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Abstract

In this paper, we study graph-theoretic analogies of the Mertens’ theorems by using

basic properties of the Ihara zeta-function. One of our results is a refinement of a special

case of the dynamical system Mertens’ second theorem due to Sharp and Pollicott.
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1 Introduction

Throughout this paper, we use the notation in the textbook [11] of Terras for graph theory
and the (Ihara) zeta-function, and we often refer to basic facts included in this textbook.

In 1874, Mertens proved the so-called Mertens’ first/second/third theorems (the equal-
ities (5)(13)(14) in [7], respectively). In 1991, Sharp studied the dynamical-systemic ana-
logues of Mertens’ second/third theorems (Theorem 1 in [10]), and in 1992, Pollicott im-
proved the error terms in the theorems of Sharp as follows (Theorem and Remark in [9]):

• Dynamical system Mertens’ second theorem: For a hyperbolic (and so geodesic) flow
(which is not necessarily topologically weak-mixing) restricted to a basic set with
closed orbits τ of least period λ(τ) and topological entropy h > 0, as x → ∞,

∑

N(τ)≤x

1

N(τ)
= log (log x) + γ + log

(

Res
s=1

ζ(s)
)

−
∑

τ

∑

n≥2

1

n
·

1

N(τ)n
+O

(

1

log x

)

,

where N(τ) = ehλ(τ), γ is the Euler-Mascheroni constant,

ζ(s) =
∏

τ

(

1−
1

N(τ)s

)−1

,

and Res
s=1

ζ(s) denotes the residue of ζ at s = 1.

• Dynamical system Mertens’ third theorem: For the same flow, as x → ∞,

∏

N(τ)≤x

(

1−
1

N(τ)

)

=
e−γ

Res
s=1

ζ(s)
·

1

log x

(

1 +O

(

1

log x

))

.
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(For the notation of dynamical systems, see the textbook [8] of Parry-Pollicott.) Note that
Sharp and Pollicott did not explicitly write the dynamical system Mertens’ first theorem.

From the second theorem of Pollicott, the constant term (so-called Mertens constant) can
be explicitly known, but the coefficients of 1/ logk x can not be computed. Our purpose in
this paper is to present graph-theoretic analogies of the Mertens’ theorems whose coefficients
can be explicitly known. So, our second theorem is a refinement of a special case of the
theorem due to Pollicott in the sense that the coefficients of 1/ logk x can be computed.

In the rest of this section, we introduce the notation of graph theory, next recall the
notation and properties of the (Ihara) zeta-function, and last state the main theorem.

First, we recall the notation of graphs. Let X be an undirected graph with vertex set V
of ν := |V | and edge set E of ǫ := |E|. Simply, such a graph X is denoted by X := (V,E).

A directed edge (or an arc) a from a vertex u to a vertex v is denoted by a = (u, v), and
the inverse of a is denoted by a−1 = (v, u). The origin (resp. terminus) of a is denoted by
o(a) := u (resp. t(a) := v).

We can direct the edges of X , and label the edges as follows:

~E :=
{

e1, e2, . . . , eǫ, eǫ+1 = e−1
1 , eǫ+2 = e−1

2 . . . , e2ǫ = e−1
ǫ

}

.

A path C = a1 · · · as, where the ai are directed edges, is said to have a backtrack (resp.
tail) if aj+1 = a−1

j for some j (resp. as = a−1
1 ), and a path C is called a cycle (or closed

path) if o(a1) = t(as). The length ℓ(C) of a path C = a1 · · ·as is defined by ℓ(C) := s.
A cycle C is called prime (or primitive) if it satisfies the following:

• C does not have backtracks and a tail;

• no cycle D exists such that C = Df for some f > 1.

The equivalence class [C] of a cycle C = a1 · · ·as is defined as the set of cycles

[C] :=
{

a1a2 · · · as−1as, a2 · · · as−1asa1, . . . , asa1a2 · · ·as−1

}

,

and an equivalence class [P ] of a prime cycle P is called prime.
Let ∆X and πX(n) denote

∆ = ∆X := gcd{ℓ(P ) : [P ] is a prime equivalence class in X},

π(n) = πX(n) := |{[P ] : [P ] is a prime equivalence class in X with ℓ(P ) = n}|.

