollicott, the constant term (so-called Mertens constant) can be explicitly known, but the coefficients of $1 / \log ^{k} x$ can not be computed. Our purpose in this paper is to present graph-theoretic analogies of the Mertens' theorems whose coefficients can be explicitly known. So, our second theorem is a refinement of a special case of the theorem due to Pollicott in the sense that the coefficients of $1 / \log ^{k} x$ can be computed.

In the rest of this section, we introduce the notation of graph theory, next recall the notation and properties of the (Ihara) zeta-function, and last state the main theorem.

First, we recall the notation of graphs. Let X be an undirected graph with vertex set V of $\nu:=|V|$ and edge set E of $\epsilon:=|E|$. Simply, such a graph X is denoted by $X:=(V, E)$.

A directed edge (or an arc) a from a vertex u to a vertex v is denoted by $a=(u, v)$, and the inverse of a is denoted by $a^{-1}=(v, u)$. The origin (resp. terminus) of a is denoted by $o(a):=u($ resp. $t(a):=v)$.

We can direct the edges of X, and label the edges as follows:

$$
\vec{E}:=\left\{\begin{array}{llll}
e_{1}, & e_{2}, & \ldots, & \left.e_{\epsilon}, \quad e_{\epsilon+1}=e_{1}^{-1}, \quad e_{\epsilon+2}=e_{2}^{-1} \quad \ldots, \quad e_{2 \epsilon}=e_{\epsilon}^{-1}\right\} . . ~
\end{array}\right.
$$

A path $C=a_{1} \cdots a_{s}$, where the a_{i} are directed edges, is said to have a backtrack (resp. tail) if $a_{j+1}=a_{j}^{-1}$ for some j (resp. $a_{s}=a_{1}^{-1}$), and a path C is called a cycle (or closed path) if $o\left(a_{1}\right)=t\left(a_{s}\right)$. The length $\ell(C)$ of a path $C=a_{1} \cdots a_{s}$ is defined by $\ell(C):=s$.

A cycle C is called prime (or primitive) if it satisfies the following:

- C does not have backtracks and a tail;
- no cycle D exists such that $C=D^{f}$ for some $f>1$.

The equivalence class [C] of a cycle $C=a_{1} \cdots a_{s}$ is defined as the set of cycles

$$
[C]:=\left\{a_{1} a_{2} \cdots a_{s-1} a_{s}, \quad a_{2} \cdots a_{s-1} a_{s} a_{1}, \quad \ldots, \quad a_{s} a_{1} a_{2} \cdots a_{s-1}\right\}
$$

and an equivalence class $[P]$ of a prime cycle P is called prime.
Let Δ_{X} and $\pi_{X}(n)$ denote

$$
\begin{aligned}
\Delta & =\Delta_{X}:=\operatorname{gcd}\{\ell(P):[P] \text { is a prime equivalence class in } X\} \\
\pi(n) & =\pi_{X}(n):=\mid\{[P]:[P] \text { is a prime equivalence class in } X \text { with } \ell(P)=n\} \mid .
\end{aligned}
$$

Throughout this paper, we always assume that X is a finite, connected, noncycle and undirected graph without degree-one vertices, and we denote by a symbol $[P]$ a prime equivalence class.

Next, we recall the zeta-function of $X=(V, E)$. The (Ihara) zeta-function of X is defined as follows (the equality (9) in [4], and also see Definition 2.2 in [11]):

$$
Z_{X}(u):=\prod_{[P]}\left(1-u^{\ell(P)}\right)^{-1}
$$

with $|u|$ sufficiently small, where $[P]$ runs through all prime equivalence classes in X. The radius of convergence of $Z_{X}(u)$ is denoted by R_{X}. Note that $0<R_{X}<1$ since X is a noncycle graph (see, for example, page 197 in [11]).

Let $W=W_{X}:=\left(w_{i j}\right)$ denote the edge adjacency matrix of a graph X, that is, a $2 \epsilon \times 2 \epsilon$ matrix defined by

$$
w_{i j}:= \begin{cases}1 & \text { if } t\left(e_{i}\right)=o\left(e_{j}\right) \text { and } e_{j} \neq e_{i}^{-1} \text { for } e_{i}, e_{j} \in \vec{E} \\ 0 & \text { otherwise }\end{cases}
$$

(see page 28 in [11]).
In this paper, our main theorem is:
Main Theorem. Suppose that $X=(V, E)$ is a finite, connected, noncycle and undirected graph without degree-one vertices. Set

$$
a=a(N):=\left\{\frac{N}{\Delta_{X}}\right\} \Delta_{X} \quad\left(=N-\left[\frac{N}{\Delta_{X}}\right] \Delta_{X}\right)
$$

where $[x]$ (resp. $\{x\}$) denotes the integer (resp. fractional) part of the real number x, and thus $0 \leq a(N)<\Delta_{X}$. Then, the following items (1)(2)(3) hold:
(1) (Graph theory Mertens' first Theorem) As $N \rightarrow \infty$,

