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Abstract

In 1963, Corradi and Hajnal settled a conjecture of Erdés by proving that, for all £ > 1, any graph G
with |G| > 3k and minimum degree at least 2k contains k vertex-disjoint cycles. In 2008, Finkel proved
that for all £ > 1, any graph G with |G| > 4k and minimum degree at least 3k contains k vertex-disjoint
chorded cycles. Finkel’s result was strengthened by Chiba, Fujita, Gao, and Li in 2010, who showed,
among other results, that for all £ > 1, any graph G with |G| > 4k and minimum Ore-degree at least
6k — 1 contains k vertex-disjoint cycles. We refine this result, characterizing the graphs G with |G| > 4k
and minimum Ore-degree at least 6k — 2 that do not have k disjoint chorded cycles.
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1 Introduction

All graphs in this paper are simple, unless otherwise noted. Additionally, when referring to cycles in a graph,
“disjoint” is always taken to mean “vertex-disjoint.” For a graph G, we use V(G) and E(G) to denote the
vertices and edges, respectively, and for a vertex v, we will use v € G to denote v € V(G). For a vertex
v € G, and for a subgraph H of G (where possibly H = G), the neighborhood of v in H is denoted by Ny (v).
The number of neighbors of v in H (i.e., |[Ng(v)|) will be written by dg(v). Furthermore, we write |G| for
the order of a graph G, G for its complement, §(G) for its minimum degree, and a(G) for its independence
number.
The minimum Ore-degree of a non-complete graph G is written o2(G), and defined as

02(G) = min{dg(z) + dc(y) : vy € E(G)};

that is, o2(G) is the minimum degree-sum of nonadjacent vertices. K, is the complete graph on n vertices,
and K, ., is the complete t-partite graph with parts of size si,...,s:. For graphs G and H, G + H is the
disjoint union of G and H, and G V H is the join of G and H.

In 1963, Corradi and Hajnal verified a conjecture of Erdds, proving the following.

Theorem 1 (Corrddi-Hajnal, [3]). Every graph G on |G| > 3k vertices with 6(G) > 2k contains k disjoint
cycles.

This result of Corradi and Hajnal has been generalized in various ways. One such generalization is a
strengthening by Enomoto and Wang, who independently proved the following.

Theorem 2 (Enomoto [5] , Wang [14]). Every graph G on |G| > 3k vertices with o2(G) > 4k — 1 contains
k disjoint cycles.
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Both Theorems [0 and 2] are sharp, leading to the following natural question of Dirac.
Question 3 (Dirac, [4]). Which (2k — 1)-connected multigraphs do not contain & disjoint cycles?

Question [B] was answered in the case of simple graphs in [I0], and then in multigraphs in [11]. Indeed,
[10] together with [12] answer a more general question for simple graphs, describing graphs with minimum
Ore-degree at least 4k — 3 with no k disjoint cycles. To avoid going into too many technical details, we only
provide part of this description below.

Theorem 4 ([10], [12]). Given an integer k > 4, let G be a graph on |G| > 3k vertices with o2(G) > 4k — 3.
Then G contains k disjoint cycles if and only if none of the following hold:

1. o(G) > |G| — 2k + 1.

2. G=(K.+ Koi_.)V K}, for some odd c

3. G=(Ki+ Kou)V K1

4. |G| = 3k and G is not k-colorable

In 2008 Finkel proved the following chorded-cycle analogue to Theorem [l

Theorem 5 (Finkel, [7]). Fvery graph G on |G| > 4k vertices with §(G) > 3k contains k disjoint chorded
cycles.

A stronger vertion of Theorem [B] was conjectured by Bialostocki, Finkel, and Gyérfds in [I], and proved
by Chiba, Fujita, Gao, and Li in [2].

Theorem 6 (Chiba-Fujita-Gao-Li, [2]). Let r and k be integers with r + k > 1. Ewvery graph G on |G| >
3r 4 4k vertices with o2(G) > 4r + 6k — 1 contains a collection of r + k disjoint cycles such that k of these
cycles are chorded.