Throughout this paper, we always assume that X is a finite, connected, noncycle and
undirected graph without degree-one vertices, and we denote by a symbol [P ] a prime
equivalence class.

Next, we recall the zeta-function of X = (V,E). The (Ihara) zeta-function of X is
defined as follows (the equality (9) in [4], and also see Definition 2.2 in [11]):

ZX(u) : =
∏

[P ]

(1− uℓ(P ))−1

with |u| sufficiently small, where [P ] runs through all prime equivalence classes in X . The
radius of convergence of ZX(u) is denoted by RX . Note that 0 < RX < 1 since X is a
noncycle graph (see, for example, page 197 in [11]).

Let W = WX := (wij) denote the edge adjacency matrix of a graph X , that is, a 2ǫ× 2ǫ
matrix defined by

wij :=

{

1 if t(ei) = o(ej) and ej 6= e−1
i for ei, ej ∈ ~E,

0 otherwise
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(see page 28 in [11]).

In this paper, our main theorem is:

Main Theorem. Suppose that X = (V,E) is a finite, connected, noncycle and undirected
graph without degree-one vertices. Set

a = a(N) :=

{

N

∆X

}

∆X

(

= N −

[

N

∆X

]

∆X

)

,

where [x] (resp. {x}) denotes the integer (resp. fractional) part of the real number x, and
thus 0 ≤ a(N) < ∆X . Then, the following items (1)(2)(3) hold:

(1) (Graph theory Mertens’ first Theorem) As N → ∞,

∑

n≤N

n · πX(n)Rn
X = N − a(N) +AX +KX +O

(

(ρXRX)N
)

(

=

[

N

∆X

]

∆X +AX +KX +O
(

(ρXRX)N
)

)

,

where the constants AX , KX and ρX are defined by

AX :=
∑

λ∈Spec(W ),
|λ|<1/RX

λRX

1− λRX
, KX :=

∞
∑

n=1



n · πX(n)−
∑

λ∈Spec(W )

λn



Rn
X ,

and
ρX := max{|λ| : λ ∈ Spec(W ), |λ| < 1/RX},

respectively. (The convergence of KX is shown in Section 2.)

(2) (Graph theory Mertens’ second Theorem) As N → ∞,

∑

n≤N

πX(n)Rn
X = logN + γ + logCX −HX

−

k
∑

s=1

(

as

s
+

s−1
∑

m=0

(

s− 1

m

)

amBs−m∆s−m
X

s−m

)

1

Ns
+O

(

1

Nk+1

)

for each k ≥ 1, where γ is the Euler-Mascheroni constant, Bs are the s-th Bernoulli
numbers defined by

t

et − 1
=

∞
∑

s=0

Bs
ts

s!
,

and the constants CX and HX are defined by

CX := −
1

RX
Res

u=RX

ZX(u), HX := −
∑

n≥1

1

n



n · πX(n)−
∑

λ∈Spec(W )

λn



Rn
X ,

respectively. (The convergence of HX is shown in Section 2.)

In particular (k = 0), as N → ∞,

∑

n≤N

πX(n)Rn
X = logN + γ + logCX −HX +O

(

1

N

)

.
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(3) (Graph theory Mertens’ third Theorem, [2]) As N → ∞,

∏

n≤N

(1−Rn
X)πX (n) =

e−γ

CX
·
1

N

(

1 +O

(

1

N

))

.

Note that our first theorem (1) is a refinement of a result in our previous paper [2] in
the sense that the constant term AX +KX is explicitly written, and note that our second
theorem (2) is a refinement of a special case of the result due to Pollicott (Theorem (i) and
Remark in [9]) in the sense that all the coefficients of 1/Nk can be explicitly computed. Our
proofs in this paper are elementary (without the theory of the Ihara prime zeta-function
which is studied in [2]), and moreover they are completely different from previous proofs.

Our theorems (1)(2) can be simplified under the assumption which all the degrees of
vertices are greater than 2: If X is bipartite, then ∆X = 2, and so a(2N) = 0 or a(2N+1) =
1. Otherwise, ∆X = 1, and therefore a(N) = 0. (See, for details, Proposition 3.2 in [5].)

