DTU Library

Liftings in Finite Graphs and Linkages in Infinite Graphs with Prescribed EdgeConnectivity

Ok, Seongmin; Richter, R. Bruce; Thomassen, Carsten

Published in:
Graphs and Combinatorics

Link to article, DOI:
10.1007/s00373-016-1724-9

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Ok, S., Richter, R. B., \& Thomassen, C. (2016). Liftings in Finite Graphs and Linkages in Infinite Graphs with Prescribed Edge-Connectivity. Graphs and Combinatorics, 32(6), 2575-2589. https://doi.org/10.1007/s00373-016-1724-9

[^0]
Liftings in finite graphs and linkages in infinite graphs with prescribed edge-connectivity*

Seongmin Ok^{\dagger}, R. Bruce Richter ${ }^{+\ddagger}$, and Carsten Thomassen ${ }^{\dagger \circ}$

LATEX-ed: June 20, 2016

Abstract

Let G be a graph and let s be a vertex of G. We consider the structure of the set of all lifts of two edges incident with s that preserve edge-connectivity. Mader proved that two mild hypotheses imply there is at least one pair that lifts, while Frank showed (with the same hypotheses) that there are at least ($\operatorname{deg}(s)-1) / 2$ disjoint pairs that lift. We consider the lifting graph: its vertices are the edges incident with s, two being adjacent if they form a liftable pair. We have three main results, the first two with the same hypotheses as for Mader's Theorem. (i) Let F be a subset of the edges incident with s. We show that F is independent in the lifting graph of G if and only if there is a single edge-cut C in G of size at most $r+1$ containing all the edges in F, where r is the maximum number of edge-disjoint paths from a vertex (not s) in one component of $G-C$ to a vertex (not s) in another component of $G-C$. (ii) In the k-lifting graph, two edges incident with s are adjacent if their lifting leaves the resulting graph with the property that any two vertices different from s are joined by k pairwise edge-disjoint paths. If both $\operatorname{deg}(s)$ and k are even, then the k-lifting graph is a connected complete multipartite graph. In all other cases, there are at most two components. If there are exactly two components, then each component is a complete multipartite graph. If $\operatorname{deg}(s)$ is odd and there are two components, then one component is a single vertex. (iii) Huck proved that if k is odd and G is $(k+1)$-edge-connected, then G is weakly k-linked (that is, for any k pairs $\left\{x_{i}, y_{i}\right\}$, there are k edge-disjoint paths P_{i}, with P_{i} joining x_{i} and y_{i}). We use our results to extend a slight weakening of Huck's theorem to some infinite graphs: if k is odd, every $(k+2)$-edge-connected, locally finite, 1 -ended, infinite graph is weakly k-linked. Keywords: edge-connectivity, lifting AMS Classification (2000): 05C40 seok@dtu.dk, brichter@uwaterloo.ca, and ctho@dtu.dk

[^1]
1 Introduction

For distinct vertices x and y in a graph $G, \lambda_{G}(x, y)$ denotes the maximum number of pairwise edge-disjoint $x y$-paths in G. We shall assume that x and y have a target connectivity $\tau_{G}(x, y) \leq \lambda_{G}(x, y)$. In the cases of immediate interest, either $\tau_{G} \equiv \lambda_{G}$ or τ_{G} is constant, but the target unifies and generalizes both these particular cases.

Let s be a vertex of G and let $s v$ and $s w$ be two edges incident with s. The lift of G at $s v$ and $s w$ is the graph $G_{v, w}$ obtained from $G-\{s v, s w\}$ by adding the edge $v w$.

The lift of G at $s v$ and $s w$ is τ_{G}-feasible if, for every pair x, y of distinct vertices in $G-s, \lambda_{G_{v, w}}(x, y) \geq \tau_{G}(x, y)$. We will just say feasible, since τ_{G} will always be understood.

Let s be a vertex in a graph G that does not have degree 3 and is not incident with an isthmus. (An isthmus is an edge whose deletion from G increases the number of components.) Mader [5] proved (for target λ_{G} and therefore for any target) that there is always a feasible lift in G using two edges incident with s. Frank [3] extended this to show that there are $\lfloor\operatorname{deg}(s) / 2\rfloor$ pairwise disjoint such feasible pairs.

For any subset A of $V(G)$, we set $\delta_{G}(A)$ to be the set of edges of G having one end in A and one end not in A. By Menger's Theorem, the obstruction to $s v$ and $s w$ yielding a feasible lift is that there is a pair a, b of vertices and a set A of vertices so that $a \in A, b, s \notin A$, and $\left|\delta_{G_{v, w}}(A)\right|<\tau_{G}(a, b)$. Since obviously $\left|\delta_{G}(A)\right| \geq \tau_{G}(a, b)$ and $\left|\delta_{G_{v, w}}(A)\right| \geq\left|\delta_{G}(A)\right|-2$, we see that $\left|\delta_{G}(A)\right| \leq\left|\tau_{G}(a, b)\right|+1$. Thus motivates the following important notion.

Let A be a subset of $V(G) \backslash\{s\}$. Then $r(A)$ is defined to be $\max \left\{\tau_{G}(a, b) \mid a \in A, b \notin\right.$ $A \cup\{s\}\}$. Also, A is a dangerous set if $\left|\delta_{G}(A)\right| \leq r(A)+1$. The preceding paragraph readily implies the observation that $s v$ and $s w$ do not have a feasible lift if and only if there is a dangerous set A such that $v, w \in A$.

Henceforth, all considerations are in G, so we write $\delta(A)$ instead of $\delta_{G}(A)$.
The first of our three main results is the following. The "if" part of the statement is trivial; the "only if" is proved in the next section.

Theorem 1.1 Let G be a graph and let s be a vertex of G that does not have degree 3 and is not incident with an isthmus. Let F be any set of at least two edges, all incident with s. Then no pair of edges in F yields a feasible lift if and only if there is a dangerous set A so that, for every $s v \in F, v \in A$.

Let G be a graph, let s be a vertex of G, and let τ be the edge-connectivity target function. The lifting graph $L(G, s, \tau)$ has as its vertices the edges of G incident with s and two edges are adjacent in $L(G, s, \tau)$ if they form a τ-feasible pair. If there is a positive
integer k so that $\tau \equiv k$, then we write $L(G, s, k)$ for $L(G, s, \tau) ; L(G, s, k)$ is the k-lifting graph.

Thomassen [8] proved that the k-lifting graph of an Eulerian graph has a disconnected complement. This was used to prove a decomposition theorem for infinite graphs that implies, among other things, a conjecture from 1989: every $8 k$-edge-connected infinite graph has a k-arc-connected orientation.

Part (1.2.4) of our second main result generalizes Thomassen's Eulerian result to the k-lifting graph when $\operatorname{deg}(s)$ and k are both even.

Theorem 1.2 Let G be a graph with a vertex s and let k be a positive integer such that any distinct vertices different from s are joined by k pairwise edge-disjoint paths. If s is not incident with an isthmus and $\operatorname{deg}(s) \geq 4$, then:
(1.2.1) the k-lifting graph $L(G, s, k)$ has at most two components;
(1.2.2) if $\operatorname{deg}(s)$ is odd and $L(G, s, k)$ has two components, then one has only one vertex and the other component is complete multipartite;
(1.2.3) if $\operatorname{deg}(s)$ is even and $L(G, s, k)$ has two components, then each component is complete multipartite with an even number of vertices; and
(1.2.4) if $\operatorname{deg}(s)$ and k are both even, then $L(G, s, k)$ is a connected, complete multipartite graph (in particular, it has a disconnected complement).

If either $L(G, s, k)$ is not connected or both $\operatorname{deg}(s)$ and k are even, then any component of $L(G, s, k)$ with at least 4 vertices is not a star $K_{1, r}$.