In particular, the following corollary holds.

Corollary 7 (Chibia-Fujita-Gao-Li, [2]). Every graph G on |G| > 4k vertices with o2(G) > 6k — 1 contains
a collection of k disjoint chorded cycles.

All hypotheses in Theorem [l and Corollary [0 are sharp. First, since any chorded cycle contains at least
four vertices, if |G| < 4k then G does not contain k disjoint chorded cycles. Second, the conditions §(G) > 3k
and o9(G) > 6k — 1 are best possible, as demonstrated by the two graphs below.

Definition 8. For n > 6k — 2, define G1(n, k) := Ksp—1n—3k+1 (Figure [a). For k > 2, define Ga(k) :=
Ksp—23k—2,1 (Figure [ID).

For n > 6k — 2, |G1(n, k)| = n > 4k and o2(G1(n,k)) = 6k — 2. Each chorded cycle in G;(n, k) uses
at least three vertices from each part, so G1(n, k) does not contain k disjoint chorded cycles. For k > 2,
|G2(k)| = 6k —3 > 4k and 02(G2(k)) = 6k — 2. Each chorded cycle in G5 (k) uses three vertices from each of
the big parts, or the dominating vertex and at least two vertices from a big part, so Ga(k) does not contain
k chorded cycles.

We can now ask a question similar to Question Bt which graphs G with o2(G) > 6k — 2 do not contain
k disjoint chorded cycles? Our main result is the following.

Theorem 9. For k > 2, let G be a graph with n := |G| > 4k and o02(G) > 6k — 2. G does not contain k
disjoint chorded cycles if and only if G € {G1(n, k), G2(k)}.

The condition k > 2 in Theorem [@is necessary, as subividing every edge of a graph results in a new graph
with no chorded cycles. Thus, for £k = 1, we obtain the following characterization, which is analogous to the
characterization of acyclic graphs as the graphs for which there exists at most one path between every pair
of vertices.
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(b) G2(k), shown for k = 2

(a) Gi(n, k), shown for k =2

Figure 1: Graphs G1(n, k) and G3(k) from Definition [§
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Proposition 10. A graph G has no chorded cycle if and only if for all wv € E(G), G —uv has at most one
path between u and v.

Every graph G with §(G) > 3k — 1 also satisfies 02(G) > 6k — 2. Therefore, Theorem [ is a refinement
of both Theorem [l and Corollary [fl Two other immediate corollaries of Theorem [ are listed here.

Corollary 11. For k > 2, let G be a graph with |G| > 4k, 02(G) > 6k — 2, and o(G) < n — 3k. Then G
contains k disjoint chorded cycles.

Every graph G with o3(G) > 6k — 2 also satisfies a(G) < n — 3k + 1. So, requiring a(G) < n — 3k in
Corollary [Tl is equivalent to requiring the seemingly weaker condition «(G) # n — 3k + 1.

Corollary 12. For k > 2, let G be a graph with 4k < |G| < 6k — 4 and 02(G) > 6k — 2. Then G contains
k disjoint chorded cycles.

1.1 Outline

We present our result as follows. In Section 2] we detail the setup of our proof and present several important
lemmas that will be used throughout our paper. In particular, we find and choose an ‘optimal’ collection of
k — 1 disjoint cycles, and use R to denote the subgraph induced by the vertices outside our collection. Then,
in Section Bl we consider the case when R does not have a spanning path, and, in Section 4] we consider
the case when R has a spanning path. We conclude our paper in Section [Bl with some remarks on further
extensions.