The contents of this paper are as follows. In the next section, we first prove a keylemma,
which plays an important role in the proof of the main theorem, and next introduce the
constants in the main theorem. In Section 3, we give the proof of the main theorem.

2 KeyLemma

In this section, in order to show the theorem, we introduce a keylemma and two constants.

The following facts are often used in this paper.

Fact. Suppose that X = (V,E) satisfies the same conditions as the main theorem.

(1) (Theorem 1.4 in [5], and also see Theorem 8.1 (3) in [11]) The poles of ZX(u) on
the circle |u| = RX have the form RXe2πia/∆X , where a = 1, 2, . . . ,∆X .

(2) (Orthogonality relation, for example, see Exercise 10.1 in [11])

∆X
∑

a=1

e2πian/∆X =

{

∆X if ∆X | n;

0 otherwise.

(3) (Two-term determinant formula, [3] and [1], and also see (4.4) in [11]) The zeta-
function ZX(u) can be written as

ZX(u) = 1/ det(I2ǫ −Wu) =
∏

λ∈Spec(W )

(1− λu)−1.

The following keylemma plays an important role in the proof of the main theorem.

KeyLemma. Suppose that X = (V,E) satisfies the same conditions as the main theorem.

(a) As N → ∞,

N
∑

n=1

∑

λ∈Spec(W )

(λRX)n =

[

N

∆X

]

∆X +AX +O
(

(ρXRX)N
)

,

where [x] denotes the integer part of the real number x.
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(b) As N → ∞,

N
∑

n=1

1

n

∑

λ∈Spec(W )

(λRX)n =

[N/∆X ]
∑

n=1

1

n
+ logCX + log∆X +O

(

(ρXRX)N
)

.

(c) ([2]) Let 0 < α < 1/2 be a real number, and fix it. Then, there exists a natural
number N0 = N0(α) such that for any n ≥ N0,

∣

∣

∣

∣

∣

∣

n · πX(n)−
∑

λ∈Spec(W )

λn

∣

∣

∣

∣

∣

∣

< 2ǫ

(

1

RX

)(1−α)n

.

(d) (cf. Section 2 in [6]) Set

a = a(N) := N −

[

N

∆X

]

∆X ,

and thus 0 ≤ a(N) < 1. Then,

[N/∆X ]
∑

n=1

1

n
= logN − log∆X + γ

−

k
∑

s=1

(

as

s
+

s−1
∑

m=0

(

s− 1

m

)

amBs−m∆s−m
X

s−m

)

1

Ns
+O

(

1

Nk+1

)

for each k ≥ 1.

Proof. In this proof, we abbreviate the suffix X , that is, R = RX , ∆ = ∆X , etc.
Let {an} be a sequence of real numbers with 0 < an ≤ 1 for any n. Then, it follows from

Facts (1)(2)(3) that we obtain the equality

N
∑

n=1

an
∑

λ∈Spec(W ),
|λ|=1/R

(λR)n =
N
∑

n=1

an

∆
∑

a=1

e−2πian/∆ = ∆

[N/∆]
∑

n=1

an∆. (1)

Moreover, it follows by the triangle inequality that we obtain the inequality

∣

∣

∣

∣

∣

∣

∣

∑

n>N

an
∑

λ∈Spec(W ),
|λ|<1/R

(λR)n

∣

∣

∣

∣

∣

∣

∣

≤
∑

n>N

an
∑

λ∈Spec(W ),
|λ|<1/R

(|λ|R)n

< 2ǫ
∑

n>N

(ρR)n =
2ǫρR

1− ρR
(ρR)N . (2)

In the proofs of the items (a)(b), we use the equality (1) and the inequality (2).

