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Abstract

Let G be the graph of a triangulated surface X' of genus g > 2. A cycle of G is
splitting if it cuts X into two components, neither of which is homeomorphic to a
disk. A splitting cycle has type k if the corresponding components have genera k
and g — k. It was conjectured that G contains a splitting cycle (Barnette '1982). We
confirm this conjecture for an infinite family of triangulations by complete graphs
but give counter-examples to a stronger conjecture (Mohar and Thomassen '2001)
claiming that G should contain splitting cycles of every possible type.

1 Introduction

A splitting cycle on a topological surface is a simple closed curve that cuts the surface into
two non-trivial pieces, none of which is homeomorphic to a disk. See Fig. [} A torus does
not have any splitting cycle but any closed surface (orientable or not) of genus at least
two admits a splitting cycle. Given a combinatorial surface, that is a cellular embedding
of a graph G into a surface Y, it is natural to ask whether G contains a cycle that is a
splitting cycle in Y. Here, a cycle in a graph is a closed walk without any repeated vertex.
It is known to be NP-hard to decide whether a combinatorial surface contains a splitting

Figure 1: A cycle may be null-homotopic (C1) or separating but non null-homotopic (C2)
or neither null-homotopic nor separating (C3). C2 is also called a splitting cycle.

cycle or not [CCAVLIIL ICCAVET06]. However, it was conjectured by Barnette that
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Conjecture 1 (Barnette '1982 [MTO1, p. 166]). Every triangulation of a surface of genus
at least 2 has a splitting cycle.

Two splitting cycles on a topological surface have the same type if there exists a
self-homeomorphism of the surface that maps one cycle to the other one. On an orientable
surface of genus ¢ there are |g/2] possible types corresponding to splittings into com-
ponents of respective genus k and g — k, 1 < k < ¢g/2. A stronger version of the above
conjecture was later proposed.

Conjecture 2 (Mohar and Thomassen 2001 [MTO01l, p. 167]). Every triangulation of an
orientable surface of genus at least 2 has a splitting cycle of every possible type.

In this article we prove that Conjecture [1| holds for the embeddings of the complete
graphs K, described by Ringel and Youngs [Rin74] or by Gross and Tucker |[GT87| when
n = 7 modulo 12. We next present counter-examples to Conjecture 2| that also disprove
a stronger conjecture of Zha and Zhao [ZZ93]. Let Mg be one of the embeddings of
K9, the complete graph on 19 vertices, given by Lawrencenko et al. [LNW94]. From
the Euler characteristic it is easily seen that Mg is a triangulation of genus 20. A brute
force approach to test if any of the cycles of Kig is splitting in M9 would lead to years of
computations. Thanks to a simple branch and cut heuristic we were able to check on a
computer that Conjecture [2| fails for Mi9. Only 4 of the 10 possible types occur and, in
particular, it is not possible to split Mg into two pieces of equal genus.

After reviewing some terminology and notations we survey the relevant works in
Section 3| In Section [4] we provide splitting cycles for the embedding of K947 described
by Ringel and Youngs [Rin74] or Gross and Tucker [GT87]. Our counter-examples to
Conjecture 2] are verified thanks to a branch and cut heuristic presented in Section [5] The
results of our experiments on Mg as well as on other orientable embeddings of bigger
complete graphs are discussed in Section [0}

2 Backgrounds and terminology

Combinatorial surfaces A map or combinatorial surface is a cellular embedding of a
graph in a topological surface. Informally, this is a drawing of a graph on a surface X' such
that the edges are drawn as simple non-crossing curves and such that the complement of
the graph is a union of topological open disks. If X' is a compact surface with boundary
this implies that the boundary of X' is included in the graph. Despite its topological aspect,
a map can be encoded by the purely combinatorial data of a rotation system [MT01]. An
automorphism of a map is an automorphism of its graph that commutes with the rotation
system of the map. The genus g of a map M is the genus of its embedding surface Y.
Let V and E be the respective number of vertices and edges of the graph G of M, and
let F' be the number of components of the complement of this graph in Y. By Euler’s
formula, the Euler characteristic x(M) :=V — E + F is equal to 2 — 2g if X is orientable
and to 2 — g otherwise. Another relevant parameter for the existence of a splitting cycle
is the face-width of M; it is the least number of intersections between the embedding of GG
and any non-contractible cycle on .