2 Setup and Preliminaries

2.1 Notation
Let G be a graph, and let A, B C V(G), not necessarily disjoint. We define ||A, B|| := Y |Ng(a) N Bj.
a€A

When A = {a} or A is the vertex set of some subgraph 4, we will often replace A in the above notation
with a or A, respectively. Additionally, if £ is a collection of graphs, then ||A, L] = |4, U V(L)|. If A is
Lel

the vertex set of some subgraph A, we will write G[A] for G[A], the subgraph of G induced by the vertices
of A. Furthermore, if B is a subgraph of G with vertex set B, we will use A\ B to denote G[A \ B], and
if B={b1,...,br} and k is small, we will also use A — by — -+ — b. For a vertex v, we additionally write
A+ v for G[AU {v}].

If P=wi...vp is a path, then for 1 <i < j <m, v;Pv; is the path v; - --v;. An n-cycle is a cycle with
n vertices. A singly chorded cycle is a cycle with precisely one chord, and a doubly chorded cycle is a cycle
with at least two chords.



2.2 Setup

We let k& > 2 and consider a graph G’ on n vertices such that n > 4k and 02(G’) = 6k — 2, where G’
does not contain k disjoint chorded cycles. We then let G be a graph with vertex set V(G’) such that
E(G") C E(G) and G is “edge-maximal” in the sense that, for any e € E(G), G + e does contain k disjoint
chorded cycles. We then prove that G is G1(n, k) or G2(k), which implies that G = G’, because any proper
spanning subgraph of G1(n, k) or G2(k) has minimum Ore-degree less than 6k — 2. Since we have already
observed that G1(n, k) and Ga(k) do not contain k disjoint chorded cycles, this will prove Theorem [0
Note that G 2 K, else G contains k disjoint chorded cycles. So there exists e € F(G), and by our edge-
maximality condition, G contains k — 1 disjoint chorded cycles. Over all possible collections of k — 1 disjoint

chorded cycles in G, let C be such a collection which satisfies the following conditions when R := G\ C:
(O1) the number of vertices in C is minimum,

(02) subject to (O1), the total number of chords in the cycles of C is maximum, and

(03) subject to (O1) and (0O2), the length of the longest path in R is maximum.

We use the convention that P is a longest path in R. Since G[P] may have several paths spanning V' (P)
and the endpoints of such paths will behave in a similar manner, we let

P :={v e V(P):vis an endpoint of a path spanning V(P)}.

2.3 Preliminary Results

We begin with a number of observations about G that follow directly from our setup. In the interest of
readability, the observations in this paragraph will be used in the text without citation. Since G does not
contain k disjoint chorded cycles, R does not contain any chorded cycle, and for any C' € C, G|[R U C] does
not contain two disjoint chorded cycles. If p is an endpoint of P and has a neighbor in R\ P, we can extend
P. Thus, ||p,R| = |lp, P||. If ||p, P|| > 3, then G[P] contains a chorded cycle, so ||p, R|| < 2. Similarly, to
avoid a chorded cycle in R, ||, P|| < 3 and for any v € P, ||v, P|| < 4. If p has two neighbors in P, then
G|[P] contains two distinct spanning paths.

An immediate corollary of (O1) is that, for any chorded cycle C € C, no vertex of C' is incident to two
chords; otherwise, we could replace C' with a chorded cycle on fewer vertices. We will assume this fact in
the proof of the following lemma.

RCedges| Lemma 13. Letv € R and C €C.
4edgesL (1) If ||v,C|| > 4, then ||v,C|| = 4 = |C|, and G[C] = Kjy.
3edgesL (2) If ||v,C|| = 3, then |C| € {4,5,6}. Moreover:

(a) if |C| =4, then C has a chord incident to the non-neighbor of v (see Figure[2d);
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3edgesL5 (b) if |C| =5, then C is singly chorded, and the endpoints of the chord are disjoint from the neighbors
of v (see Figure[2l); and
3edgesL6 (c) if |C| =6, then C has three chords, with G[C]| = K33 and G|C + v] = K3 4 (see Figure[2d).