$$
\begin{aligned}
\sum_{n \leq N} n \cdot \pi_{X}(n) R_{X}^{n} & =N-a(N)+A_{X}+K_{X}+O\left(\left(\rho_{X} R_{X}\right)^{N}\right) \\
& \left(=\left[\frac{N}{\Delta_{X}}\right] \Delta_{X}+A_{X}+K_{X}+O\left(\left(\rho_{X} R_{X}\right)^{N}\right)\right)
\end{aligned}
$$

where the constants A_{X}, K_{X} and ρ_{X} are defined by

$$
A_{X}:=\sum_{\substack{\lambda \in \operatorname{Spec}(W),|\lambda|<1 / R_{X}}} \frac{\lambda R_{X}}{1-\lambda R_{X}}, \quad K_{X}:=\sum_{n=1}^{\infty}\left(n \cdot \pi_{X}(n)-\sum_{\lambda \in \operatorname{Spec}(W)} \lambda^{n}\right) R_{X}^{n},
$$

and

$$
\rho_{X}:=\max \left\{|\lambda|: \lambda \in \operatorname{Spec}(W),|\lambda|<1 / R_{X}\right\}
$$

respectively. (The convergence of K_{X} is shown in Section 园.)
(2) (Graph theory Mertens' second Theorem) As $N \rightarrow \infty$,

$$
\begin{aligned}
\sum_{n \leq N} \pi_{X}(n) R_{X}^{n}=\log N & +\gamma+\log C_{X}-H_{X} \\
& -\sum_{s=1}^{k}\left(\frac{a^{s}}{s}+\sum_{m=0}^{s-1}\binom{s-1}{m} \frac{a^{m} B_{s-m} \Delta_{X}^{s-m}}{s-m}\right) \frac{1}{N^{s}}+O\left(\frac{1}{N^{k+1}}\right)
\end{aligned}
$$

for each $k \geq 1$, where γ is the Euler-Mascheroni constant, B_{s} are the s-th Bernoulli numbers defined by

$$
\frac{t}{e^{t}-1}=\sum_{s=0}^{\infty} B_{s} \frac{t^{s}}{s!}
$$

and the constants C_{X} and H_{X} are defined by

$$
C_{X}:=-\frac{1}{R_{X}} \operatorname{Res}_{u=R_{X}} Z_{X}(u), \quad H_{X}:=-\sum_{n \geq 1} \frac{1}{n}\left(n \cdot \pi_{X}(n)-\sum_{\lambda \in \operatorname{Spec}(W)} \lambda^{n}\right) R_{X}^{n}
$$

respectively. (The convergence of H_{X} is shown in Section (2.)
In particular $(k=0)$, as $N \rightarrow \infty$,

$$
\sum_{n \leq N} \pi_{X}(n) R_{X}^{n}=\log N+\gamma+\log C_{X}-H_{X}+O\left(\frac{1}{N}\right)
$$

(Graph theory Mertens' third Theorem, [2]) As $N \rightarrow \infty$,

$$
\begin{equation*}
\prod_{n \leq N}\left(1-R_{X}^{n}\right)^{\pi_{X}(n)}=\frac{e^{-\gamma}}{C_{X}} \cdot \frac{1}{N}\left(1+O\left(\frac{1}{N}\right)\right) \tag{3}
\end{equation*}
$$

Note that our first theorem (1) is a refinement of a result in our previous paper [2] in the sense that the constant term $A_{X}+K_{X}$ is explicitly written, and note that our second theorem (2) is a refinement of a special case of the result due to Pollicott (Theorem (i) and Remark in (9]) in the sense that all the coefficients of $1 / N^{k}$ can be explicitly computed. Our proofs in this paper are elementary (without the theory of the Ihara prime zeta-function which is studied in [2]), and moreover they are completely different from previous proofs.

Our theorems (1)(2) can be simplified under the assumption which all the degrees of vertices are greater than 2: If X is bipartite, then $\Delta_{X}=2$, and so $a(2 N)=0$ or $a(2 N+1)=$ 1. Otherwise, $\Delta_{X}=1$, and therefore $a(N)=0$. (See, for details, Proposition 3.2 in [5].)

The contents of this paper are as follows. In the next section, we first prove a keylemma, which plays an important role in the proof of the main theorem, and next introduce the constants in the main theorem. In Section 3 we give the proof of the main theorem.

2 KeyLemma

In this section, in order to show the theorem, we introduce a keylemma and two constants.
The following facts are often used in this paper.
Fact. Suppose that $X=(V, E)$ satisfies the same conditions as the main theorem.
(1) (Theorem 1.4 in [5], and also see Theorem 8.1 (3) in [11]) The poles of $Z_{X}(u)$ on the circle $|u|=R_{X}$ have the form $R_{X} e^{2 \pi i a / \Delta_{X}}$, where $a=1,2, \ldots, \Delta_{X}$.
(2) (Orthogonality relation, for example, see Exercise 10.1 in [11])

$$
\sum_{a=1}^{\Delta_{X}} e^{2 \pi i a n / \Delta_{X}}= \begin{cases}\Delta_{X} & \text { if } \Delta_{X} \mid n \\ 0 & \text { otherwise }\end{cases}
$$

