Skip to main content
Log in

Relationships Between the 2-Metric Dimension and the 2-Adjacency Dimension in the Lexicographic Product of Graphs

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Given a connected simple graph \(G=(V(G),E(G))\), a set \(S\subseteq V(G)\) is said to be a 2-metric generator for G if and only if for any pair of different vertices \(u,v\in V(G)\), there exist at least two vertices \(w_1,w_2\in S\) such that \(d_G(u,w_i)\ne d_G(v,w_i)\), for every \(i\in \{1,2\}\), where \(d_G(x,y)\) is the length of a shortest path between x and y. The minimum cardinality of a 2-metric generator is the 2-metric dimension of G, denoted by \(\dim _2(G)\). The metric \(d_{G,2}: V(G)\times V(G)\longmapsto {\mathbb {N}}\cup \{0\}\) is defined as \(d_{G,2}(x,y)=\min \{d_G(x,y),2\}\). Now, a set \(S\subseteq V(G)\) is a 2-adjacency generator for G, if for every two vertices \(x,y\in V(G)\) there exist at least two vertices \(w_1,w_2\in S\), such that \(d_{G,2}(x,w_i)\ne d_{G,2}(y,w_i)\) for every \(i\in \{1,2\}\). The minimum cardinality of a 2-adjacency generator is the 2-adjacency dimension of G, denoted by \({\mathrm {adim}}_2(G)\). In this article, we obtain closed formulae for the 2-metric dimension of the lexicographic product \(G\circ H\) of two graphs G and H. Specifically, we show that \(\dim _2(G\circ H)=n\cdot {\mathrm {adim}}_2(H)+f(G,H),\) where \(f(G,H)\ge 0\), and determine all the possible values of f(GH).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Adjacency generators were called adjacency resolving sets in [11].

  2. A vertex set S is a dominating set in a graph G if every vertex not in S is adjacent to a vertex in S.

References

  1. Blumenthal, L.M.: Theory and Applications of Distance Geometry. Oxford University Press, Oxford (1953)

    MATH  Google Scholar 

  2. Estrada-Moreno, A., Ramírez-Cruz, Y., Rodríguez-Velázquez, J.A.: On the adjacency dimension of graphs. Appl. Anal. Discrete Math. 10(1), 102–127 (2016)

    Article  MathSciNet  Google Scholar 

  3. Estrada-Moreno, A., Rodríguez-Velázquez, J.A., Yero, I.G.: The \(k\)-metric dimension of a graph. Appl. Math. Inf. Sci. 9(6), 2829–2840 (2015)

    MathSciNet  Google Scholar 

  4. Estrada-Moreno, A., Yero, I.G., Rodríguez-Velázquez, J.A.: The \(k\)-metric dimension of corona product graphs. Bull. Malays. Math. Sci. Soc. 39(1), 135–156 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Estrada-Moreno, A., Yero, I.G., Rodríguez-Velázquez, J.A.: The \(k\)-metric dimension of the lexicographic product of graphs. Discrete Math. 339(7), 1924–1934 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Fernau, H., Rodríguez-Velázquez, J.A.: On the (adjacency) metric dimension of corona and strong product graphs and their local variants: combinatorial and computational results. arXiv:1309.2275 [math.CO]

  7. Fernau, H., Rodríguez-Velázquez, J.A.: Notions of metric dimension of corona products: Combinatorial and computational results, In: Computer Science—Theory and Applications, vol. 8476 of Lecture Notes in Computer Science, pp. 153–166. Springer International Publishing (2014)

  8. Hammack, R., Imrich, W., Klavžar, S.: Handbook of Product Graphs, Discrete Mathematics and its Applications, 2nd edn. CRC Press, Boca Raton, FL (2011)

    MATH  Google Scholar 

  9. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Comb. 2, 191–195 (1976)

    MathSciNet  MATH  Google Scholar 

  10. Hernando, C., Mora, M., Slater, P.J., Wood, D.R.: Fault-tolerant metric dimension of graphs, In: Changat, M., Klavzar, S., Mulder, H.M., Vijayakumar, A. (eds.), Convexity in Discrete Structures, no. 5 in RMS Lecture Notes Series, pp. 81–85. Ramanujan Mathematical Society Ed. (2008)

  11. Jannesari, M., Omoomi, B.: The metric dimension of the lexicographic product of graphs. Discrete Math. 312(22), 3349–3356 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discrete Appl. Math. 70(3), 217–229 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Slater, P.J.: Leaves of trees. Congr. Numerantium 14, 549–559 (1975)

    MathSciNet  MATH  Google Scholar 

  14. Yero, I.G., Estrada-Moreno, A., Rodríguez-Velázquez, J.A.: Computing the \(k\)-metric dimension of graphs. arXiv:1401.0342 [math.CO]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Yero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estrada-Moreno, A., Yero, I.G. & Rodríguez-Velázquez, J.A. Relationships Between the 2-Metric Dimension and the 2-Adjacency Dimension in the Lexicographic Product of Graphs. Graphs and Combinatorics 32, 2367–2392 (2016). https://doi.org/10.1007/s00373-016-1736-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00373-016-1736-5

Keywords

Mathematics Subject Classification

Navigation