Proof. If there exist vertices ¢, co € C that are adjacent along the cycle of C such that ||v,C —¢1 — 2| > 3,
then (C' — ¢ — ¢2) + v contains a chorded cycle with strictly fewer vertices than C, contradicting (O1). This
proves that if ||v, C|| = 3, then |C| < 6. Similarly, if ||v, C|| > 4, then |C| =4 and |jv,C|| = 4. If ||v,C|| =4
and |C| = 4, then v together with a triangle in C' give a doubly chorded 4-cycle, so by (02), G[C] = K.

Suppose ||v,C|| = 3. If |C| = 4, then let ¢ € C be the non-neighbor of v in C. If ¢ is not incident to a
chord, then (C' — ¢) 4+ v gives a doubly chorded 4-cycle, preferable to C' by (02). This proves (@).

So |C| € {5,6}. Since the vertices in V(C) \ Ng(v) cannot be adjacent along the cycle C, C' —c+ v
contains a chorded cycle C” of the same length as C, for any ¢ € V(C) \ Ng(v), If ¢ is not incident to a
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Figure 2: Lemma [T3(2)

chord, then C’ has strictly more chords than C, violating (02). So every vertex in V(C) \ Ng(v) is incident
to a chord.

If |C] = 6, then v is adjacent to every other vertex along the cycle, and every ¢ € V(C)\ Ng(v) is incident
to a chord. Since no vertex in C is incident to two chords, (O1) implies (@). If |C| = 5, then (O1) implies
that the only possible chord has the two non-neighbors of v as its endpoints, which proves (bl). o

Lemma 14. Let Q be a path in R such that |Q| > 4 and let C € C. If F C V(Q) such that |F| = 4, then
|F, C|| < 12. Furthermore, if G[C| = K4 and there exists an endpoint v of Q such that ||v,C|| > 3, then
1Q, C|l <12 with ||Q, C|| = 12 only if ||v,C|| = 4.

Proof. Assume ||F,C|| > 13 for some F C V(Q), |F| = 4, and let wuy, us, us, us be the vertices of F in the
order they appear on the path Q. By Lemma I3, G[C] = K4, so there exists ¢ € C such that ||c, F|| > 4.
Since ||[{u1,usa},C|| > 5, there exists ¢ € {1,4} such that |ju;,C|| > 3. So @ —u; + ¢ and C — ¢ + u; both
contain chorded cycles, a contradiction.

To prove the second statement, suppose G[C] = K4 and let v be an endpoint of @ such that ||v, C|| > 3.
Note that for every ¢ € C, C' — ¢+ v and  — v + ¢ both contain chorded cycles if ||¢,@Q — v|| > 3. Thus,
1Q, C|l <12, and furthermore, if ||Q, C|| = 12, then ||¢, Q|| = 3 and ||¢,v|| = 1 for every c € C. O

Lemma 15. If C € C and |v1,C|, ||ve, C|| > 3 for distinct vi,v2 € R, then |C| € {4,6}.

Proof. It C' ¢ {4,6}, then |C| = 5 and N¢(v1) = Ne(v2), by Lemmal[l3l Furthemore, Lemmal[l3] implies that
there are two adjacent vertices ¢, ¢’ € Ne(v1) = Ne(v2), but then vycvac’vy is a chorded cycle contradicting
(O1). O

In the following sections, we will often show that every C' in C is a 6-cycle. Furthermore, it will often be
the case that there exists some u € R such that ||ju,C|| = 3 for every C' € C. The following lemma will be
useful in considering the neighbors of u in R and their adjacencies in C.

Lemma 16. Let C € C with |C| = 6, and let u,v € R such that uwv € E(G). If ||u,C|| =3 and ||v,C|| > 1,
then N¢(u) N Ne(v) = 0.

Proof. By Lemma [[3] we may assume that A = {a1,a2,a3} and B = {b1,be,b3} are the partite sets of
G[C] = K33 with Nc(u) = A. Suppose on the contrary that va; € E(G). Then uasbiaivu is a 5-cycle with
chord ua;. This contradicts (O1). (]

Lemma 17. Suppose H is a graph with no chorded cycle. Let U and W be two disjoint paths in H and let
uy and ug be the endpoints of U. Then ||{ui,us}, W| < 3. If equality holds, then uy # ua and for some
i € [2], |lui, W|| = 2 and |Jus—;, W|| = 1, with the neighbor of us_; strictly between the neighbors of u; on W;
in addition, | U, W|| = 3.