(3) (Two-term determinant formula, [3] and [1], and also see (4.4) in [11]) The zetafunction $Z_{X}(u)$ can be written as

$$
Z_{X}(u)=1 / \operatorname{det}\left(I_{2 \epsilon}-W u\right)=\prod_{\lambda \in \operatorname{Spec}(W)}(1-\lambda u)^{-1}
$$

The following keylemma plays an important role in the proof of the main theorem.
KeyLemma. Suppose that $X=(V, E)$ satisfies the same conditions as the main theorem.
(a) As $N \rightarrow \infty$,

$$
\sum_{n=1}^{N} \sum_{\lambda \in \operatorname{Spec}(W)}\left(\lambda R_{X}\right)^{n}=\left[\frac{N}{\Delta_{X}}\right] \Delta_{X}+A_{X}+O\left(\left(\rho_{X} R_{X}\right)^{N}\right)
$$

where $[x]$ denotes the integer part of the real number x.
(b) As $N \rightarrow \infty$,

$$
\sum_{n=1}^{N} \frac{1}{n} \sum_{\lambda \in \operatorname{Spec}(W)}\left(\lambda R_{X}\right)^{n}=\sum_{n=1}^{[N / \Delta X]} \frac{1}{n}+\log C_{X}+\log \Delta_{X}+O\left(\left(\rho_{X} R_{X}\right)^{N}\right)
$$

(c) (国) Let $0<\alpha<1 / 2$ be a real number, and fix it. Then, there exists a natural number $N_{0}=N_{0}(\alpha)$ such that for any $n \geq N_{0}$,

$$
\left|n \cdot \pi_{X}(n)-\sum_{\lambda \in \operatorname{Spec}(W)} \lambda^{n}\right|<2 \epsilon\left(\frac{1}{R_{X}}\right)^{(1-\alpha) n} .
$$

(d) (cf. Section 2 in [6]) Set

$$
a=a(N):=N-\left[\frac{N}{\Delta_{X}}\right] \Delta_{X},
$$

and thus $0 \leq a(N)<1$. Then,

$$
\begin{aligned}
\sum_{n=1}^{[N / \Delta x]} \frac{1}{n}=\log N & -\log \Delta_{X}+\gamma \\
& -\sum_{s=1}^{k}\left(\frac{a^{s}}{s}+\sum_{m=0}^{s-1}\binom{s-1}{m} \frac{a^{m} B_{s-m} \Delta_{X}^{s-m}}{s-m}\right) \frac{1}{N^{s}}+O\left(\frac{1}{N^{k+1}}\right)
\end{aligned}
$$

for each $k \geq 1$.
Proof. In this proof, we abbreviate the suffix X, that is, $R=R_{X}, \Delta=\Delta_{X}$, etc.
Let $\left\{a_{n}\right\}$ be a sequence of real numbers with $0<a_{n} \leq 1$ for any n. Then, it follows from Facts $(1)(2)(3)$ that we obtain the equality

$$
\begin{equation*}
\sum_{n=1}^{N} a_{n} \sum_{\substack{\lambda \in \operatorname{Spec}(W), \mid \lambda=1 / R}}(\lambda R)^{n}=\sum_{n=1}^{N} a_{n} \sum_{a=1}^{\Delta} e^{-2 \pi i a n / \Delta}=\Delta \sum_{n=1}^{[N / \Delta]} a_{n \Delta} . \tag{1}
\end{equation*}
$$

Moreover, it follows by the triangle inequality that we obtain the inequality

$$
\begin{align*}
\left|\sum_{n>N} a_{n} \sum_{\substack{\lambda \in \operatorname{Spec}(W),|\lambda|<1 / R}}(\lambda R)^{n}\right| & \leq \sum_{n>N} a_{n} \sum_{\substack{\lambda \in \text { Speec(W), } \\
|\lambda|<1 / R}}(|\lambda| R)^{n} \\
& <2 \epsilon \sum_{n>N}(\rho R)^{n}=\frac{2 \epsilon \rho R}{1-\rho R}(\rho R)^{N} . \tag{2}
\end{align*}
$$

In the proofs of the items (a)(b), we use the equality (1) and the inequality (2).
(a) Note that

$$
\left|\sum_{n=1}^{N} \sum_{|\lambda|=1 / R}(\lambda R)^{n}-\left[\frac{N}{\Delta}\right] \Delta\right|=\left|\sum_{n=1}^{[N / \Delta]} \Delta-\left[\frac{N}{\Delta}\right] \Delta\right|=0
$$

by the equality (11). On the other hand, note that

$$
\left|\sum_{n=1}^{N} \sum_{|\lambda|<1 / R}(\lambda R)^{n}-A\right|=\left|\sum_{n>N} \sum_{|\lambda|<1 / R}(\lambda R)^{n}\right|<\frac{2 \epsilon \rho R}{1-\rho R}(\rho R)^{N}
$$

from the inequality (2). By combining these, the item (a) follows from the triangle inequality.
(b) Set the sums

$$
S_{1}(N):=\sum_{n=1}^{N} \frac{1}{n} \sum_{|\lambda|=1 / R}(\lambda R)^{n} \quad \text { and } \quad S_{2}(N):=\sum_{n=1}^{N} \frac{1}{n} \sum_{|\lambda|<1 / R}(\lambda R)^{n} .
$$