Triangulations A map is a triangulation if its graph is simple (without loop or multiple
edge) and every face has three sides. We exclude as a triangulation the embedding of
a 3-cycle in a sphere. Triangulations are also called simplicial triangulations. An edge
e of a triangulation 7" can be contracted if the two incident faces are the only 3-cycles
to which it belongs and if 7" is not the embedding of K, in a sphere. The contraction
of e results in a triangulation 7" obtained by identifying the two vertices of e to a new
vertex, deleting e and replacing by single edges the two multiple edges created by the two
collapsed triangles. See Figure 2] Note that 7" embeds in the same topological surface
as T. A triangulation is irreducible when none of its edges can be contracted. Every
irreducible triangulation of positive genus has face-width three. Indeed, every edge of
such a triangulation belongs to a non-contractible cycle of length three.

3 State of the art

3.1 Splitting cycles on Triangulations

If T" is obtained from a triangulation 7" by an edge contraction, then every splitting
cycle in T” is the contraction of at least one splitting cycle of the same type in T'. See
Figure 2] It follows that Conjectures [I] and [2 can be equivalently restricted to irreducible

Figure 2: The contraction of edge e in T" and the resulting triangulation 7. Every simple
path on 7" is the contraction of (at least) a simple path on 7.

triangulations. On the other hand, Barnette and Edelson [BES8S, BES9] proved that the
number of irreducible triangulations of a given surface is finite. Nakamoto and Ota [NO95]
further showed that the number of vertices in an irreducible triangulation is at most linear
in the genus of the surface. (This result has been extended to surfaces with boundaries
by Boulch and al. [BCAVNI3|. The best upper bound known to date is due to Joret and
Wood [JW10] who proved that this number is at most max{13g —4,4}.) In theory, one
can thus list all irreducible triangulations with fixed genus. This makes conjectures
and [2| decidable for fixed genus. Indeed, we can consider every irreducible triangulation in
turn to test whether one of its cycles is splitting and compute its type as the case may be.
Sulanke [Sul06al describes an algorithm for generating all the irreducible triangulations
with given genus and was able to list the irreducible triangulations of the orientable surface
of genus 2 and of the non-orientable surfaces up to genus 4. According to Sulanke there
are already 396784 irreducible triangulations of the orientable surface of genus 2 and



6297982 irreducible triangulations of the non-orientable surface of genus 4. In practice,
the number of irreducible triangulations is growing too fast and the technique cannot
be used for higher genera. Thanks to its enumeration Sulanke could conclude by brute
force computation that Conjecture [1fis true for the orientable surface of genus 2 [Sul06h].
A formal and highly technical proof seems to have appeared in Jennings’ thesis [Jen03].
Sulanke [Sul06b] also gives a simple counter-example to an extension of Conjecture 2| to
the non-orientable case of genus 3. It is constructed from a triangulation of a torus and a
triangulation of a projective plane. Remove a triangle from each of those surfaces and
glue them along their boundary. Let C' be the joining cycle in the resulting non-orientable
triangulation of genus 3. This surface cannot be cut by any cycle into a perforated Klein
bottle and a projective plane since the cycle would have to cross the length three cycle C'
at least four times. A similar argument holds when reversing the roles of the torus and
the Klein bottle, that is gluing a Klein bottle with a projective plane. To our knowledge,
no progress has been made on conjectures [Ij and [2] since then.

3.2 Splitting cycles on maps with large Face-width

The splitting cycle Conjectures for triangulations have their counterpart for maps with
face-width 3:

Conjecture 3 (Zha and Zhao '1993 [ZZ93]). Every map of genus at least 2 and face-width
at least 3 has a splitting cycle.

Conjecture 4 (Zha and Zhao '1993 [ZZ93]). Every map of genus at least 2 and face-width
at least 3 has splitting cycles of every possible type.