A graph G is weakly k-linked if, for any sequences $x_{1}, x_{2}, \ldots, x_{k}$ and $y_{1}, y_{2}, \ldots, y_{k}$ of (not necessarily distinct) vertices of G, there are k edge-disjoint paths $P_{1}, P_{2}, \ldots, P_{k}$ such that P_{i} has ends x_{i} and y_{i}. By choosing all the x_{i} to be the same vertex and all the y_{i} to be the same vertex, we see that any weakly k-linked graph is k-edge-connected. Thomassen [7] conjectured that, when k is odd, the converse holds. Okamura [6] obtained the first significant result about this conjecture (roughly: if G is $\frac{4}{3} k$-edge-connected, then G is weakly k-linked). Then Huck [4] proved that, if k is odd and G is $(k+1)$-edge-connected, then G is weakly k-linked.

We use Huck's Theorem and Theorem 1.2 (1.2.4) to prove the following. Recall that an infinite graph G is locally finite if, for every vertex v of $G, \operatorname{deg}(v)$ is finite. Also, a graph G is 1 -ended if, for every finite set S of vertices, $G-S$ has at most one infinite component.

Theorem 1.3 Let k be an odd positive integer. If G is a $(k+2)$-edge-connected, 1-ended, locally finite graph, then G is weakly k-linked.

We remark that we can prove that the hypothesis of Theorem 1.3 implies that any ($k+2$)-edge-connected, infinite, locally finite graph with only finitely many ends is weakly k-linked. There are some technicalities that are not germane to the application of Huck's Theorem and Theorem 1.2. We believe the following much stronger statement is true and so choose not to include this intermediate result.

Conjecture 1.4 Let k be an odd positive integer. If G is a $(k+2)$-edge-connected (infinite) graph, then G is weakly k-linked.

2 Characterizing independent sets in the lifting graph

Our goal in this section is to prove Theorem 1.1. It is evident that, if there is a dangerous set A such that, for every $s v \in F, v \in A$, then no two edges in F give a feasible lift. It was the converse that attracted us.

Chan et al [2] give a very closely related argument, presented very efficiently. Our theorem is used significantly in the next section, so we include our slightly modified version of their proof.

For the proof, it will be helpful to set $\sigma(A)=|\delta(A)|-r(A)$ and $\delta(A, B)$ as the set of edges with one end in A and other end in B. We note that A is dangerous if and only if $\sigma(A) \leq 1$. The following observation is due to Frank.

Lemma 2.1 [3, Prop. 2.3] Let s be a vertex in a graph G and let A and B be subsets of $V(G) \backslash\{s\}$. Then either

$$
\begin{aligned}
& \text { (2.1.1) } \sigma(A \cup B)+\sigma(A \cap B)+2|\delta(A \backslash B, B \backslash A)| \leq \sigma(A)+\sigma(B) \text { or } \\
& \text { (2.1.2) } \sigma(A \backslash B)+\sigma(B \backslash A)+2|\delta(A \cap B, V(G) \backslash(A \cup B))| \leq \sigma(A)+\sigma(B) \text {. }
\end{aligned}
$$

The key lemma for our proof is the following variant of [2, Lemma 2.7]. The proof requires only very minor modifications from that in [2].

Lemma 2.2 Let G be a graph and s a vertex of G. Suppose sa, sb, and sc are three edges incident with s so that none of the lifts of $\{s a, s b\}$, $\{s a, s c\}$, and $\{s b, s c\}$ is τ-feasible. For $\{x, y, z\}=\{a, b, c\}$, let D_{x} be a dangerous set containing y and z. Then either s has degree 3 , or s is incident with an isthmus, or there is a dangerous subset of $D_{a} \cup D_{b} \cup D_{c}$ containing all three of a, b, and c and at least one of D_{a}, D_{b}, and D_{c}.

Proof. If any two of a, b, c are the same, then the result is trivial, so we assume a, b, and c are all distinct. We consider two cases.

Case 1: For at least one of the pairs (A, B) from $\left(D_{a}, D_{b}\right),\left(D_{a}, D_{c}\right)$, or $\left(D_{b}, D_{c}\right)$, (2.1.1) holds in Lemma 2.1.

We may choose the labelling of a, b, and c, so that

$$
\sigma\left(D_{a} \cup D_{b}\right)+\sigma\left(D_{a} \cap D_{b}\right)+2\left|\delta\left(D_{a} \backslash D_{b}, D_{b} \backslash D_{a}\right)\right| \leq \sigma\left(D_{a}\right)+\sigma\left(D_{b}\right)
$$

As each term on the right side is at most 1 , the left-hand side is at most 2. If $D_{a} \cup D_{b}$ is dangerous, then we are done, so we may assume $\sigma\left(D_{a} \cup D_{b}\right) \geq 2$. Therefore, the right-hand side is exactly $2, \sigma\left(D_{a} \cup D_{b}\right)=2, \sigma\left(D_{a} \cap D_{b}\right)=0$, and $\left|\delta\left(D_{a} \backslash D_{b}, D_{b} \backslash D_{a}\right)\right|=0$.

Suppose Lemma 2.1 (2.1.1) holds for $A=D_{a} \cap D_{b}$ and $B=D_{c}$; that is,

$$
\begin{aligned}
\sigma\left(\left(D_{a} \cap D_{b}\right) \cup D_{c}\right)+\sigma\left(\left(D_{a} \cap D_{b}\right) \cap D_{c}\right)+2 \mid & \delta\left(\left(D_{a} \cap D_{b}\right) \backslash D_{c}, D_{c} \backslash\left(D_{a} \cap D_{b}\right)\right) \mid \\
\leq & \sigma\left(D_{a} \cap D_{b}\right)+\sigma\left(D_{c}\right) .
\end{aligned}
$$

Since $\sigma\left(D_{a} \cap D_{b}\right)=0$, the right side is at most 1 and, therefore, $\left(D_{a} \cap D_{b}\right) \cup D_{c}$ is dangerous, and we are done. Therefore, we may assume Lemma 2.1 (2.1.2) applies to $A=D_{a} \cap D_{b}$ and $B=D_{c}$. In particular, $\sigma\left(D_{c} \backslash\left(D_{a} \cap D_{b}\right)\right) \leq \sigma\left(D_{a} \cap D_{b}\right)+\sigma\left(D_{c}\right)$, showing $D_{c} \backslash\left(D_{a} \cap D_{b}\right)$ is dangerous. (It is evidently not empty, as it contains a and b.)

Set $D_{c}^{\prime}=D_{c} \backslash\left(D_{a} \cap D_{b}\right)$. The edges $s a$ and $s b$ show that $\mid \delta\left(\left(D_{a} \cup D_{b}\right) \cap D_{c}^{\prime}, V(G) \backslash\right.$ $\left.\left(D_{a} \cup D_{b} \cup D_{c}^{\prime}\right)\right) \mid \geq 2$. On the other hand, the labelling for this case shows $\sigma\left(D_{a} \cup D_{b}\right) \leq$ $\sigma\left(D_{a}\right)+\sigma\left(D_{b}\right) \leq 2$ and the preceding paragraph shows $\sigma\left(D_{c}^{\prime}\right) \leq 1$. Thus,

$$
2\left|\delta\left(\left(D_{a} \cup D_{b}\right) \cap D_{c}^{\prime}, V(G) \backslash\left(D_{a} \cup D_{b} \cup D_{c}^{\prime}\right)\right)\right| \geq 4>3 \geq \sigma\left(D_{a} \cup D_{b}\right)+\sigma\left(D_{c}^{\prime}\right) .
$$