Proof. Let W = wyws...w; for some t > 1. |luy, W|| < 2 and |Jugz, W|| < 2, as H does not contain a
chorded cycle. Thus, if |[{u1,us}, W| > 3, we may assume that u; # ug, and, without loss of generality,
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that [Juy, W|| = 2 and |lug, W| > 1. Suppose uiw;, uqw; € E(H) such that ¢ < j, and let uow, € E(H) for
some /.

If £ <4, then weWw;uUugwy is a cycle with chord wyw;. If £ > j, then w;WweuaUuqw; is a cycle with
chord ujw;. Thus, the neighbors of up in W are internal vertices of the path w;Ww;. If ||ug, W|| = 2, then
suppose ¢ is the largest index such that uqw, € E(H). However, w;WwgusUuiw; is a cycle containing a
chord incident to ug. So |luz, W|| = 1.

Now if v is an internal vertex on U such that vw,, € F(H), then by replacing us with v, we deduce that
1 <m < j. If m < ¢, then w;WwpuUuyw; is a cycle with chord vw,,, and if m > £, then w,Ww;uiUugw;
is a cycle with chord vwy,. This proves the lemma. O

3 Suppose V(R) # V(P).

In this section, we make the assumption that V(R) # V(P). That is, there exists some vertex v € R\ P. In
addition, we will use the convention that p and p’ are the endpoints of P, and ¢ (resp. ¢’) is the neighbor of
p (resp. p') on P. By the maximality of P, vp ¢ E(G) so that dg(v) + dg(p) > 6k — 2. Similarly for v and

/

p'.
Our aim is to show that G = G1(n, k), which is a complete bipartite graph. To aid us, we define a set of

vertices T := {v € R : dr(v) = 2}. We will show that T is contained in one of the partite sets of G1(n, k).
Lemma 18. Ifv € R\ P, then ||[{v,p},C|| <6 for every C € C, with equality only if

(i) |C| € {4,6} and Ne(v) = Ne(p), or

(i) [lp, Cll = |C] = 4.

Proof. Suppose v € R\ P and |[{v,p},C|| > 6 for some C € C. If ||[{v,p}, C|| > 7, then either ||v,C|| =4 or
lp, C|| = 4, so that G[C] = K4 by Lemma I3 If ||v, C|| = 4, then ||p, C|| = 0, lest we extend P by adding a
neighbor of p in C, and replace said neighbor in C' with v, violating (03). If ||p, C|| = 4, then ||v,C| < 2,
else there exists ¢ € C such that C' — ¢+ v & K4, and we can extend P by adding ¢, violating (O3). So,
I{v,p},C|| < 6, and if equality holds, then either (ii) occurs, or ||v,C| = ||p,C| = 3. We may assume
[lv,C|l = |lp, C|| = 3, so that |C| € {4,5,6} by Lemma [I3]

By Lemmal[If |C| € {4,6}. Suppose |C| =4 and ||v, C|| = ||p, C|| = 3. Note that G[N¢(v)U{v}] forms a
chorded 4-cycle with at least the same number of chords as C. If p is adjacent to the vertex in V(C)\ Ng(v),
we use that vertex to extend P, violating (O3). So (i) holds.