Since a triangulation has no loop or multiple edge, its face-width is at least 3. The
above conjectures are thus stronger than conjectures [1f and [2| respectively. It was proved
by Zha and Zhao [ZZ93] that a map of genus > 2 with face-width at least 6 in the
orientable case and at least 5 in the non-orientable case has a splitting cycle. Each of their
constructions leads to splitting cycles of type 1, which seems to be the most occurring
type. For maps of genus 2, those conditions were lowered to face-width 4 in the orientable
case [EZ03] and face-width 3 otherwise [RT91]. This last case is somehow buried in a
paper related to the computation of the genus of a graph. For easy reference, we extract
below the result and its proof.

Theorem 1 (Robertson and Thomas [RT91]). Every non-orientable map of genus 2 and
face-width at least 3 has a splitting cycle.

In fact, the condition on the face-width can be lowered to the condition that any
closed curve homotopicE] to some fixed non-separating two-sided simple loop /¢ intersects
the graph of the map at least three times.

Proof. Consider a map as in the theorem and let ' be the Klein bottle on which its
graph is embedded. With a little abuse of notations we write G for the graph as well
as its embedding. Choose ¢ as above on X' that further minimizes the number k > 3 of
intersections with G. After cutting along ¢ we get an annulus bounded by two copies

'Two closed curves are homotopic if one can be continuously deformed into the other.
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Figure 3: Left, a Klein bottle with a non-separating two-sided curve ¢ and a splitting
cycle a. Middle, the annulus after cutting along ¢. Right, The two paths in the annulus
merge to a splitting cycle o on the Klein bottle.

¢ and (" of ¢ with opposite orientations. See Figure [3] The graph G is also cut by ¢,

yielding a graph G’ with k vertices v}, ..., v, in cyclic order along ¢’ that correspond to k
other vertices v, ..., v} on . By the minimal property of ¢, every closed curve in the

annulus separating ¢’ from ¢’ cuts G’ at least k times. By Menger’s theorem it easily
follows that G’ contains k vertex disjoint paths connecting v; to vy, ;) (i =1...k) for
some circular shift o of [1,k]. The permutation i — o(k + 1 —4) is an involution that
cannot be the identity as k > 3. Any of its 2-cycle (i,j) provides a splitting cycle by
merging the path from v} to v7 and the path from v} to v;. See Figure . O

3.3 Embeddings of complete graphs

As noted in Section [3.I] one only needs to test conjectures [I] and [2] against irreducible
triangulations. Any triangulation whose graph is complete is irreducible. On the other
hand, Sulanke’s experimentation [Sul06a] on irreducible genus two triangulations suggests
that denser graphs, i.e. triangulations with fewer vertices, have longer — hence potentially
fewer — splitting cycles. It is thus legitimate to confront the conjectures with complete
graphs. From the proof of the map color theorem [Rin74] it is known that for each n > 4
with n = 0, 3,4 or 7 modulo 12 the complete graph on n vertices triangulates an orientable
surface (see also [GT8T, Sec. 5.1.5]). A similar result holds for triangulating non-orientable
surfaces when n Z 2,5 modulo 6. Describing actual embeddings, i.e., rotation systems, in
order to determine the genus of complete graphs was a major achievement of Ringel and
Youngs [Rin74]. Recent studies indicate that the number of non-isomorphic triangulations
of a surface by the same complete graph is actually quite high [KV01] [ES05, [GK12].
Lawrencenko et al. [LNW94] identify three triangular embeddings of the complete graph
K9 which they prove to be non-isomorphic with the help of a computer (see [KV01] for
a non-computer proof). Each one occurs as a covering of one of the orientable genus
two base maps as shown Figure ] Those coverings are generated from assignments of
the directed edges (or arcs) of each base map to elements of Zjo, the cyclic group of
order 19. Two opposite arcs should receive opposite assignments and the sum of the
assignments along an oriented facial cycle should be zero, whence the name of voltage
given to such assignments [GT87, Ch. 2|. The three voltages in [LNWO94] happen to