Consequently, Lemma 2.1 implies
$\sigma\left(\left(D_{a} \cup D_{b}\right) \cup D_{c}^{\prime}\right)+\sigma\left(\left(D_{a} \cup D_{b}\right) \cap D_{c}^{\prime}\right)+2\left|\delta\left(\left(D_{a} \cup D_{b}\right) \backslash D_{c}^{\prime}, D_{c}^{\prime} \backslash\left(D_{a} \cup D_{b}\right)\right)\right| \leq \sigma\left(D_{a} \cup D_{b}\right)+\sigma\left(D_{c}^{\prime}\right)$.
If $\left(D_{a} \cup D_{b}\right) \cup D_{c}^{\prime}$ is dangerous, then we are done, so we may assume $\sigma\left(\left(D_{a} \cup D_{b}\right) \cup D_{c}^{\prime}\right) \geq$ 2. As $\sigma\left(D_{a} \cup D_{b}\right)=2$ and $\sigma\left(D_{c}^{\prime}\right) \leq 1$, we conclude that $\sigma\left(\left(D_{a} \cup D_{b}\right) \cap D_{c}^{\prime}\right) \leq 1$ and $\left|\delta\left(\left(D_{a} \cup D_{b}\right) \backslash D_{c}^{\prime}, D_{c}^{\prime} \backslash\left(D_{a} \cup D_{b}\right)\right)\right|=0$. The inequality shows $\left(D_{a} \cup D_{b}\right) \cap D_{c}^{\prime}$ is dangerous, while $\left|\delta\left(D_{a} \backslash D_{b}, D_{b} \backslash D_{a}\right)\right|=0$ implies $\left|\delta\left(\left(D_{a} \cap D_{c}^{\prime}\right) \backslash\left(D_{b} \cap D_{c}^{\prime}\right),\left(D_{b} \cap D_{c}^{\prime}\right) \backslash\left(D_{a} \cap D_{c}^{\prime}\right)\right)\right|=0$.

We claim that either $s a$ or $s b$ is an isthmus of G. We have just seen that $\left(D_{a} \cup D_{b}\right) \cap D_{c}^{\prime}$ is dangerous, so,

$$
\begin{aligned}
1 & \geq \sigma\left(\left(D_{a} \cup D_{b}\right) \cap D_{c}^{\prime}\right) \\
& =\left|\delta\left(\left(D_{a} \cup D_{b}\right) \cap D_{c}^{\prime}\right)\right|-r\left(\left(D_{a} \cup D_{b}\right) \cap D_{c}^{\prime}\right) \mid \\
& \geq\left|\delta\left(D_{a} \cap D_{c}^{\prime}\right)\right|+\left|\delta\left(D_{b} \cap D_{c}^{\prime}\right)\right|-\max \left\{r\left(D_{a} \cap D_{c}^{\prime}\right), r\left(D_{b} \cap D_{c}^{\prime}\right)\right\} \\
& \geq \min \left\{\left|\delta\left(D_{a} \cap D_{c}^{\prime}\right)\right|,\left|\delta\left(D_{b} \cap D_{c}^{\prime}\right)\right|\right\}
\end{aligned}
$$

Therefore, either $\left|\delta\left(D_{a} \cap D_{c}^{\prime}\right)\right| \leq 1$ or $\left|\delta\left(D_{b} \cap D_{c}^{\prime}\right)\right| \leq 1$. We may choose the labelling of a and b so that the former holds. Since $b \in D_{a} \cap D_{c}^{\prime}$, sb shows $\left|\delta\left(D_{a} \cap D_{c}^{\prime}\right)\right| \geq 1$, so we have $\left|\delta\left(D_{a} \cap D_{c}^{\prime}\right)\right|=1$. Therefore, $s b$ is an isthmus, completing the proof in Case 1.

Case 2: For every one of the pairs $\left(D_{a}, D_{b}\right),\left(D_{a}, D_{c}\right)$, and $\left(D_{b}, D_{c}\right)$, (2.1.2) holds in Lemma 2.1.

The assumption of the case implies that, for example,

$$
\sigma\left(D_{a} \backslash D_{b}\right)+\sigma\left(D_{b} \backslash D_{a}\right)+2\left|\delta\left(D_{a} \cap D_{b}, V(G) \backslash\left(D_{a} \cup D_{b}\right)\right)\right| \leq \sigma\left(D_{a}\right)+\sigma\left(D_{b}\right) \leq 2
$$

Since $c \in D_{a} \cap D_{b}$ and $s \in V(G) \backslash\left(D_{a} \cup D_{b}\right),\left|\delta\left(D_{a} \cap D_{b}, V(G) \backslash\left(D_{a} \cup D_{b}\right)\right)\right| \geq 1$. We conclude that $\left|\delta\left(D_{a} \cap D_{b}, V(G) \backslash\left(D_{a} \cup D_{b}\right)\right)\right|=1, \sigma\left(D_{a} \backslash D_{b}\right)=0$, and $\sigma\left(D_{b} \backslash D_{a}\right)=0$.

As in the preceding paragraph, since $b \in\left(D_{a} \backslash D_{b}\right) \cap D_{c}$, we see that $\mid \delta\left(\left(D_{a} \backslash D_{b}\right) \cap\right.$ $\left.D_{c}, V(G) \backslash\left(\left(D_{a} \backslash D_{b}\right) \cup D_{c}\right)\right) \mid \geq 1$. Also, $\sigma\left(D_{a} \backslash D_{b}\right)=0$ and $\sigma\left(D_{c}\right) \leq 1$. Thus, Lemma 2.1 (2.1.2) does not hold for $A=D_{a} \backslash D_{b}$ and $B=D_{c}$. Therefore (2.1.1) holds in Lemma 2.1; in particular, $\sigma\left(\left(D_{a} \backslash D_{b}\right) \cup D_{c}\right) \leq \sigma\left(D_{a} \backslash D_{b}\right)+\sigma\left(D_{c}\right) \leq 1$. That is, $\left(D_{a} \backslash D_{b}\right) \cup D_{c}$ is dangerous. Since this does not contain c, we could set $D_{c}^{\prime}=\left(D_{a} \backslash D_{b}\right) \cup D_{c}$ and conduct this argument over again. When we do this, $D_{a} \backslash D_{b} \subseteq D_{c}^{\prime}$, so we may assume this happens in the first place. That is, we may assume $D_{a} \backslash D_{b} \subseteq D_{c}$; likewise, we may assume $D_{c} \backslash D_{a} \subseteq D_{b}$, and $D_{b} \backslash D_{c} \subseteq D_{a}$.

We still have $\left|\delta\left(D_{a} \cap D_{b}, V(G) \backslash\left(D_{a} \cup D_{b}\right)\right)\right|=1$. Likewise both $\mid \delta\left(D_{a} \cap D_{c}, V(G) \backslash\right.$ $\left.\left(D_{a} \cup D_{c}\right)\right) \mid=1$ and $\left|\delta\left(D_{b} \cap D_{c}, V(G) \backslash\left(D_{b} \cup D_{c}\right)\right)\right|=1$ hold. In particular, we know there is only one edge from s to each of a, b, and c. Also, it follows that $\mid \delta\left(D_{a} \cup D_{b} \cup\right.$ $\left.D_{c}, V(G) \backslash\left(\{s\} \cup D_{a} \cup D_{b} \cup D_{c}\right)\right) \mid=0$.

If s is not incident with an isthmus, then, for every component K of $G-s,|\delta(V(K))| \geq$ 2. Since $\left|\delta\left(D_{a} \cup D_{b} \cup D_{c}\right)\right|=3$ and all edges in $\delta\left(D_{a} \cup D_{b} \cup D_{c}\right)$ are also incident with s, we conclude that $G\left[D_{a} \cup D_{b} \cup D_{c}\right]$ is connected and is a component of $G-s$. Therefore, there are two edge-disjoint $a s$-paths in $G\left[\{s\} \cup D_{a} \cup D_{b} \cup D_{c}\right]$.