(a) Note that

∣

∣

∣

∣

∣

∣

N
∑

n=1

∑

|λ|=1/R

(λR)n −

[

N

∆

]

∆

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

[N/∆]
∑

n=1

∆−

[

N

∆

]

∆

∣

∣

∣

∣

∣

∣

= 0

5



by the equality (1). On the other hand, note that

∣

∣

∣

∣

∣

∣

N
∑

n=1

∑

|λ|<1/R

(λR)n −A

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

n>N

∑

|λ|<1/R

(λR)n

∣

∣

∣

∣

∣

∣

<
2ǫρR

1− ρR
(ρR)N

from the inequality (2). By combining these, the item (a) follows from the triangle inequality.

(b) Set the sums

S1(N) :=

N
∑

n=1

1

n

∑

|λ|=1/R

(λR)n and S2(N) :=

N
∑

n=1

1

n

∑

|λ|<1/R

(λR)n.

First, we consider the sum S1(N). It follows from the equality (1) that

S1(N) =
N
∑

n=1

1

n

∑

|λ|=1/R

(λR)n =

[N/∆]
∑

n=1

1

n
.

Next, we compute the sum S2(N). We now consider the constant defined by

F := log
∏

|λ|<1/R

1

1− λR



= −
∑

|λ|<1/R

log(1 − λR) =
∑

|λ|<1/R

∑

n≥1

1

n
(λR)n



 ,

and then we obtain F = logCX + log∆. This is proved as follows: Note that

CX = lim
u↑R

(R− u)ZX(u)

R
= lim

u↑R

(

1−
u

R

)

∏

λ∈Spec(W )

1

1− λu

= lim
u↑R

∏

λ∈Spec(W ),
λ 6=1/R

1

1− λu
=

∏

λ∈Spec(W ),
λ 6=1/R

1

1− λR

by the definition of CX and Facts (1)(3). It is well known that

∆−1
∑

n=0

Xn =
X∆ − 1

X − 1
=

∆−1
∏

a=1

(

X − e−2πia/∆
)

, and so ∆ =

∆−1
∏

a=1

(

1− e−2πia/∆
)

.

Combining these equalities, we obtain

∏

|λ|<1/R

1

1− λR
=

∏

λ∈Spec(W ),
λ 6=1/R

1

1− λR
·
∏

|λ|=1/R,
λ 6=1/R

(1− λR)

=
∏

λ∈Spec(W ),
λ 6=1/R

1

1− λR
·

∆−1
∏

a=1

(

1− e−2πia/∆
)

= CX ·∆,

and thus F = logCX + log∆.

It follows from the inequality (2) that we obtain the inequality

|S2(N)− F | =

∣

∣

∣

∣

∣

∣

∑

|λ|<1/R

∑

n>N

1

n
(λR)n

∣

∣

∣

∣

∣

∣

<
2ǫ(ρR)N+1

1− ρR
,

6



that is,
S2(N) = F +O

(

(ρR)N
)

= logCX + log∆+O
(

(ρR)N
)

.

Hence, by combining the above results, we obtain

N
∑

n=1

1

n

∑

λ∈Spec(W )

(λR)n = S1(N) + S2(N)

=

[N/∆]
∑

n=1

1

n
+ logCX + log∆ +O

(

(ρR)N
)

.

(c) Let µ(n) denote the Möbius function. Note that
∑

d|n |µ(d)| ≤ n. It is known that

π(n) =
1

n

∑

d|n

µ(d)Nn/d, and Nn =
∑

λ∈Spec(W )

λn

(see (10.3) and (10.4) in [11], respectively). Combining these equalities, we obtain

n · π(n) =
∑

λ∈Spec(W )

∑

d|n

µ(d)λn/d,

and therefore
∣

∣

∣

∣

∣

∣

n · π(n)−
∑

λ∈Spec(W )

λn

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∑

λ∈Spec(W )

∑

d|n,
d≥2

µ(d)λn/d

∣

∣

∣

∣

∣

∣

∣

≤
∑

λ∈Spec(W )

∑

d|n,
d≥2

|µ(d)| · |λ|n/d ≤
∑

λ∈Spec(W )

∑

d|n,
d≥2

|µ(d)| · |λ|n/2

< n
∑

λ∈Spec(W )

(

1

R

)n/2

≤ 2ǫn

(

1

R

)n/2

.