A B C

Figure 4: Three genus two maps with voltages in Zjg9. (The arcs opposite to those
represented must receive opposite voltages.) For each octagon the sides should be pairwise
identified according to their voltages. This results in each case A, B, C in a map with 9
edges and a single vertex. The corresponding coverings provide triangular embeddings of

the complete graph Ki9. Case A is from Ringel and Youngs contruction and case B from
Gross and Tucker [GT87].

be injective so that the arcs can be identified with their assignment. This leads to the
following simple description of each covering. Given one of the base maps with its voltage,
we label the vertices of K9 with Zj9 and declare (i, 7, k) to be a triangle iff the three
arcs with respective assignments j — i,k — 7 and ¢ — k form a facial cycle in the base
map. This construction can be generalized to produce embeddings of K., 7 for every
positive integer s. Gross and Tucker [GT87] use the base map reproduced on Figure [5|as a
4(s + 1)-gon whose sides are pairwised identified according to their voltage. The resulting
surface has genus s + 1 and is covered by a triangular embedding Mjss, 7 of Kios.7 whose
genus is 1 4+ s(12s + 7). As for Mg, we may identify the vertices of Kjoq 7 with Zjos 7
so that (i, j, k) is a triangle of Mias,7 iff j — i,k — j and ¢ — k label the three sides of a
triangle on the left Figure

4 Many splitting cycles

Our implementation for searching splitting cycles lead us to discover that every triangular
embedding Mi9s,7 as above has a splitting cycle of type 1. This confirms Conjecture (1] for
those triangulations. Note that by gluing irreducible triangulations along the boundary
of a triangle we may obtain arbitrarily large irreducible triangulations that all possess a
splitting cycle. However, the embeddings of complete graphs are not constructed this way
and thus provide non-trivial confirmations of Conjecture . For s > 3, My55.7 has indeed
a splitting cycle of length 8 given by the circular sequence of vertices:

v = (0,5,2,95 4+ 8,6, 1,4, 55 + 6)

This cycle bounds a perforated torus made of ten triangles as pictured on the right in
Figure . On this figure the two copies of edge (2,4) should be identified, as well as the
two copies of (0,6). The orbit of 44 by the action of Zjas17 on Myss, 7 provides us with
12s + 7 distinct splitting cycles of type 1. Viewing the base map on the left Figure [5| as a
fan of 4s 4 2 triangles, we can decompose the ten triangles of the perforated torus into
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Figure 5: Left, a base map and its voltage for constructing the Gross and Tucker’s
embedding of Ki5,.7. Note that this base map has a single vertex and is not a simplicial
triangulation. Right, the 10 triangles form a sub-surface of genus one with one boundary
component in Mss,7. Each arc (u,v) is assigned the voltage v — u. Hence, the arc
(9s + 8,4) receives the voltage 3s +3 mod (12s 4 7). Some triangles are colored to show
the corresponding covered triangles in the base map.

two sub-fans of length five in the base map. See Figure 0] left. This construction can be
generalized to exhibit many splitting cycles of type 1 by shifting the two fans, leading to
the perforated tori as on Figure [6] Each of those cycles can be translated by the action of
Z1as47 to give the following 2(s — 1)(12s + 7) distinct splitting cycles of type 1:

Vsik =k +(0,204+3,2,9s +7+14,2i +4,1,2i + 2,55 + 5 + 1)
Voir = k410,20 +2,2,55 +4 414,20 4+3,1,2i + 1,95 + 7 + 1)

fori € [1,s—1] and k € Z19517. We can further generalize the construction by gluing larger
fans of length 45 + 1 as on Figure E] to obtain splitting cycles of type j for j =1... [5;211
Hence, the embeddings M4, 7 constitute an infinite family of irreducible triangulations
that admit splitting cycles.

A similar construction applies to the embeddings of K947 by Ringel and Youngs.

5 Testing algorithm for Conjecture

Here we provide the details of our implementation for testing Conjecture [2] on any
triangular embedding M,, of the complete graph K, (for a relevant n), not necessarily
the embedding given by Ringel and Youngs or by Gross an Tucker. A straightforward
approach consists in checking for every possible cycle in K,, whether it is splitting or not
in M,, and computing its type in the former case. This assumes that we can list all the
Y ks %(Z)(k — 1)! undirected cycles of K,,. For n = 19 this is already more than 9 x 1016
cycles to test, which is out of reach of current computers.
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Figure 6: Left, the ten triangles of perforated torus in M5, 7 composed of two sub-fans
glued along an edge with even voltage 2i + 2. Right, a similar construction using a gluing
edge with odd voltage.