First, we consider the sum $S_{1}(N)$. It follows from the equality (1) that

$$
S_{1}(N)=\sum_{n=1}^{N} \frac{1}{n} \sum_{|\lambda|=1 / R}(\lambda R)^{n}=\sum_{n=1}^{[N / \Delta]} \frac{1}{n} .
$$

Next, we compute the sum $S_{2}(N)$. We now consider the constant defined by

$$
F:=\log \prod_{|\lambda|<1 / R} \frac{1}{1-\lambda R} \quad\left(=-\sum_{|\lambda|<1 / R} \log (1-\lambda R)=\sum_{|\lambda|<1 / R} \sum_{n \geq 1} \frac{1}{n}(\lambda R)^{n}\right)
$$

and then we obtain $F=\log C_{X}+\log \Delta$. This is proved as follows: Note that

$$
\begin{aligned}
C_{X}=\lim _{u \uparrow R} \frac{(R-u) Z_{X}(u)}{R} & =\lim _{u \uparrow R}\left(1-\frac{u}{R}\right) \prod_{\substack{\lambda \in \operatorname{Spec}(W)}} \frac{1}{1-\lambda u} \\
& =\lim _{u \uparrow R} \prod_{\substack{\lambda \in \operatorname{Spec}(W), \lambda \neq 1 / R}} \frac{1}{1-\lambda u}=\prod_{\substack{\lambda \in \operatorname{Spec}(W), \lambda \neq 1 / R}} \frac{1}{1-\lambda R}
\end{aligned}
$$

by the definition of C_{X} and Facts (1)(3). It is well known that

$$
\sum_{n=0}^{\Delta-1} X^{n}=\frac{X^{\Delta}-1}{X-1}=\prod_{a=1}^{\Delta-1}\left(X-e^{-2 \pi i a / \Delta}\right), \quad \text { and so } \quad \Delta=\prod_{a=1}^{\Delta-1}\left(1-e^{-2 \pi i a / \Delta}\right)
$$

Combining these equalities, we obtain

$$
\begin{aligned}
\prod_{|\lambda|<1 / R} \frac{1}{1-\lambda R} & =\prod_{\substack{\lambda \in \operatorname{Spec}(W), \lambda \neq 1 / R}} \frac{1}{1-\lambda R} \cdot \prod_{\substack{|\lambda|=1 / R, \lambda \neq 1 / R}}(1-\lambda R) \\
& =\prod_{\substack{\lambda \in \operatorname{Spec}^{\prime}(W), \lambda \neq 1 / R}} \frac{1}{1-\lambda R} \cdot \prod_{a=1}^{\Delta-1}\left(1-e^{-2 \pi i a / \Delta}\right)=C_{X} \cdot \Delta,
\end{aligned}
$$

and thus $F=\log C_{X}+\log \Delta$.
It follows from the inequality (2) that we obtain the inequality

$$
\left|S_{2}(N)-F\right|=\left|\sum_{|\lambda|<1 / R} \sum_{n>N} \frac{1}{n}(\lambda R)^{n}\right|<\frac{2 \epsilon(\rho R)^{N+1}}{1-\rho R}
$$

that is,

$$
S_{2}(N)=F+O\left((\rho R)^{N}\right)=\log C_{X}+\log \Delta+O\left((\rho R)^{N}\right)
$$

Hence, by combining the above results, we obtain

$$
\begin{aligned}
\sum_{n=1}^{N} \frac{1}{n} \sum_{\lambda \in \operatorname{Spec}(W)}(\lambda R)^{n} & =S_{1}(N)+S_{2}(N) \\
& =\sum_{n=1}^{[N / \Delta]} \frac{1}{n}+\log C_{X}+\log \Delta+O\left((\rho R)^{N}\right)
\end{aligned}
$$

(c) Let $\mu(n)$ denote the Möbius function. Note that $\sum_{d \mid n}|\mu(d)| \leq n$. It is known that

$$
\pi(n)=\frac{1}{n} \sum_{d \mid n} \mu(d) N_{n / d}, \quad \text { and } \quad N_{n}=\sum_{\lambda \in \operatorname{Spec}(W)} \lambda^{n}
$$

(see (10.3) and (10.4) in [11], respectively). Combining these equalities, we obtain

$$
n \cdot \pi(n)=\sum_{\lambda \in \operatorname{Spec}(W)} \sum_{d \mid n} \mu(d) \lambda^{n / d}
$$

and therefore

$$
\begin{aligned}
\left|n \cdot \pi(n)-\sum_{\lambda \in \operatorname{Spec}(W)} \lambda^{n}\right| & =\left|\sum_{\lambda \in \operatorname{Spec}(W)} \sum_{\substack{d \mid n, d \geq 2}} \mu(d) \lambda^{n / d}\right| \\
& \leq \sum_{\lambda \in \operatorname{Spec}(W)} \sum_{\substack{d \mid n, d \geq 2}}|\mu(d)| \cdot|\lambda|^{n / d} \leq \sum_{\lambda \in \operatorname{Spec}(W)} \sum_{\substack{d \mid n, d \geq 2}}|\mu(d)| \cdot|\lambda|^{n / 2} \\
& <n \sum_{\lambda \in \operatorname{Spec}(W)}\left(\frac{1}{R}\right)^{n / 2} \leq 2 \epsilon n\left(\frac{1}{R}\right)^{n / 2}
\end{aligned}
$$