On the other hand, since 0 < R < 1 and 0 < α < 1/2 by our assumptions, there exists
a natural number N0 = N0(α) such that for any n ≥ N0,

n ≤

(

1

R

)(1/2−α)n

, and so n

(

1

R

)n/2

≤

(

1

R

)(1−α)n

.

Hence, for any n ≥ N0,
∣

∣

∣

∣

∣

∣

n · π(n)−
∑

λ∈Spec(W )

λn

∣

∣

∣

∣

∣

∣

≤ 2ǫ

(

1

R

)(1−α)n

,

and the assertion of the item (c) follows.

(d) It is known from the equality (9) in [6] that
∣

∣

∣

∣

∣

∫ ∞

[N/∆]

P2k+1(x)

x2k+2
dx

∣

∣

∣

∣

∣

= O

(

1

N2k+1

) (

= O

(

1

Nk+1

))

, (3)

where P2k+1(x) is a periodic Bernoulli polynomial. Note that [N/∆] = (N − a)/∆. Recall
that the (2s− 1)-th Bernoulli numbers B2s−1 (s ≥ 1) are given by

B1 = −1/2 and B2s−1 = 0 (s ≥ 2).

7



Then, it follows from the equality (7) in [6] and the above equality (3) that

[N/∆]
∑

n=1

1

n
− γ = log

[

N

∆

]

+
1

2[N/∆]
−

k
∑

s=1

B2s

2s[N/∆]2s
+O

(

1

Nk+1

)

= log

[

N

∆

]

−
2k
∑

s=1

Bs

s[N/∆]s
+ O

(

1

Nk+1

)

,

and therefore

[N/∆]
∑

n=1

1

n
− γ = log

[

N

∆

]

−

2k
∑

s=1

Bs

s[N/∆]s
+O

(

1

Nk+1

)

= log

[

N

∆

]

−

k
∑

s=1

Bs

s[N/∆]s
+O

(

1

Nk+1

)

= logN + log
(

1−
a

N

)

− log∆

−
k
∑

s=1

Bs∆
s

sNs

1

(1 − a/N)s
+O

(

1

Nk+1

)

= logN − log∆−
k
∑

s=1

as

sNs

−
k
∑

s=1

Bs∆
s

sNs

∑

m≥0

(

s− 1 +m

m

)

( a

N

)m

+O

(

1

Nk+1

)

. (4)

On the other hand, since the inequality
(

s− 1 +m

m

)

=
s− 1 +m

m
·
s− 2 +m

m− 1
· · ·

s+ 1

2
·
s

1
≤ sm

holds, we obtain the inequalities

k
∑

s=1

Bs∆
s

sNs

∑

m>k−s

(

s− 1 +m

m

)

( a

N

)m

≤

k
∑

s=1

Bs∆
s

sNs

∑

m>k−s

(sa

N

)m

=
k
∑

s=1

Bs∆
s

sNs

(sa

N

)k−s+1 1

1− sa/N

≤
1

Nk+1
·

N

N − ka

k
∑

s=1

Bs∆
s

s
(sa)k−s+1,

that is,

k
∑

s=1

Bs∆
s

sNs

∑

m>k−s

(

s− 1 +m

m

)

( a

N

)m

= O

(

1

Nk+1

)

. (5)

Hence, combining the equalities (4)(5), we obtain

[N/∆]
∑

n=1

1

n
= logN − log∆ + γ

−
k
∑

s=1

(

as +Bs∆
s

k−s
∑

m=0

(

s+m− 1

m

)

( a

N

)m
)

1

sNs
+O

(

1

Nk+1

)

,

and the assertion of the item (d) follows after an elementary computation.
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By using KeyLemma (c), we can prove the convergences of constants.

Lemma 1. Suppose that X = (V,E) satisfies the same conditions as the main theorem.

(1) The series

KX =
∑

n≥1



n · πX(n)−
∑

λ∈Spec(W )

λn



Rn
X

is convergent.

(2) The series

HX = −
∑

n≥1

1

n



n · πX(n)−
∑

λ∈Spec(W )

λn



Rn
X

is convergent. Moreover,

HX =
∑

[P ]

∑

m≥2

1

m
R

mℓ(P )
X

holds.