5.1 Pruning the cycle trees

Labelling the vertices of K,, with Z,, we identify a directed cycle with the sequence of its
vertex labels starting with the smallest label. The (directed) cycles can be organized in n
rooted trees where the parent of a cycle is obtained by deleting its last vertex. Before
exploring those cycle trees, we make two simple observations.

Remark 1. If the automorphism group of M, acts transitively on the set of its vertices
we only need to consider the tree of cycles through vertex 0.

Indeed, an automorphism of M, does not change the type of a cycle. This remark
applies to the three embeddings of K9 by Lawrencenko et al. [LNWO94] and to all the
orientable embeddings of K557 by Ringel and Youngs and by Gross and Tucker. In each
case Zissy7 acts transitively by addition on vertex labels.

Remark 2. We can assume that a splitting cycle does not contain two consecutive edges
bounding a same triangle. We could otherwise replace the two edges by the third one in
the triangle.

This allows us to decrease by two the degree of the (non root) nodes in the cycle trees.
A much more efficient pruning of the cycle trees is provided with the following simple
heuristic. Suppose we are given a directed splitting cycle v on M,,. We view an edge
as a pair of oppositely directed arcs. Color in red or blue all the interior edges of the
components of M, \ 7 respectively to the left or right of 7. The resulting coloring satisfies
that (i) every arc not in «y receives the same color as its opposite and (ii) for every vertex,
the set of arcs directed inward that vertex is either monochromatic or composed of a red
and a blue nonempty sequences separated by two arcs of . This leads to the following
coloring test. As we go down a cycle tree from cycle (vy,...,vx) to (vg,..., vk, Vks1) We
color the arcs pointing outward v and distinct from vivg_; and from vivg, 1 in red or blue
according to whether they lie to the left or right of the directed subpathﬂ (Vk—1, Uk, Ug1)-
Each time an arc v,v is colored we check that

2In the non-orientable case, the left and right orientation should be propagated along the path
(an S Uk+1)-



Figure 7: A punctured surface of genus j in Mjss.7. The thick edges should be glued
according to their voltage.

vy, is either colored as vpv or has not been visited yet,

the arc preceding v,v around v is not colored with the other color,

the arc following viv around v is not colored with the other color,

if another arc uv has the same color as v,v, then all the arcs entering v with the
other color lie on the same side of the path (v, v, u).

If any of these tests fails the current partial coloring cannot be extended to fulfill the
above conditions (i) and (ii). We can thus stop exploring the cycle subtree rooted at
(vo, ..., vky1). Together with remarks 1| and [2| those simple tests happens to be very
effective and to reduce drastically the number of cycles to consider. See Section [0] for
experimental results.

5.2 Computing the type of a cycle

When the cycle o := (v,...,vx11) passes the above tests it remains to check if o is
splitting and to compute its type. To this end we temporarily color the arcs pointing
outward vy and the arcs pointing outward vi, ;1 in a way similar to that of the other v;,
1=1,..., k. We also perform the above tests and reject the cycle if anyone fails. At this
point all the arcs outward the vertices of ¢ have been colored. We say that a vertex of
K, — o is partially monochromatic if all its colored inward arcs received the same color.

Lemma 1. o is separating if and only if all the vertices of K,, — o are partially monochro-
matic and all of the same color.