If the degree of s is not 3 , then we conclude that $G-s$ has at least two components. If K is a component of $G-s$ other than $G\left[D_{a} \cup D_{b} \cup D_{c}\right]$ and s is not incident with an isthmus, then, for any neighbour t of s in K, there are two edge-disjoint $t s$-paths in $G[\{s\} \cup V(K)]$. It follows that there are two edge-disjoint at-paths in G, showing that $r\left(D_{a} \cup D_{b} \cup D_{c}\right) \geq 2$.

Since $\left|\delta\left(D_{a} \cup D_{b} \cup D_{c}\right)\right|=3$, we conclude that $\sigma\left(D_{a} \cup D_{b} \cup D_{c}\right) \leq 1$. Thus, $D_{a} \cup D_{b} \cup D_{c}$ is dangerous, as required.

The proof of Theorem 1.1 is now quite simple.

Proof of Theorem 1.1. We proceed by induction on $|F|$, with the cases $|F|=2$ and 3 being, respectively, trivial and an immediate consequence of Lemma 2.2. So assume $|F| \geq 4$, with $F=\left\{s u_{1}, s u_{2}, \ldots, s u_{k}\right\}$. By induction, there are dangerous sets A_{k-1} and A_{k} containing, respectively, all of $F \backslash\left\{s u_{k-1}\right\}$ and $F \backslash\left\{s u_{k}\right\}$. If either $u_{k-1} \in A_{k-1}$ or $u_{k} \in A_{k}$, then we are done, so we may assume neither of these containments occurs.

Because $s u_{k-1}$ and $s u_{k}$ do not make a feasible lift, there is a dangerous set A containing both u_{k-1} and u_{k}; among all such dangerous sets, we choose A to be maximal. If, for every $i \in\{1,2, \ldots, k-2\}, u_{i} \in A$, then we are done. Otherwise, there is some $i \in\{1,2, \ldots, k-2\}$ such that $u_{i} \notin A$.

We apply Lemma 2.2 to the pairs $\left\{u_{i}, u_{k-1}\right\},\left\{u_{i}, u_{k}\right\}$, and $\left\{u_{k-1}, u_{k}\right\}$ and the sets A, A_{k-1}, and A_{k}. We conclude that there is a dangerous set A^{*} containing all of u_{i}, u_{k-1}, and u_{k} and also containing one of A, A_{k-1}, and A_{k}.

If $A \subseteq A^{*}$, then, since $u_{i} \in A^{*} \backslash A$, we contradict the maximality of A. Therefore, either A_{k-1} or A_{k} is contained in A^{*}, from which we conclude that every u_{j} is in A^{*}, as required.

3 Connection in the lifting graph

In this section, we prove Theorem 1.2 dealing with the structure of the k-lifting graph $L(G, s, k)$.

The proofs are inductive and the base cases $\operatorname{deg}(s)=4$ or 5 require some effort. There is one special argument needed for $\operatorname{deg}(s)=6$ when k is odd. The inductive arguments are based on the following simple observation and its contrapositive.

Observation 3.1 If, after lifting the feasible pair $\left\{e_{1}, e_{2}\right\}$, the pair $\left\{e_{3}, e_{4}\right\}$ is feasible, then $\left\{e_{3}, e_{4}\right\}$ is feasible in the original graph.

3.1 Some general arguments

In this subsection, we give a few elementary general arguments used later for describing the lifting graph. The first arguments are based on standard methods for "crossing cuts". Let A_{1} and A_{2} be two subsets of $V(G)$. It is an easy exercise to verify that, where $\bar{A}=V(G) \backslash A$,

$$
\begin{align*}
2\left[\left|\delta\left(A_{1}\right)\right|+\left|\delta\left(A_{2}\right)\right|-\right. & \left.\left(\left|\delta\left(A_{1} \cap A_{2}, \overline{A_{1} \cup A_{2}}\right)\right|+\left|\delta\left(A_{2} \backslash A_{1}, A_{1} \backslash A_{2}\right)\right|\right)\right]= \tag{3.1}\\
& \left|\delta\left(A_{1} \cap A_{2}\right)\right|+\left|\delta\left(A_{2} \backslash A_{1}\right)\right|+\left|\delta\left(A_{1} \backslash A_{2}\right)\right|+\left|\delta\left(\overline{A_{1} \cup A_{2}}\right)\right|
\end{align*}
$$

A typical application will be when all four sets $A_{1} \cap A_{2}, A_{2} \backslash A_{1}, A_{1} \backslash A_{2}$, and $\overline{A_{1} \cup A_{2}}$ are non-empty and G is k-edge-connected. In that case, the right-hand side is at least $4 k$. If, for example, both $\delta\left(A_{1}\right)$ and $\delta\left(A_{2}\right)$ have size k, we deduce that $\delta\left(A_{1} \cap A_{2}, \overline{A_{1} \cup A_{2}}\right)$ and $\delta\left(A_{2} \backslash A_{1}, A_{1} \backslash A_{2}\right)$ are both empty. Furthermore, it is a routine exercise to verify that this extreme case can only occur with k even.

We will apply a slightly more sophisticated consequence of Equation 3.1.
Lemma 3.2 Let k be a natural number, and let G be a graph with a vertex s such that any two vertices in $G-s$ are joined by k pairwise edge-disjoint paths in G. For $i=1,2$, let F_{i} be an independent set in $L(G, s, k)$ of size r_{i} and suppose there is a dangerous set A_{i} so that $F_{i}=\delta(\{s\}) \cap \delta_{G}\left(A_{i}\right)$. Set $\alpha=\left|F_{1} \cap F_{2}\right|$. If $\alpha>0, r_{1}>\alpha, r_{2}>\alpha$, and $\overline{A_{1} \cup A_{2} \cup\{s\}} \neq \varnothing$, then $r_{1}+r_{2} \leq\lfloor\operatorname{deg}(s) / 2\rfloor+2$.

Proof. Observe that: $\left|\delta_{G-s}\left(A_{1}\right)\right| \leq k+1-r_{1} ;\left|\delta_{G-s}\left(A_{2}\right)\right| \leq k+1-r_{2} ; \mid \delta_{G-s}\left(A_{1} \cap\right.$ $\left.A_{2}\right)\left|\geq k-\alpha ;\left|\delta_{G-s}\left(A_{2} \backslash A_{1}\right)\right| \geq k-\left(r_{2}-\alpha\right) ;\left|\delta_{G-s}\left(A_{1} \backslash A_{2}\right)\right| \geq k-\left(r_{1}-\alpha\right)\right.$; and $\left|\delta_{G-s}\left(V(G-s) \backslash\left(A_{1} \cup A_{2}\right)\right)\right| \geq k-\left(\operatorname{deg}(s)-\left(r_{1}+r_{2}-\alpha\right)\right)$.

From Equation 3.1, we deduce that
$2\left(k+1-r_{1}+k+1-r_{2}\right) \geq(k-\alpha)+\left(k-\left(r_{2}-\alpha\right)\right)+\left(k-\left(r_{1}-\alpha\right)\right)+\left(k-\left(\operatorname{deg}(s)-\left(r_{1}+r_{2}-\alpha\right)\right)\right)$.

Rearranging, we see that $\operatorname{deg}(s)+4 \geq 2\left(r_{1}+r_{2}\right)$. Since every term except possibly $\operatorname{deg}(s)$ is even, $\lfloor\operatorname{deg}(s) / 2\rfloor+2 \geq r_{1}+r_{2}$, as required.

Our final preliminary result gives our first glimpse of some structure in $L(G, s, k)$.
Lemma 3.3 Let k be a natural number, and let G be a graph with a vertex s such that any two vertices in $G-s$ are joined by k pairwise edge-disjoint paths in G. If $\operatorname{deg}(s)$ is at least 4, then:
(3.3.1) every independent set in $L(G, s, k)$ has size at most $\left\lceil\frac{1}{2} \operatorname{deg}(s)\right\rceil$; and
(3.3.2) if $\operatorname{deg}(s)$ is even and at least 6, then any two distinct independent sets in $L(G, s, k)$ of size $\frac{1}{2} \operatorname{deg}(s)$ are disjoint.