On the other hand, since $0<R<1$ and $0<\alpha<1 / 2$ by our assumptions, there exists a natural number $N_{0}=N_{0}(\alpha)$ such that for any $n \geq N_{0}$,

$$
n \leq\left(\frac{1}{R}\right)^{(1 / 2-\alpha) n}, \quad \text { and so } \quad n\left(\frac{1}{R}\right)^{n / 2} \leq\left(\frac{1}{R}\right)^{(1-\alpha) n}
$$

Hence, for any $n \geq N_{0}$,

$$
\left|n \cdot \pi(n)-\sum_{\lambda \in \operatorname{Spec}(W)} \lambda^{n}\right| \leq 2 \epsilon\left(\frac{1}{R}\right)^{(1-\alpha) n}
$$

and the assertion of the item (c) follows.
(d) It is known from the equality (9) in [6] that

$$
\begin{equation*}
\left|\int_{[N / \Delta]}^{\infty} \frac{P_{2 k+1}(x)}{x^{2 k+2}} d x\right|=O\left(\frac{1}{N^{2 k+1}}\right) \quad\left(=O\left(\frac{1}{N^{k+1}}\right)\right) \tag{3}
\end{equation*}
$$

where $P_{2 k+1}(x)$ is a periodic Bernoulli polynomial. Note that $[N / \Delta]=(N-a) / \Delta$. Recall that the $(2 s-1)$-th Bernoulli numbers $B_{2 s-1}(s \geq 1)$ are given by

$$
B_{1}=-1 / 2 \quad \text { and } \quad B_{2 s-1}=0 \quad(s \geq 2)
$$

Then, it follows from the equality (7) in [6] and the above equality (3) that

$$
\begin{aligned}
\sum_{n=1}^{[N / \Delta]} \frac{1}{n}-\gamma & =\log \left[\frac{N}{\Delta}\right]+\frac{1}{2[N / \Delta]}-\sum_{s=1}^{k} \frac{B_{2 s}}{2 s[N / \Delta]^{2 s}}+O\left(\frac{1}{N^{k+1}}\right) \\
& =\log \left[\frac{N}{\Delta}\right]-\sum_{s=1}^{2 k} \frac{B_{s}}{s[N / \Delta]^{s}}+O\left(\frac{1}{N^{k+1}}\right)
\end{aligned}
$$

and therefore

$$
\begin{align*}
\sum_{n=1}^{[N / \Delta]} \frac{1}{n}-\gamma= & \log \left[\frac{N}{\Delta}\right]-\sum_{s=1}^{2 k} \frac{B_{s}}{s[N / \Delta]^{s}}+O\left(\frac{1}{N^{k+1}}\right) \\
= & \log \left[\frac{N}{\Delta}\right]-\sum_{s=1}^{k} \frac{B_{s}}{s[N / \Delta]^{s}}+O\left(\frac{1}{N^{k+1}}\right) \\
= & \log N+\log \left(1-\frac{a}{N}\right)-\log \Delta \\
& \quad-\sum_{s=1}^{k} \frac{B_{s} \Delta^{s}}{s N^{s}} \frac{1}{(1-a / N)^{s}}+O\left(\frac{1}{N^{k+1}}\right) \\
= & \log N-\log \Delta-\sum_{s=1}^{k} \frac{a^{s}}{s N^{s}} \\
& \quad-\sum_{s=1}^{k} \frac{B_{s} \Delta^{s}}{s N^{s}} \sum_{m \geq 0}\binom{s-1+m}{m}\left(\frac{a}{N}\right)^{m}+O\left(\frac{1}{N^{k+1}}\right) \tag{4}
\end{align*}
$$

On the other hand, since the inequality

$$
\binom{s-1+m}{m}=\frac{s-1+m}{m} \cdot \frac{s-2+m}{m-1} \cdots \frac{s+1}{2} \cdot \frac{s}{1} \leq s^{m}
$$

holds, we obtain the inequalities

$$
\begin{aligned}
\sum_{s=1}^{k} \frac{B_{s} \Delta^{s}}{s N^{s}} \sum_{m>k-s}\binom{s-1+m}{m}\left(\frac{a}{N}\right)^{m} & \leq \sum_{s=1}^{k} \frac{B_{s} \Delta^{s}}{s N^{s}} \sum_{m>k-s}\left(\frac{s a}{N}\right)^{m} \\
& =\sum_{s=1}^{k} \frac{B_{s} \Delta^{s}}{s N^{s}}\left(\frac{s a}{N}\right)^{k-s+1} \frac{1}{1-s a / N} \\
& \leq \frac{1}{N^{k+1}} \cdot \frac{N}{N-k a} \sum_{s=1}^{k} \frac{B_{s} \Delta^{s}}{s}(s a)^{k-s+1}
\end{aligned}
$$

that is,

$$
\begin{equation*}
\sum_{s=1}^{k} \frac{B_{s} \Delta^{s}}{s N^{s}} \sum_{m>k-s}\binom{s-1+m}{m}\left(\frac{a}{N}\right)^{m}=O\left(\frac{1}{N^{k+1}}\right) \tag{5}
\end{equation*}
$$

Hence, combining the equalities (4) (5), we obtain

$$
\begin{aligned}
\sum_{n=1}^{[N / \Delta]} \frac{1}{n}=\log N & -\log \Delta+\gamma \\
& -\sum_{s=1}^{k}\left(a^{s}+B_{s} \Delta^{s} \sum_{m=0}^{k-s}\binom{s+m-1}{m}\left(\frac{a}{N}\right)^{m}\right) \frac{1}{s N^{s}}+O\left(\frac{1}{N^{k+1}}\right)
\end{aligned}
$$

and the assertion of the item (d) follows after an elementary computation.