Proof. 1f o is separating then one of the two components of M, \ ¢ has no interior vertex.
Otherwise, there would be an interior vertex in each component. However, those vertices
would be connected by an edge of the (complete) graph of M,, leading to a contradiction.
The direct implication in the Lemma easily follows. For the reverse implication, suppose



that every vertex of K,, — o is partially monochromatic and that none of the arcs pointing
to K, — o has color ¢ for some ¢ € {blue, red}. Then, every arc a with color ¢ must
connect two vertices of 0. The sides of the two triangles of M, incident to a are thus
either in o or have color c. It ensues that the set of triangles of M,, each of whose sides is
either in ¢ or colored with ¢ forms a subsurface of M,, whose boundary is o, proving that
o is separating. O

When M, is orientable and ¢ is separating we can directly compute its type. With the
notations of the preceding proof this amounts to compute the genus ¢’ of the c-colored
component of M, \ o. Denote by A. the number of ¢-colored arcs and let |o| be the number
of edges of . Using the Euler characteristic and double counting of the edge-triangle
incidences, we easily obtain ¢’ = (A. — 2|o| + 6)/12 when the c¢-colored component is
orientable and ¢’ = (A, — 2|o| 4 6)/6 otherwise.

In practice, we maintain the following information for every vertex of v € M,,: whether
it belongs to the current cycle, the number of incident blue edges, the number of incident
red edges, and a data-structure to store the colored arcs inward v. The updating of this
information as well as the color tests can be performed in O(logn) time per newly colored
edge using a simple data-structure that allows to find the next or previous colored arc
around v and to insert or remove an arc in O(logn) time. Traversing the cycle trees in
depth first order our algorithm thus spends O(nlogn) time per cycle in the cycle trees.
When M, is non-orientable we can compute the Euler characteristic of the c-colored
component in the same amount of time. If the c-colored component is orientable the
other component must be non-orientable and we are done. Otherwise we may need
O(|K,|) = O(n?) time to determine the orientability of the other component.

6 Results

In this section we detail the results from testing our algorithm on embeddings of complete
graphs, thus disproving conjectures [2] and 4 Remark [I] applies to each of the tested
embeddings so that we only need to explore the cycle tree rooted at vertex 0.

6.1 Embeddings of K

Our smallest counter-examples to Conjecture 2] are provided by the three embeddings of
K9 described in Section [3.3] We refer to them as A,B and C in accordance with Figure [4l
A splitting cycle is said to have type k if it cuts the surface into components of respective
genus k and 20 — k. The next table shows for each embedding and each type the number
NSC of splitting cycles of that type found as we traverse the cycle tree with root vertex
0 and the minimum length of any of those NSC cycles. Note that this minimum length
would be the same if we would not take Remark [2| into account for pruning the cycle
tree. For instance, we may note that every splitting cycle of type 4 in embedding B is
Hamiltonian.
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Type 1 2 3 4 1 5-10
A NSC 450 [ 545 | 79 |18 | O
Min Length | 11 | 14 | 16 | 18 | L
B NSC 468 | 494 | 130 | 19| O
Min Length | 10 | 14 | 18 | 19| L
o NSC 350 [ 207 | 17 36| O
Min Length | 11 | 15 | 17 | 18| L

None of the three embeddings admits a splitting cycle of type 5 or more, thus disproving
Conjecture 2] In particular, these embeddings cannot be split in a balanced way into
two punctured surfaces of genus 10. As a side remark, the fact that the numbers in the
table are distinct for the three embeddings is another confirmation that they are not
isomorphic [LNW94]. The next table indicates the proportion of contractible and splitting
directed cycles among the visited nodes (that passes the color tests of Section in the
cycle tree. Since every cycle appears with both directions in the cycle tree, the number of
splitting cycles is twice the sum in the corresponding NSC row in the previous table.

# visited nodes | # contractible | # splitting
A 250221 36 2164
B 244229 36 2222
C 210808 36 1330

Hence, thanks to our pruning heuristic, less than 3 x 10 of the 1.8 x 10'7 directed cycles
of K9 are visited. We remark that by a Dehn type argument in the universal cover of
the triangulation (see [Sti93) Sec. 6.1.3]) a contractible cycle that does not contain two
consecutive edges of any triangle must be the link (i.e. the boundary of the star) of a
vertex. Since every cycle in the cycle tree must contain vertex 0 this leaves 18 link cycles
as contractible cycles and explains the 36 found in each row of the previous table.