Proof. By Theorem 1.1, an independent set F corresponds to a dangerous set A containing all the non-s ends of the edges in F, so $|\delta(A)| \leq k+1$. If $|\delta(\{s\}) \backslash F|<|F|-1$, then $\delta(A \cup\{s\})$ has size at most $k-1$, a contradiction. Thus, $|\delta(\{s\}) \backslash F| \geq|F|-1$, as required for (3.3.1).

Suppose F_{1} and F_{2} are non-disjoint independent sets of size $\frac{1}{2} \operatorname{deg}(s)$, with corresponding dangerous sets A_{1} and A_{2}. At most $\operatorname{deg}(s)-1$ of the edges of $\delta(\{s\})$ have one end in
$A_{1} \cup A_{2}$, so $\overline{A_{1} \cup A_{2} \cup\{s\}} \neq \varnothing$. Also, each of $A_{1} \cap A_{2}, A_{2} \backslash A_{1}$, and $A_{1} \backslash A_{2}$ has an end of an edge in $F_{1} \cup F_{2}$. Since, for $i=1,2$, Lemma 3.3 (3.3.1) implies $F_{i}=\delta(\{s\}) \cap \delta\left(A_{i}\right)$, the hypotheses of Lemma 3.2 are satisfied. However, $r_{1}=\frac{1}{2} \operatorname{deg}(s)=r_{2}$, showing the conclusion of Lemma 3.2 fails, a contradiction that proves (3.3.2).

$3.2 \operatorname{deg}(s)=4$

In this subsection, we treat the case $\operatorname{deg}(s)=4$. Let $e_{1}, e_{2}, e_{3}, e_{4}$ be the four edges incident with s. It is a triviality that if some pair, say e_{1}, e_{2} is feasible, then so is the complementary pair e_{3}, e_{4}. It follows that $L(G, s, k)$ is a union of perfect matchings; Mader's Theorem already shows there is at least one such matching in $L(G, s, k)$. Since it has only four vertices, it can only be one of: a perfect matching; a 4 -cycle C_{4}; and K_{4}. These are all realizable. However, when k is even, the perfect matching is not achievable, as we show next.

Proposition 3.4 Let k be a natural number, and let G be a graph with a vertex such that any two vertices in $G-s$ are joined by k pairwise edge-disjoint paths in G. If $\operatorname{deg}(s)=4$, then $L(G, s, k)$ is one of: a perfect matching; $C_{4} ;$ and K_{4}. If k is even, then $L(G, s, k)$ is not a perfect matching.

Proof. We only prove the second assertion. Suppose both pairs e_{1}, e_{2} and e_{1}, e_{3} are not feasible. Then there are dangerous sets A_{2} and A_{3} so that the non-s ends of e_{1}, e_{2} are in A_{2} and the non-s ends of e_{1}, e_{3} are in A_{3}.

By definition, $\left|\delta_{G}\left(A_{2}\right)\right| \leq k+1$, while the hypothesis implies $\left|\delta_{G}\left(A_{2} \cup\{s\}\right)\right| \geq k$. Therefore, e_{3} and e_{4} have their non-s ends in $\bar{A}_{2}=V(G) \backslash\left(A_{2} \cup\{s\}\right)$. The analogous statement holds for A_{3}.

It follows that $\left|\delta_{G-s}\left(A_{2} \cap A_{3}\right)\right|,\left|\delta_{G-s}\left(A_{2} \backslash A_{3}\right)\right|,\left|\delta_{G-s}\left(A_{3} \backslash A_{2}\right)\right|$, and $\left|\delta_{G-s}\left(\overline{A_{2} \cup A_{3}}\right)\right|$ are all at least $k-1$, while $\left|\delta_{G-s}\left(A_{2}\right)\right|$ and $\left|\delta_{G-s}\left(A_{3}\right)\right|$ are both at most $k-1$. But $k-1$ is odd, so Equation 3.1 cannot be realized (as mentioned in the paragraph following Equation 3.1).

We comment that the proofs of Proposition 3.4 and Equation 3.1 also imply that, when k is odd, there is only one pattern for G for which $L(G, s, k)$ is a perfect matching; this is illustrated in Figure 3.5, where there are four edges incident with s and the thick edges represent $(k-1) / 2$ edges. No two edges consecutive in the illustrated cyclic rotation at s form a feasible pair.

Figure 3.5: Each thick edge represents $(k-1) / 2$ edges.

$3.3 \operatorname{deg}(s)=5$

In this subsection, we prove the following, dealing with the case $\operatorname{deg}(s)=5$.
Proposition 3.6 Let k be a natural number, and let G be a graph with a vertex s such that any two vertices in $G-s$ are joined by k pairwise edge-disjoint paths in G. If $\operatorname{deg}(s)=5$, then $L(G, s, k)$ is either an isolated vertex plus a 4-cycle or a connected graph. If k is even and $L(G, s, k)$ is connected, then G is a complete multipartite graph.

Proof. Lemma 3.3 (3.3.1) implies the largest independent set in $L(G, s, k)$ has size at most 3 . We break the proof into two cases.

Case 1: $L(G, s, k)$ contains an independent set of size 3.
Let F be an independent set in $L(G, s, k)$ of size 3 and let A_{1} be a dangerous set in G so that the non-s ends of the edges in F are all in A_{1}. As there are only two edges incident with s and not in F, they both have their non- s ends in $\bar{A}_{1}=V(G) \backslash\left(A_{1} \cup\{s\}\right)$. In particular, $\left|\delta_{G}\left(A_{1}\right)\right|=k+1$ and $\left|\delta_{G}\left(A_{1} \cup\{s\}\right)\right|=k$, so the two edges in $\delta(\{s\}) \backslash F$ are also independent in $L(G, s, k)$.

Suppose $e_{1} \in F$ and $e_{2} \in \delta(\{s\}) \backslash F$ do not form a feasible pair and let A_{2} be a dangerous set that witnesses this. As in the preceding paragraph, there are at least two edges in $\delta(\{s\}) \backslash\left\{e_{1}, e_{2}\right\}$ having their non- s ends in \bar{A}_{2}; at least one of these is in $F \backslash\left\{e_{1}\right\}$.

Thus, there is at least one edge from s to each of $A_{1} \cap A_{2}$ (namely, e_{1}), $A_{2} \backslash A_{1}\left(e_{2}\right)$, and $A_{1} \backslash A_{2}$ (the one at the end of the preceding paragraph).

If $\overline{A_{1} \cup A_{2} \cup\{s\}} \neq \varnothing$, then Lemma 3.2 implies $3+\left|\delta(\{s\}) \cap \delta\left(A_{2}\right)\right| \leq 4$. But $e_{1}, e_{2} \in$ $\delta(\{s\}) \cap \delta\left(A_{2}\right)$, so we deduce that $\overline{A_{1} \cup A_{2} \cup\{s\}}=\varnothing$.

It follows that both edges in $\delta(\{s\}) \backslash F$ have their non-s ends in $A_{2} \backslash A_{1}$. Thus, $\left|\delta(\{s\}) \cap \delta\left(A_{2}\right)\right| \geq 3$. Since A_{2} is dangerous, Lemma 3.3 implies $\left|\delta(\{s\}) \cap \delta\left(A_{2}\right)\right| \leq 3$. Therefore there are also two edges in $\delta(\{s\})$ with ends in $A_{1} \backslash A_{2}$.

An immediate consequence of the preceding is that e_{1} has no feasible lift with any other edge in $\delta(\{s\})$. Frank's Theorem implies that there is at most one edge incident
with s that is not in any feasible pair. It follows that e_{1} is the only such edge; now applying the above argument to another edge e_{1}^{\prime} in $F \backslash\left\{e_{1}\right\}$ and an edge e_{2} in $\delta(\{s\}) \backslash F$ shows e_{1}^{\prime}, e_{2} is a feasible pair.