Finally, suppose |C| = 6. By Lemma[I3] if v and p do not have the same neighborhood, they are adjacent
to disjoint sets of vertices, and C' 4+ p and C + v both contain K3 4. In this case, we extend P using any
¢ € N¢(p), and replace C' with a chorded cycle in C' — ¢ + v. This violates (03), so (i) holds. O

Lemma 19. For anyv € R\ P, ||[{v,p}, R|| > 4, so that ||v, R|| > 2. Moreover, |P| > 3.
Proof. Let v € R\ P. By the maximality of P, pv ¢ E(G). Thus, by Lemma [I§]

2k — 1) <dg(v) + da(p) = [l{v,p},Cll + [{v, p}, Rl < 6(k — 1) + [{v, p}, R,

so |[{v,p}, R|| > 4. Since ||p, R|| < 2, it follows that ||v, R|| > 2. Then v and two of its neighbors form a path
of length three in R, hence |P| > 3. O

Lemma 20. For any mazimal path P’ in R\ P, label the (not necessarily distinct) endpoints v1 and ve so
that ||lv1, P|| < ||ve, P||. Then:

(a) |lvz2, P|| <2, and if v1 # vy then ||vy, P|| <1,
(b) dr(v1) =2 (this implies v1 € T\ V(P) so that T\ V(P) #0), and
(¢c) if ||ve, P|| =2 and ||v1, P|| = 1, then ||P' — vy — va, P|| = 0.
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Proof. Since R contains no chorded cycle, no vertex in R\ P has three neighbors in P, so |lvg, P|| < 2.
Lemma [T then gives (a) and (c).
It remains to show (b). If |lvi, P|| = 0, then using Lemma [I9 and the maximality of P’, dr(v1) =

|lvy, P'| = 2. If vy = wa, then ||v1, R|| = ||lve, P|| = 2. So suppose ||v1,P|| = 1 and v1 # ve. Since
|lvg, P|| > |jv1, P|| = 1, there exist ai,a2 € P (perhaps a1 = ag) such that viai,vea2 € E(G). Then
v1P'vaasPajvy is a cycle. Since it has no chord, |jv1, P'|| =1, so ||v1, R|| =2 and v; € T O

Lemma 21. dgr(p) = dr(p’) = 2. Additionally, for every v € T\ V(P) and every C € C:
(a) |C] € {4,6},
(b) lIp, €|l = 3, and
(¢) Ne(v) = Ne(p).

Proof. By Lemma 20l v € T'\ V(P) exists so that dg(v) = 2. Lemma [[9 implies ||{v, p}, R|| > 4, and hence,
dr(p) = 2 and ||{v,p}, R|| = 4. Since vp ¢ E(G), ||{v,p},C|| > (6k —2) —4 = 6(k — 1). By Lemma [I§
[I{v,p},C|| =6 for all C € C. If we can show that ||p,C|| = 3 for all C' € C, then we are done by Lemma [I§

If not, then there exists C' € C such that ||p,C|| > 3, so ||p,C|| = 4 and G[C] = K4 by Lemma [I3l Thus,
||lv, C|| = 2, and by Lemma [I8] there exists u € No(p'). Since ||p, P|| = 2, P 4+ u forms a chorded cycle, so
since C' — u + v also forms chorded cycles, we have a contradiction. Thus, ||p, C|| = 3 as desired. O

From Lemma [2I] we immediately obtain the following.
Corollary 22. dg(p) = dg(p') = 3k — 1, and consequently, dg(v) > 3k — 1 for allv € R\ P.

Recall that P is the set of vertices in P that are the endpoint of a path spanning V(P). Note Lemmas
I8 19 20, and 2T apply to each p* € P. Thus, P C T, and furthermore, for all p;,p5 € P, Ne(pt) = Ne(ps).

Lemma 23. For every C € C, G[C] = K3 3.

Proof. If not, by Lemma [[3] and Lemma 2Tl we may assume that there exists C' € C with |C| = 4. Suppose
V(C) ={c1,c2,¢3,¢4}. Let v € T\ V(P), which we know exists by Lemma 200 By Lemmas [[3 and 2] we
may assume that No(p) = No(p') = Neo(v) = {c1, ¢, c3} and cacq € E(G). Since ||p, P|| = 2 by Lemma 2T}
P+ ¢; and C — ¢; + v contain chorded cycles, a contradiction. O

For the remainder of this section, we will use the fact that for each C' € C, G[C] = K3 3 and, that there
exist A C C such that A is a partite set of C' and such that, for every p* € P, No(p*) = A, without
mentioning Lemmas 2] and

Lemma 24. For every C € C, if v € R\ P has a neighbor in C, then Nc(v) C Ne(p), unless [No(v)| = 1.