Proof. Let {an} be a sequence of real numbers with 0 < an ≤ 1 for any n. Note that

∣

∣

∣

∣

∣

∣

∑

n≥N0

an



n · π(n)−
∑

λ∈Spec(W )

λn



Rn

∣

∣

∣

∣

∣

∣

≤
∑

n≥N0

∣

∣

∣

∣

∣

∣

n · π(n)−
∑

λ∈Spec(W )

λn

∣

∣

∣

∣

∣

∣

Rn

< 2ǫ
∑

n≥N0

(

1

R

)(1−α)n

Rn

≤ 2ǫ
∑

n≥1

Rαn =
2ǫRα

1−Rα

by KeyLemma (c). Hence, the convergences of the items (1)(2) hold from this inequality.

Next, we show the equality of the item (2). Assume that |u| < R. It follows from Fact
(3) and the definition of ZX(u) that

∑

n≥1

∑

λ∈Spec(W )

λn

n
un =

∑

λ∈Spec(W )

log(1− λu)−1

= logZX(u) =
∑

[P ]

log(1− uℓ(P ))−1

=
∑

[P ]

∑

m≥1

1

m
umℓ(P ) =

∑

[P ]

uℓ(P ) +
∑

[P ]

∑

m≥2

1

m
umℓ(P )

=
∑

n≥1

π(n)un +
∑

[P ]

∑

m≥2

1

m
umℓ(P ),

and therefore

−
∑

n≥1

1

n



n · πX(n)−
∑

λ∈Spec(W )

λn



un =
∑

[P ]

∑

m≥2

1

m
umℓ(P ). (6)
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On the other hand, by the graph theory prime-number theorem (see Theorem 10.1 in
[11]), the radius of convergence of the function

P (u) =
∑

[P ]

uℓ(P ) =
∑

n≥1

π(n)un

is equal to R. Note that R2 < R since 0 < R < 1. Then,

∑

[P ]

∑

m≥2

1

m
Rmℓ(P ) ≤

∑

[P ]

∑

m≥2

Rmℓ(P ) =
∑

[P ]

R2ℓ(P )

1−Rℓ(P )

≤
1

1−R

∑

[P ]

R2ℓ(P ) ≤
1

1−R
P (R2) < +∞.

Hence, since both sides of the equality (6) are also convergent for u = R, the assertion
follows by the uniqueness of analytic continuation (namely, the principle of uniqueness).

3 Proof of the main theorem

In this section, we show the main theorem.

Proof. (The main theorem) (1) Assume that N is sufficiently large. Then, it follows
from KeyLemma (c) that we obtain

∣

∣

∣

∣

∣

∣

N
∑

n=1

n · π(n)Rn −
N
∑

n=1

∑

λ∈Spec(W )

(λR)n −K

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

n>N



n · π(n)−
∑

λ∈Spec(W )

λn



Rn

∣

∣

∣

∣

∣

∣

≤
∑

n>N

∣

∣

∣

∣

∣

∣

n · π(n) −
∑

λ∈Spec(W )

λn

∣

∣

∣

∣

∣

∣

Rn

< 2ǫ
∑

n>N

(

1

R

)(1−α)n

Rn

= 2ǫ
∑

n>N

Rαn =
2ǫRα(N+1)

1−Rα
,

and therefore by KeyLemma (a), we obtain

N
∑

n=1

n · π(n)Rn =

N
∑

n=1

∑

λ∈Spec(W )

(λR)n +K +O
(

(ρR)N
)

=

[

N

∆

]

∆+A+K +O
(

(ρR)N
)

as N → ∞. Hence, the assertion of the item (1) follows.
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(2) Suppose that N is sufficiently large. Then, it follows from KeyLemma (c) that

∣

∣

∣

∣

∣

∣

N
∑

n=1

π(n)Rn −
N
∑

n=1

1

n

∑

λ∈Spec(W )

(λR)n +H

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

n>N



π(n)−
1

n

∑

λ∈Spec(W )

λn



Rn

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

n>N

1

n



n · π(n) −
∑

λ∈Spec(W )