We conclude that, in the event there is an independent set of size 3 in $L(G, s, k)$, $L(G, s, k)$ is either $K_{2,3}$ or an isolated vertex plus C_{4}.

Figure 3.7: If each thick edge represents $k-2$ edges, then $L(G, s, k)$ is an isolated vertex and C_{4}. Changing one thick edge to $k-1$ edges turns $L(G, s, k)$ into $K_{2,3}$.

Case 2: every independent set in $L(G, s, k)$ has size at most 2.
Suppose there are three edges e_{0}, e_{1}, e_{2} in $\delta(\{s\})$ such that neither e_{0}, e_{1} nor e_{0}, e_{2} is a feasible pair.
(F1) The assumption of this case implies e_{1}, e_{2} is a feasible pair.
For $i=1,2$, let A_{i} be a dangerous set containing the non-s ends of both e_{0} and e_{i}. Because we are in Case 2, none of the three edges in $\delta(\{s\}) \backslash\left\{e_{0}, e_{i}\right\}$ has an end in A_{i}. Thus, each of these three edges has an end in $\overline{A_{i} \cup\{s\}}$. Since these three edges do not make an independent set in $L(G, s, k),\left|\delta\left(\overline{A_{i} \cup\{s\}}\right)\right|>k+1$. Evidently, $\left|\delta\left(A_{i}\right)\right| \leq k+1$, so $\left|\delta\left(A_{i}\right)\right|=k+1$.

Moreover, there is precisely one edge from $\delta(\{s\})$ having an end in each of $A_{1} \cap A_{2}$ $\left(e_{0}\right), A_{2} \backslash A_{1}\left(e_{2}\right)$, and $A_{1} \backslash A_{2}\left(e_{1}\right)$. Therefore, the remaining two edges have their non-s ends in $\overline{A_{1} \cup A_{2} \cup\{s\}}$.

Since $\left\{e_{0}, e_{1}, e_{2}\right\}$ is not an independent set of size $3,\left|\delta_{G}\left(A_{1} \cup A_{2}\right)\right| \geq k+2$. Thus, each of $\delta_{G-s}\left(A_{1} \cap A_{2}\right), \delta_{G-s}\left(A_{2} \backslash A_{1}\right), \delta_{G-s}\left(A_{1} \backslash A_{2}\right)$, and $\delta_{G-s}\left(\overline{A_{1} \cup A_{2} \cup\{s\}}\right)$ has size at least $k-1$ (as this is trivially true for the first three). Since $\delta_{G-s}\left(A_{1}\right)$ and $\delta_{G-s}\left(A_{2}\right)$ have size precisely $k-1$, as before from Equation 3.1, $k-1$ is even.

It follows that, for k even, e_{0}, e_{1}, and e_{2} do not exist, so $L(G, s, k)$ is complete multipartite.

In the case k is odd, $\left|\delta_{G}\left(\overline{A_{1} \cup A_{2} \cup\{s\}}\right)\right|=k+1$, showing the following.
(F2) The pair e_{3}, e_{4} of edges in $\delta(\{s\}) \backslash\left\{e_{0}, e_{1}, e_{2}\right\}$ is not feasible.

Subcase 2.1: e_{1}, e_{3} is not feasible.
Applying (F1) to e_{1}, e_{0} and e_{1}, e_{3}, we see that e_{0}, e_{3} is a feasible pair.
On the other hand, (F2) implies the pair of edges e_{2}, e_{4} in $\delta(\{s\}) \backslash e_{1}, e_{0}, e_{3}$ is not feasible. Now using e_{2}, e_{0} and e_{2}, e_{4}, we conclude from (F1) that e_{0}, e_{4} is feasible.

Finally, (F1) and the infeasible pairs e_{3}, e_{1} and e_{3}, e_{4} show e_{1}, e_{4} is feasible, and analogously e_{2}, e_{3} is feasible. In this case, $L(G, s, k)$ is C_{5}.

Subcase 2.2: no version of Subcase 2.1; that is, $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ induces $K_{4}-e_{3} e_{4}$ in $L(G, s, k)$.
(We remark that this subcase occurs in the version of Figure 3.8 with one thick edge being ($k+1$)/2 edges.) Suppose e_{0}, e_{3} is not a feasible pair. Then (F2) applied to e_{0}, e_{1}, e_{3} yields the contradiction that e_{2}, e_{4} is not feasible. Therefore, e_{0}, e_{3} and, symmetrically, e_{0}, e_{4}, are feasible pairs. In this final case, $L(G, s, k)$ is $K_{5}-\left\{e_{0} e_{1}, e_{0} e_{2}, e_{3} e_{4}\right\}$.

Figure 3.8 gives two examples for odd k. One has $L(G, s, k)$ being a 5 -cycle, while, for the other, $L(G, s, k)$ is $K_{5}-\left\{e_{0} e_{1}, e_{0} e_{2}, e_{3} e_{4}\right\}$.

Figure 3.8: If each thick edge represents $(k-1) / 2$ edges, then $L(G, s, k)=C_{5}$. Changing one thick edge to $(k+1) / 2$ edges turns $L(G, s, k)$ into $K_{5}-\left\{e_{0} e_{1}, e_{0} e_{2}, e_{3} e_{4}\right\}$.

3.4 The inductive step

In this subsection, we proceed with the induction to complete the proof of Theorem 1.2.
Proof of Theorem 1.2. For (1.2.1), we observe that if $\operatorname{deg}(s)=4$ or 5 , then $L(G, s, k)$ has at most two components. For the induction, $\operatorname{suppose} \operatorname{deg}(s) \geq 6$. If $L(G, s, k)$ has more than two components, then it is the union of three subgraphs J_{1}, J_{2}, J_{3}, with each J_{i} a union of components of $L(G, s, k)$.

Suppose, for some $i \in\{1,2,3\}$, J_{i} has at least three vertices. Frank's Theorem implies J_{i} has an edge $e_{1} e_{2}$. Lifting $e_{1} e_{2}$ produces a graph G^{\prime} with $\operatorname{deg}_{G^{\prime}}(s)=\operatorname{deg}_{G}(s)-2$ and
there is no edge of $L\left(G^{\prime}, s, k\right)$ between any two of the $J_{j} \cap L\left(G^{\prime}, s, k\right)$. This contradicts the inductive assumption that $L\left(G^{\prime}, s, k\right)$ has at most two components.

Therefore, each J_{i} has at most two vertices; since $\operatorname{deg}(s) \geq 6$, each J_{i} has precisely two vertices and $\operatorname{deg}(s)=6$. However, in this case, there are 8 different independent sets of size 3, each consisting of one vertex from each of the J_{i}. This contradicts Lemma 3.3 (3.3.2), completing the proof of (1.2.1).

For (1.2.2), the claim holds for $\operatorname{deg}(s)=5$, so suppose $\operatorname{deg}(s) \geq 7$. Let H and J be the components of $L(G, s, k)$ with $|V(H)|<|V(J)|$. Then $|V(J)| \geq 4$ and if we lift an edge from J to get the graph G^{\prime}, there is still no edge between $H \cap L\left(G^{\prime}, s, k\right)$ and $J \cap L\left(G^{\prime}, s, k\right)$ and the latter has at least two vertices. Thus, $H \cap L\left(G^{\prime}, s, k\right)$, and therefore H, has only one vertex, as required.