By using KeyLemma (c), we can prove the convergences of constants.
Lemma 1. Suppose that $X=(V, E)$ satisfies the same conditions as the main theorem.
(1) The series

$$
K_{X}=\sum_{n \geq 1}\left(n \cdot \pi_{X}(n)-\sum_{\lambda \in \operatorname{Spec}(W)} \lambda^{n}\right) R_{X}^{n}
$$

is convergent.
(2) The series

$$
H_{X}=-\sum_{n \geq 1} \frac{1}{n}\left(n \cdot \pi_{X}(n)-\sum_{\lambda \in \operatorname{Spec}(W)} \lambda^{n}\right) R_{X}^{n}
$$

is convergent. Moreover,

$$
H_{X}=\sum_{[P]} \sum_{m \geq 2} \frac{1}{m} R_{X}^{m \ell(P)}
$$

holds.
Proof. Let $\left\{a_{n}\right\}$ be a sequence of real numbers with $0<a_{n} \leq 1$ for any n. Note that

$$
\begin{aligned}
\left|\sum_{n \geq N_{0}} a_{n}\left(n \cdot \pi(n)-\sum_{\lambda \in \operatorname{Spec}(W)} \lambda^{n}\right) R^{n}\right| & \leq \sum_{n \geq N_{0}}\left|n \cdot \pi(n)-\sum_{\lambda \in \operatorname{Spec}(W)} \lambda^{n}\right| R^{n} \\
& <2 \epsilon \sum_{n \geq N_{0}}\left(\frac{1}{R}\right)^{(1-\alpha) n} R^{n} \\
& \leq 2 \epsilon \sum_{n \geq 1} R^{\alpha n}=\frac{2 \epsilon R^{\alpha}}{1-R^{\alpha}}
\end{aligned}
$$

by KeyLemma (c). Hence, the convergences of the items (1)(2) hold from this inequality.
Next, we show the equality of the item (2). Assume that $|u|<R$. It follows from Fact (3) and the definition of $Z_{X}(u)$ that

$$
\begin{aligned}
\sum_{n \geq 1} \sum_{\lambda \in \operatorname{Spec}(W)} \frac{\lambda^{n}}{n} u^{n} & =\sum_{\lambda \in \operatorname{Spec}(W)} \log (1-\lambda u)^{-1} \\
& =\log Z_{X}(u)=\sum_{[P]} \log \left(1-u^{\ell(P)}\right)^{-1} \\
& =\sum_{[P]} \sum_{m \geq 1} \frac{1}{m} u^{m \ell(P)}=\sum_{[P]} u^{\ell(P)}+\sum_{[P]} \sum_{m \geq 2} \frac{1}{m} u^{m \ell(P)} \\
& =\sum_{n \geq 1} \pi(n) u^{n}+\sum_{[P]} \sum_{m \geq 2} \frac{1}{m} u^{m \ell(P)}
\end{aligned}
$$

and therefore

$$
\begin{equation*}
-\sum_{n \geq 1} \frac{1}{n}\left(n \cdot \pi_{X}(n)-\sum_{\lambda \in \operatorname{Spec}(W)} \lambda^{n}\right) u^{n}=\sum_{[P]} \sum_{m \geq 2} \frac{1}{m} u^{m \ell(P)} \tag{6}
\end{equation*}
$$

On the other hand, by the graph theory prime-number theorem (see Theorem 10.1 in [11]), the radius of convergence of the function

$$
P(u)=\sum_{[P]} u^{\ell(P)}=\sum_{n \geq 1} \pi(n) u^{n}
$$

is equal to R. Note that $R^{2}<R$ since $0<R<1$. Then,

$$
\begin{aligned}
\sum_{[P]} \sum_{m \geq 2} \frac{1}{m} R^{m \ell(P)} & \leq \sum_{[P]} \sum_{m \geq 2} R^{m \ell(P)}=\sum_{[P]} \frac{R^{2 \ell(P)}}{1-R^{\ell(P)}} \\
& \leq \frac{1}{1-R} \sum_{[P]} R^{2 \ell(P)} \leq \frac{1}{1-R} P\left(R^{2}\right)<+\infty
\end{aligned}
$$

Hence, since both sides of the equality (6) are also convergent for $u=R$, the assertion follows by the uniqueness of analytic continuation (namely, the principle of uniqueness).

3 Proof of the main theorem

In this section, we show the main theorem.