6.2 More counter-examples

We ran our test algorithm on other embeddings of complete graphs on a quad core laptop
with 8 Gb RAM. Table [I| summarizes our results for the Ringel and Youngs embeddings
of K,, with n € {15,19,27,28,31,39,40,43}. Each entry in the table gives the length of
the smallest splitting cycle of a given type for some K, if any. The last row indicates
the largest possible type of a splitting cycle in the Ringel and Youngs embedding of K,.
It took less than 10 seconds to explore the pruned cycle tree for Kig, less than one hour
for K3, and about half a day for K3. We have also tested some of the Gross and Tucker
embeddings of Kjss,7. Some results are listed in Table

Conclusion
Our counter-examples to Conjecture [2] were checked with the help of a computer. Can we

give a formal proof that would not recourse to a computer (at least for Mjg)? Although
we could not find such a proof, three points seem relevant to this purpose.
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Type B Kis | Kig | Ko7 | Kos | K31 | K39 | Kao | Ku3
1 8 11 | 12 | 12 8 12 | 10 8
2 11 | 14 | 16 | 17 | 13 | 15 | 15 | 11
3 12 | 16 | 19 | 18 | 15 | 20 | 18 | 12
4 13 | 18 | 20 1 17 124 | 19 | 15
5 14 L 27 | L 20 | 26 | 24 | 18
6 € 1 1 21 | 30 | 26 | 20
7 L 1 L 23 | 32 | 28 | 21
8 L L L 24 | L 30 | 23
9 1 L L 28 4 33 | 24
10 4 L L 28 L 35 | 25
11 1 1 29 1 36 | 27
12 1 1 € 1 38 | 29
13 1 L L L |40 | 30
14 4L 4L L 1 4L 31
: 4L L L 4L 4L :
29 L 4L 1] 42
30 1 L L 1

max type 5 10 | 23 | 25 | 31 | 32 | 55 | 65

Table 1: Minimal size of splitting cycles of Ringel and Youngs embeddings according to
their type.

e Suppose there is a splitting cycle of type 10 with k edges in Mig. As noted in the
proof of Lemma [I} on one side of the cut surface we have no interior vertex. Let
f and e be the number of faces and edges on this side (the number of vertices is
k). By double counting incidences we have 3f = 2e — k, and by Euler’s formula:
k—e+ f=2-20—1= —19. It ensues that e = 2k + 57. Because the graph is
simple we also have e < (g) This implies k* — 5k — 114 > 0 and in turn 14 < k& < 19.
A similar computation shows that a splitting cycle of type half the genus of Mo, 7

has length at least (5 + \/(1 + (245 +17)2)/2) /2.

e Every splitting cycle leads to an arrangement of 12s + 7 splitting cycles thanks to
the action of Z195,7 on Miss, 7. Is it possible to take advantage of this arrangement
to obtain an “impossible” dissection of M., 7 when assuming the existence of a
splitting cycle of type | g(Migsi7)/2]7

e Finally, we saw in Section [] that M7 contains many short splitting cycles. On
the other hand, the first above point tells that a splitting cycle v of type half the
genus is relatively long, hence must cut many of the short splitting cycles. Being
separating, v has to cut every other cycles an even number of times. Would this
enforce v to have length larger than 12s + 7, leading to a contradiction?

Our counter-examples show that it is not always possible to split a genus g triangulation
into two genus ¢g/2 triangulations. Looking at the tables in Section , it seems that the

12



T | Ko | Ko | K
1 10| 8 | 8
2 14 | 13 | 11
3 18| 17 | 12
4 19 | 19 | 15
5 1 [ 20| 18
6 1 [ 25 23
7 1 [ 26| 26
8 1 [ 26| 26
9 L[ 1R
10 L[ 1|34
11 T EY
12 L |35
13 L |35
14 L[| L

max 10 | 31 | 65

Table 2: Minimal size of splitting cycles of Gross and Tucker embeddings according to

their type.

proportion of the types of the splitting cycles of Mo, 7 is roughly decreasing as s grows.
This leads to the following conjecture in replacement of Conjecture [2]

Conjecture.

For any positive real number o < 1/2, there exists a triangulation (or a

graph embedding of face-width at least 3) of arbitrarily large genus g that has no splitting
cycle of type larger than ag.
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