To see that J is complete multipartite, suppose there exist e_{0}, e_{1}, e_{2} in $V(J)$ such that e_{0} is not adjacent in J to either of e_{1} and e_{2}, while $e_{1} e_{2} \in E(J)$. Lift the pair e_{1}, e_{2} to get the graph G^{\prime}. Since J has at least 6 vertices, $J \cap L\left(G^{\prime}, s, k\right)$ is a component of $L\left(G^{\prime}, s, k\right)$ with at least 4 vertices. By the inductive assumption, it is not a star, so it has an edge $e_{3} e_{4}$ not incident with e_{0}. Then $e_{3} e_{4}$ is an edge of J.

Lift e_{3}, e_{4} in G to get $G^{\prime \prime}$; the pair e_{1}, e_{2} is feasible in $G^{\prime \prime}$ (the resulting graph is the same as first lifting e_{1}, e_{2} and then lifting $\left.e_{3}, e_{4}\right)$, so $e_{1} e_{2}$ is an edge in $J \cap L\left(G^{\prime \prime}, s, k\right)$. But neither $e_{0} e_{1}$ nor $e_{0} e_{2}$ is an edge in $J \cap L\left(G^{\prime \prime}, s, k\right)$, contradicting the inductive assumption applied to $L\left(G^{\prime \prime}, s, k\right)$. Thus, J is both complete multipartite and not a star, as required.

For (1.2.3), we first prove that every component of $L(G, s, k)$ has an even number of vertices; this is trivial if there is only one component. This is known for $\operatorname{deg}(s)=4$, so we suppose $\operatorname{deg}(s) \geq 6$. Let H and J be the two components with $|V(H)| \leq|V(J)|$. Let $e_{1} e_{2}$ be an edge of J and let G^{\prime} be the result of lifting the pair e_{1}, e_{2}. Then $H \cap L\left(G^{\prime}, s, k\right)$ and $J \cap L\left(G^{\prime}, s, k\right)$ are the two components of $L\left(G^{\prime}, s, k\right)$. By induction they each have an even number of vertices, so this also holds for $L(G, s, k)$.

If $\operatorname{deg}(s)=6$, then the induction and Lemma 3.3 (3.3.2) imply that $L(G, s, k)$ is the disjoint union of K_{2} and either C_{4} or K_{4}. Therefore, we may assume $\operatorname{deg}(s) \geq 8$.

Case 1: both components of $L(G, s, k)$ have at least four vertices.
Suppose by way of contradiction that there are vertices e_{0}, e_{1}, e_{2} in the component K of $L(G, s, k)$ such that neither $e_{0} e_{1}$ nor $e_{0} e_{2}$ is an edge of K, while $e_{1} e_{2}$ is an edge of K. Let J be the other component of $L(G, s, k)$.

Lift e_{1}, e_{2} to get G^{\prime}. Then $K \cap L\left(G^{\prime}, s, k\right)$ and $J \cap L\left(G^{\prime}, s, k\right)$ are the two components of $L\left(G^{\prime}, s, k\right)$. Thus, there is an edge $e_{3} e_{4}$ in $J \cap L\left(G^{\prime}, s, k\right)$. Now lift e_{3}, e_{4} in G to get $G^{\prime \prime}$. Then $K \cap L\left(G^{\prime \prime}, s, k\right)$ is a component of $L\left(G^{\prime \prime}, s, k\right)$. The edge $e_{1} e_{2}$ is in $K \cap L\left(G^{\prime \prime}, s, k\right)$, while neither $e_{0} e_{1}$ nor $e_{0} e_{2}$ is an edge of $K \cap L\left(G^{\prime \prime}, s, k\right)$. This contradicts the inductive
assumption that $K \cap L\left(G^{\prime \prime}, s, k\right)$ is complete multipartite.
Case 2: one component of $L(G, s, k)$ has precisely two vertices.
Let J and K be the components of $L(G, s, k)$ so that J has precisely two vertices; thus K has at least six vertices. Suppose e_{0}, e_{1}, e_{2} are vertices of K such that neither $e_{0} e_{1}$ nor $e_{0} e_{2}$ is an edge of K, yet $e_{1} e_{2}$ is an edge of K.

Lift e_{1}, e_{2} to obtain the graph G^{\prime}. By the induction, $K \cap L\left(G^{\prime}, s, k\right)$ is a component of $L\left(G^{\prime}, s, k\right)$, and it has at least 4 vertices, so it is not a star. Therefore, it has an edge $e_{3} e_{4}$ disjoint from e_{0}; we lift e_{3}, e_{4} in G to obtain $G^{\prime \prime}$. Induction tells us that $K \cap L\left(G^{\prime \prime}, s, k\right)$ is complete multipartite, which contradicts the fact that e_{0}, e_{1}, e_{2} are all in $K \cap L\left(G^{\prime \prime}, s, k\right)$, $e_{0} e_{1}$ and $e_{0} e_{2}$ are not edges, and $e_{1} e_{2}$ is an edge.

Lastly, we prove (1.2.4). Proposition 3.4 gives the result for $\operatorname{deg}(s)=4$, so we assume $\operatorname{deg}(s) \geq 6$. Suppose e_{0}, e_{1}, e_{2} are vertices in $L(G, s, k)$ such that e_{0} is not adjacent to either e_{1} or e_{2}, but $e_{1} e_{2}$ is an edge of $L(G, s, k)$. Lifting e_{1}, e_{2} yields a graph G^{\prime} for which $L\left(G^{\prime}, s, k\right)$ has at least 4 vertices. By induction, $L\left(G^{\prime}, s, k\right)$ is connected, complete multipartite, and not a star; in particular, it has an edge $e_{3} e_{4}$ disjoint from e_{0}.

Lifting e_{3}, e_{4} in G produces a graph $G^{\prime \prime}$; by induction $L\left(G^{\prime \prime}, s, k\right)$ is complete multipartite. However, e_{0} is still not adjacent to either e_{1} or e_{2}, while $e_{1} e_{2}$ is an edge. This contradiction shows $L(G, s, k)$ is complete multipartite and Frank's Theorem [3] shows it is not a star, as required.

We conclude this section with Figure 3.9. This is an example having $\operatorname{deg}(s)=6$ and $k=5$ so that $L(G, s, k)$ is $K_{3,3}$ minus an edge; in particular, it is connected and not complete multipartite. The three edges incident with s on the left side are one independent set, the three on the right are a second, and the two going to the bottom are not feasible.

Figure 3.9: Each thick edge represents 2 edges and $k=5$.

4 Weakly k-linked infinite graphs

In this section we prove Theorem 1.3: if k is odd, then a $(k+2)$-edge-connected, locally finite, 1-ended, infinite graph G is weakly k-linked.

If $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ are sequences of (not necessarily distinct) vertices in graph G, then an xy-linkage is a set $\left\{P_{1}, P_{2}, \ldots, P_{k}\right\}$ of pairwise edgedisjoint paths in G such that, for $i=1,2, \ldots, k, P_{i}$ is an $x_{i} y_{i}$-path.

Before we prove Theorem 1.3, we require extensions of the theorems of Mader and Frank and of our Theorem 1.2 to locally finite graphs. These extensions may all be proved as follows. Let G_{d} be the subgraph of a locally finite graph G consisting of those vertices at distance at most d from the specified vertex s. Let G_{d}^{\prime} be the graph obtained from G by contracting each component of $G-V\left(G_{d}\right)$ to a vertex. For infinitely many d, the lifting graph $L\left(G_{d}^{\prime}, s, \tau\right)$ is the same graph; this is the the lifting graph $L(G, s, \tau)$.

Proof of Theorem 1.3. Let \mathbf{x} and \mathbf{y} be any sequences of k (not necessarily distinct) vertices of G. Let A be the set of vertices that occur in \mathbf{x} and \mathbf{y}.