Proof. (The main theorem) (1) Assume that N is sufficiently large. Then, it follows from KeyLemma (c) that we obtain

$$
\begin{aligned}
\left|\sum_{n=1}^{N} n \cdot \pi(n) R^{n}-\sum_{n=1}^{N} \sum_{\lambda \in \operatorname{Spec}(W)}(\lambda R)^{n}-K\right| & =\left|\sum_{n>N}\left(n \cdot \pi(n)-\sum_{\lambda \in \operatorname{Spec}(W)} \lambda^{n}\right) R^{n}\right| \\
& \leq \sum_{n>N}\left|n \cdot \pi(n)-\sum_{\lambda \in \operatorname{Spec}(W)} \lambda^{n}\right| R^{n} \\
& <2 \epsilon \sum_{n>N}\left(\frac{1}{R}\right)^{(1-\alpha) n} R^{n} \\
& =2 \epsilon \sum_{n>N} R^{\alpha n}=\frac{2 \epsilon R^{\alpha(N+1)}}{1-R^{\alpha}}
\end{aligned}
$$

and therefore by KeyLemma (a), we obtain

$$
\begin{aligned}
\sum_{n=1}^{N} n \cdot \pi(n) R^{n} & =\sum_{n=1}^{N} \sum_{\lambda \in \operatorname{Spec}(W)}(\lambda R)^{n}+K+O\left((\rho R)^{N}\right) \\
& =\left[\frac{N}{\Delta}\right] \Delta+A+K+O\left((\rho R)^{N}\right)
\end{aligned}
$$

as $N \rightarrow \infty$. Hence, the assertion of the item (1) follows.
(2) Suppose that N is sufficiently large. Then, it follows from KeyLemma (c) that

$$
\begin{aligned}
\left|\sum_{n=1}^{N} \pi(n) R^{n}-\sum_{n=1}^{N} \frac{1}{n} \sum_{\lambda \in \operatorname{Spec}(W)}(\lambda R)^{n}+H\right| & =\left|\sum_{n>N}\left(\pi(n)-\frac{1}{n} \sum_{\lambda \in \operatorname{Spec}(W)} \lambda^{n}\right) R^{n}\right| \\
& =\left|\sum_{n>N} \frac{1}{n}\left(n \cdot \pi(n)-\sum_{\lambda \in \operatorname{Spec}(W)} \lambda^{n}\right) R^{n}\right| \\
& \leq \sum_{n>N}\left|n \cdot \pi(n)-\sum_{\lambda \in \operatorname{Spec}(W)} \lambda^{n}\right| R^{n} \\
& <2 \epsilon \sum_{n>N}\left(\frac{1}{R}\right)^{(1-\alpha) n} R^{n} \\
& =2 \epsilon \sum_{n>N} R^{\alpha n}=\frac{2 \epsilon R^{\alpha(N+1)}}{1-R^{\alpha}}
\end{aligned}
$$

and therefore we obtain

$$
\sum_{n=1}^{N} \pi(n) R^{n}=\sum_{n=1}^{N} \frac{1}{n} \sum_{\lambda \in \operatorname{Spec}(W)}(\lambda R)^{n}-H+O\left(R^{\alpha N}\right)
$$

as $N \rightarrow \infty$. Hence, it follows from KeyLemmas (b)(d) that the assertion holds.
(3) Assume that N is sufficiently large, and define the following functions:

$$
H^{\leq N}=\sum_{n \leq N} \pi(n) \sum_{m \geq 2} \frac{1}{m} R^{m n}, \quad \text { and } \quad H^{>N}=\sum_{n>N} \pi(n) \sum_{m \geq 2} \frac{1}{m} R^{m n}
$$

Note that $H=H^{\leq N}+H^{>N}$ by Lemma 1 (2). It follows from the graph theory primenumber theorem (see Theorem 10.1 in [11]) that there exists a constant $c_{1}>0$ such that for any $n>N$,

$$
\pi(n)<\frac{c_{1}}{R^{n}}
$$

Recall that $0<R<1$ since X is a noncycle graph. Then, we obtain

$$
\begin{aligned}
H^{>N} & =\sum_{n>N} \pi(n) \sum_{m \geq 2} \frac{1}{m} R_{X}^{m n}<c_{1} \sum_{n>N} \sum_{m \geq 2} R^{(m-1) n} \\
& =c_{1} \sum_{n>N} \frac{R^{n}}{1-R^{n}}<\frac{c_{1}}{1-R} \sum_{n>N} R^{n}=\frac{c_{1} R}{(1-R)^{2}} R^{N}
\end{aligned}
$$

and therefore $H^{>N}=O\left(R^{N}\right)$.
From the item (2) and the above result, we obtain

$$
\begin{aligned}
\sum_{n \leq N} \pi(n) R^{n}+H^{\leq N} & =\log N+\gamma+\log C_{X}-H^{>N}+O\left(\frac{1}{N}\right) \\
& =\log N+\gamma+\log C_{X}+O\left(\frac{1}{N}\right)
\end{aligned}
$$