λn



Rn

∣

∣

∣

∣

∣

∣

≤
∑

n>N

∣

∣

∣

∣

∣

∣

n · π(n)−
∑

λ∈Spec(W )

λn

∣

∣

∣

∣

∣

∣

Rn

< 2ǫ
∑

n>N

(

1

R

)(1−α)n

Rn

= 2ǫ
∑

n>N

Rαn =
2ǫRα(N+1)

1−Rα
,

and therefore we obtain

N
∑

n=1

π(n)Rn =

N
∑

n=1

1

n

∑

λ∈Spec(W )

(λR)n −H +O
(

RαN
)

as N → ∞. Hence, it follows from KeyLemmas (b)(d) that the assertion holds.

(3) Assume that N is sufficiently large, and define the following functions:

H≤N =
∑

n≤N

π(n)
∑

m≥2

1

m
Rmn, and H>N =

∑

n>N

π(n)
∑

m≥2

1

m
Rmn.

Note that H = H≤N + H>N by Lemma 1 (2). It follows from the graph theory prime-
number theorem (see Theorem 10.1 in [11]) that there exists a constant c1 > 0 such that
for any n > N ,

π(n) <
c1
Rn

.

Recall that 0 < R < 1 since X is a noncycle graph. Then, we obtain

H>N =
∑

n>N

π(n)
∑

m≥2

1

m
Rmn

X < c1
∑

n>N

∑

m≥2

R(m−1)n

= c1
∑

n>N

Rn

1−Rn
<

c1
1− R

∑

n>N

Rn =
c1R

(1−R)2
RN ,

and therefore H>N = O(RN ).
From the item (2) and the above result, we obtain

∑

n≤N

π(n)Rn +H≤N = logN + γ + logCX −H>N +O

(

1

N

)

= logN + γ + logCX +O

(

1

N

)

.
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Since the left-hand side of the above equality is equal to

∑

n≤N

π(n)Rn +H≤N =
∑

n≤N

π(n)
∞
∑

m=1

1

m
Rmn

= −
∑

n≤N

π(n) log (1−Rn) = − log





∏

n≤N

(1−Rn)
π(n)



 ,

we obtain

∏

n≤N

(1−Rn)
π(n)

=
e−γ

CX
·
1

N
exp

(

O

(

1

N

))

=
e−γ

CX
·
1

N

(

1 +O

(

1

N

))

,

and the assertion of the item (3) follows.

Remark. (1) When k = 0, our second theorem just corresponds to a special case of the
second theorem due to Pollicott (see Section 1 in this paper). This is proved as follows:

In our case, the topological entropy is equal to the constant h = − logR > 0. We now
define u = Rs, N(P ) = ehℓ(P ) = R−ℓ(P ) and x = ehN . Then, the left-hand side is equal to

∑

n≤N

π(n)Rn =
∑

ℓ(P )≤N

Rℓ(P ) =
∑

N(P )≤x

1

N(P )
.

On the other hand, the right-hand side can be transformed as follows. Note that

CX = −
1

R
· lim
u↑R

(u −R)ZX(u)

= −
1

R
· lim
s↓1

Rs −R

s− 1
· lim
s↓1

(s− 1)ZX(Rs) = h · Res
s=1

ZX(Rs).

It follows from Lemma 1 (2) that

HX =
∑

[P ]

∑

n≥2

1

n
Rnℓ(P ) =

∑

[P ]

∑

n≥2

1

n
·

1

N(P )n
.

By combining the above results, we obtain

logN + γ + logCX −HX +O

(

1

N

)

= log (log x) + γ + log
(

Res
s=1

ZX(Rs)
)

−
∑

[P ]

∑

n≥2

1

n
·

1

N(P )n
+O

(

1

log x

)

.

Hence, we obtain

∑

N(P )≤x

1

N(P )
= log (log x) + γ + log

(

Res
s=1

ZX(Rs)
)

−
∑

[P ]

∑

n≥2

1

n
·

1

N(P )n
+O

(

1

log x

)

.

(2) The error term O(1/N) in our second theorem can not be replaced by o(1/N) since
in general, the coefficient ∆/2− a(N) of 1/N is not equal to zero.
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