Let S be a finite set of vertices containing A. There is a unique infinite component K of $G-S$. Let \mathcal{P} be a largest set of pairwise edge-disjoint, 1-way infinite paths (or rays), that begin with an edge in $\delta(V(K))$ and are otherwise contained in K. It is a standard fact that there is a finite set S^{\prime} containing S such that $\left|\delta\left(S^{\prime}\right)\right|=|\mathcal{P}|$. We are interested only in S^{\prime}, which we relabel as S, and restrict the rays in \mathcal{P} to begin at their edge in $\delta\left(S^{\prime}\right)$.

Because G is $(k+2)$-edge-connected, $|\delta(S)| \geq k+2$. We consider three cases.
Case 1: $|\delta(S)|=k+2$.
Contract $G-S$ to a single vertex v_{S}, yielding a finite $(k+2)$-edge-connected graph $G /(G-S)$. Huck's Theorem shows there is a weak xy-linkage \mathcal{L} in $G /(G-S)$.

Let v be any vertex of $G-S$. There is a set \mathcal{L}^{\prime} of $(k+2)$ pairwise edge-disjoint paths with origin v whose other end is in S and incident with an edge of $\delta(S)$. Evidently, we can replace any passage of a path in \mathcal{L} through v_{S} with an appropriate pair of paths in \mathcal{L}^{\prime}. Simplifying the resulting walks as needed, we convert \mathcal{L} into a weak xy-linkage in G. Case 2: $|\delta(S)|$ is odd and at least $k+4$.

In this case, let e be any edge of $\delta(S)$ and let $G^{\prime}=G-e$. Now G^{\prime} is $(k+1)$-edgeconnected and $|\delta(S)|$ is even. We now proceed as in Case 3.

Case 3: $|\delta(S)|$ is even.
In this case, we need only that G is $(k+1)$-edge-connected (so Case 2 continues smoothly here). Contract $G-S$ to a single vertex v_{S} resulting in the finite graph G^{S}.

We claim that $\delta(S)$ partitions into $|\delta(S)| / 2$ pairs $\left\{e_{i}, e_{i}^{\prime}\right\}, i=1,2, \ldots,|\delta(S)| / 2$, such that, letting $G_{0}^{S}=G^{S}$ and, for $i=1,2, \ldots,|\delta(S)| / 2, G_{i}^{S}$ is the graph obtained from lifting $\left\{e_{i}, e_{i}^{\prime}\right\}$ in G_{i-1}^{S} :

1. for $i \geq 1$, the pair $\left\{e_{i}, e_{i}^{\prime}\right\}$ is $(k+1)$-liftable in G_{i-1}^{S}; and
2. for $i=1,2, \ldots,|\delta(S)| / 2$, there is a path P_{i} joining e_{i} and e_{i}^{\prime} with only its end vertices and e_{i}, e_{i}^{\prime} not in $G-S$ such that P_{i} is edge-disjoint from $P_{1} \cup \cdots \cup P_{i-1}$ and from all the rays in \mathcal{P} containing $e_{i+1}, e_{i+1}^{\prime}, \ldots, e_{|\delta(S)| / 2}, e_{|\delta(S)| / 2}^{\prime}$.

Suppose we have the pairs $\left\{e_{1}, e_{1}^{\prime}\right\}, \ldots,\left\{e_{i-1}, e_{i-1}^{\prime}\right\}$ and paths P_{1}, \ldots, P_{i-1}. We show the existence of $\left\{e_{i}, e_{i}^{\prime}\right\}$ and P_{i}.

Set $\delta_{i}(S)$ to be $\delta(S) \backslash\left\{e_{1}, e_{1}^{\prime}, \ldots, e_{i-1}, e_{i-1}^{\prime}\right\}$. These are the edges in $G-\left\{e_{1}, e_{1}^{\prime}, \ldots, e_{i-1}\right.$, $\left.e_{i-1}^{\prime}\right\}$ having precisely one end in S. Let \mathcal{P}_{i} denote the paths in \mathcal{P} that do not contain any of the edges in $\left\{e_{1}, e_{1}^{\prime}, \ldots, e_{i-1}, e_{i-1}^{\prime}\right\}$.

There are two graphs with vertex set $\delta_{i}(S)$ that are relevant to completing the proof.
In the end graph \mathcal{E}_{i}, distinct edges e, e^{\prime} in $\delta_{i}(S)$ are adjacent if there are infinitely many vertex-disjoint paths in $G-S$ that: (i) join the two paths in \mathcal{P}_{i} containing e and e^{\prime}; and (ii) are edge-disjoint from all the other paths in \mathcal{P}_{i}. Since all the paths in \mathcal{P}_{i} are in the same end, \mathcal{E}_{i} is connected.

The other graph is the $(k+1)$-lifting graph \mathcal{L}_{i} for v_{S} in G_{i-1}^{S}. By Theorem 1.2 (1.2.4), \mathcal{L}_{i} is a complete multipartite graph. Therefore, its complement is disconnected.

Since \mathcal{E}_{i} is connected, there is an edge $e_{i} e_{i}^{\prime}$ of \mathcal{E}_{i} that is not in the complement of \mathcal{L}_{i}; that is, $e_{i} e_{i}^{\prime}$ is an edge of \mathcal{L}_{i}. This is the required next pair of edges.

Let Q and Q^{\prime} be the rays in \mathcal{P} containing e_{i} and e_{i}^{\prime}, respectively. Because $e_{i} e_{i}^{\prime}$ is an edge of \mathcal{E}_{i}, there are infinitely many vertex-disjoint paths in G joining Q and Q^{\prime} that are edge-disjoint from the other rays in \mathcal{P}_{i}. Let P be one of these contained in $G-S$ that is also disjoint from all of the finitely many finite paths P_{1}, \ldots, P_{i-1}. Then $Q \cup P \cup Q^{\prime}$ contains a path P_{i} containing e_{i}, and e_{i}^{\prime}. This is the required next path.

The choices of the lifts $\left\{e_{i}, e_{i}^{\prime}\right\}$ show that $G_{|\delta(S)| / 2}^{S}$ is $(k+1)$-connected. Huck's Theorem shows that $G_{|\delta(S)| / 2}^{S}$ has an xy-linkage \mathcal{Q}.

An occurrence of the lift of $\left\{e_{i}, e_{i}^{\prime}\right\}$ in some path in \mathcal{Q} can be replaced by P_{i}. This converts \mathcal{Q} into an xy-linkage in G, as required.

References

[1] R. Aharoni and C. Thomassen, Infinite, highly connected digraphs with no two arcdisjoint spanning trees. J. Graph Theory 13 (1989), 71-74.
[2] Y.H. Chan, W.S. Fung, L.C. Lau, and C.K Yung, Degree bounded network design with metric costs, SIAM J. Comput. 40 (2011), no. 4, 953-980.
[3] A. Frank, On a theorem of Mader, Ann. of Disc. Math. 101 (1992), 49-57.
[4] A. Huck, A sufficient condition for graphs to be weakly k-linked, Graphs and Combinatorics 7 (1991), 323-351.
[5] W. Mader, A reduction method for edge-connectivity in graphs, Ann. of Disc. Math. 3 (1978), 145-164.
[6] H. Okamura, Every $4 k$-Edge-Connected Graph is weakly- $3 k$-linked. Graphs and Combinatorics 6 (1990), 179185.
[7] C. Thomassen, 2-linked graphs, Europ. J. Comb. 1 (1980), 371-378.
[8] C. Thomassen, Orientations of infinite graphs with prescribed edge-connectivity, Combinatorica, to appear.

[^0]: General rights
 Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal

 If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

[^1]: *Some of this work was done by the second and third authors while at the Institut Mittag-Leffler (Djursholm, Sweden). Some of this work was done during a visit by the first author to the University of Waterloo.
 ${ }^{\dagger}$ Department of Applied Mathematics and Computer Science, Technical University of Denmark, and + Department of Combinatorics \& Optimization, University of Waterloo.

 Supported in part by ${ }^{\ddagger}$ NSERC and ${ }^{\circ}$ ERC Advanced Grant GRACOL.