Since the left-hand side of the above equality is equal to

$$
\begin{aligned}
\sum_{n \leq N} \pi(n) R^{n}+H^{\leq N} & =\sum_{n \leq N} \pi(n) \sum_{m=1}^{\infty} \frac{1}{m} R^{m n} \\
& =-\sum_{n \leq N} \pi(n) \log \left(1-R^{n}\right)=-\log \left(\prod_{n \leq N}\left(1-R^{n}\right)^{\pi(n)}\right)
\end{aligned}
$$

we obtain

$$
\prod_{n \leq N}\left(1-R^{n}\right)^{\pi(n)}=\frac{e^{-\gamma}}{C_{X}} \cdot \frac{1}{N} \exp \left(O\left(\frac{1}{N}\right)\right)=\frac{e^{-\gamma}}{C_{X}} \cdot \frac{1}{N}\left(1+O\left(\frac{1}{N}\right)\right)
$$

and the assertion of the item (3) follows.
Remark. (1) When $k=0$, our second theorem just corresponds to a special case of the second theorem due to Pollicott (see Section 1 in this paper). This is proved as follows:

In our case, the topological entropy is equal to the constant $h=-\log R>0$. We now define $u=R^{s}, N(P)=e^{h \ell(P)}=R^{-\ell(P)}$ and $x=e^{h N}$. Then, the left-hand side is equal to

$$
\sum_{n \leq N} \pi(n) R^{n}=\sum_{\ell(P) \leq N} R^{\ell(P)}=\sum_{N(P) \leq x} \frac{1}{N(P)}
$$

On the other hand, the right-hand side can be transformed as follows. Note that

$$
\begin{aligned}
C_{X} & =-\frac{1}{R} \cdot \lim _{u \uparrow R}(u-R) Z_{X}(u) \\
& =-\frac{1}{R} \cdot \lim _{s \downarrow 1} \frac{R^{s}-R}{s-1} \cdot \lim _{s \downarrow 1}(s-1) Z_{X}\left(R^{s}\right)=h \cdot \operatorname{Res}_{s=1} Z_{X}\left(R^{s}\right) .
\end{aligned}
$$

It follows from Lemma 1 (2) that

$$
H_{X}=\sum_{[P]} \sum_{n \geq 2} \frac{1}{n} R^{n \ell(P)}=\sum_{[P]} \sum_{n \geq 2} \frac{1}{n} \cdot \frac{1}{N(P)^{n}}
$$

By combining the above results, we obtain

$$
\begin{aligned}
\log N & +\gamma+\log C_{X}-H_{X}+O\left(\frac{1}{N}\right) \\
& =\log (\log x)+\gamma+\log \left(\operatorname{Res}_{s=1} Z_{X}\left(R^{s}\right)\right)-\sum_{[P]} \sum_{n \geq 2} \frac{1}{n} \cdot \frac{1}{N(P)^{n}}+O\left(\frac{1}{\log x}\right) .
\end{aligned}
$$

Hence, we obtain

$$
\begin{aligned}
\sum_{N(P) \leq x} \frac{1}{N(P)}=\log (\log x) & +\gamma+\log \left(\underset{s=1}{\left.\operatorname{Res} Z_{X}\left(R^{s}\right)\right)}\right. \\
& -\sum_{[P]} \sum_{n \geq 2} \frac{1}{n} \cdot \frac{1}{N(P)^{n}}+O\left(\frac{1}{\log x}\right)
\end{aligned}
$$

(2) The error term $O(1 / N)$ in our second theorem can not be replaced by o $(1 / N)$ since in general, the coefficient $\Delta / 2-a(N)$ of $1 / N$ is not equal to zero.

References

[1] H. Bass, The Ihara-Selberg zeta function of a tree lattice, Internat. J. Math. 3 (1992), no. 6, 717-797.
[2] T. Hasegawa and S. Saito, On a prime zeta-function of a graph, to appear, Pacific J. Math.
[3] K. Hashimoto, Zeta functions of finite graphs and representations of p-adic groups, Automorphic forms and geometry of arithmetic varieties, 211-280, Adv. Stud. Pure Math., 15, Academic Press, Boston, MA, 1989.
[4] Y. Ihara, On discrete subgroups of the two by two projective linear group over p-adic fields, J. Math. Soc. Japan 18 (1966), 219-235.
[5] M. Kotani and T. Sunada, Zeta functions of finite graphs, J. Math. Sci. Univ. Tokyo 7 (2000), no. 1, 7-25.
[6] D. E. Knuth, Euler's constant to 1271 places, Math. Comp. 16 (1962), 275-281.
[7] F. Mertens, Ein Beitrag zur analytischen Zahlentheorie, J. Reine Angew. Math. 78 (1874), 46-62.
[8] W. Parry and M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Asterisque No. 187-188 (1990), 268 pp.
[9] M. Pollicott, Agmon's complex Tauberian theorem and closed orbits for hyperbolic and geometric flows, Proc. Amer. Math. Soc. 114 (1992), no. 4, 1105-1108.
[10] R. Sharp, An analogue of Mertens' theorem for closed orbits of Axiom A flows, Bol. Soc. Brasil. Mat. (N.S.) 21 (1991), no. 2, 205-229.
[11] A. A. Terras, Zeta functions of graphs: A stroll through the garden, Cambridge Studies in Advanced Mathematics, 128. Cambridge University Press, Cambridge, 2011.