Proof. Fix C € C, and let A = {a1,a2,as3} and B = {b1, b, b3} be the partite sets of C such that No(p) =

Ne(p') = A. Suppose on the contrary, there exists v € R\ P with |[No(v)| > 2 such that, say vbs € E(G).
By Lemma 21} ||p, P|| = 2 so that P + a; contains a chorded cycle for each i € [3]. If vby € E(G), then

vbsasbiazbsv is a cycle with chord asbs. However, P 4 a1 also contains a chorded cycle, a contradiction.

So we may assume that vas € E(G). However, vbzasbaasv is a 5-cycle with chord asbs contradicting
(O1). Thus, N¢(v) € A= Ne(p), as desired. O

Lemma 25. R\ P is an independent set, and V(R\ P) CT.

Proof. Suppose R\ P is not an independent set. Then there exists a maximal path P’ in R\ P with distinct
endpoints v; and vg, labeled as in Lemma 20l Thus,||vs, P|| < 2, and, hence, dr(ve) < 4. Since pvs ¢ E(G),
Lemma 22] implies that dg(ve) > 3k — 1 > 4, which implies that there exists C' € C such that ve has a
neighbor ¢ € C.

Let A = {a1,a2,a3} and B = {by,b2,b3} be the partite sets of C such that No(p) = Neo(p') = A. By
Lemmas 20 and 20l v; € T\ V(P) and N¢(v1) = A. We can assume a; # ¢, so that there exists a path W



in C'— a1 that contains as and a3 for which ¢ is an endpoint. Since ||v1, W|| > 2 and vy is adjacent to an
endpoint of W, ||{vi,v2}, W|| > 3 and Lemma [I7] implies there is a chorded cycle in G[V(P') UV (C — aq)].
However, as ||p, P|| = 2, P 4 a; also contains a chorded cycle, a contradiction. O

Let S := Ne(p), and let T := (Ugee V(C)) \S)UT.
Proposition 26. G[SUT] = Ksj,_37|, and no verter in G has neighbors in both S and T .

Proof. By Lemma [23] C consists of k — 1 copies of K3 3. Lemmas [2I] and [25] tell us that, for every v € R\ P,
Ne(v) =S8. Given C € C,a € V(C)NT, and v € R\ P, we can create a chorded cycle C' by swapping a
and v in C. Note G[C'] & K33, and we have not changed any vertices in P. Then replacing C with C” in
C results in a collection of k — 1 chorded cycles satisfying (O1) through (O3). Thus all the previous lemmas
apply, and, in particular, Lemma 20 and Lemma 25 imply that a € T. So by Lemma 2T and the fact that
Ne(a) =V (C)NS, we conclude Ne(a) = S. Hence, every vertex in 7 is adjacent to every vertex in S, and
G[S U T] contains a copy of K|g|,|r|-

We claim G[S U T] has no additional edges. Note |T| > 3(k — 1) and |S| = 3(k — 1). If there exists any
edge with both endpoints in 7, or both endpoints in S, then we find a set of k — 1 chorded cycles, k — 2 of
which are 6-cycles, and one of which is a 4-cycle, violating (O1). So G[SUT] = K|s|, |7 = Ksi—3,7]-

If any vertex of V(G) \ (SUT) has neighbors in both & and T, then in a similar manner, we find k — 1
disjoint chorded cycles, one of which is a 5-cycle and the rest of which are 6-cycles, again violating (01). O

Recall that ¢ and ¢’ were defined as the neighbors of p and p’, respectively, on P. Since ||p, P|| = 2 by
Lemma 2T] there exists w € Nr(p) \ {¢}. As a consequence of Proposition 26, w # p’. Now the neighbor of
w on pPw is the endpoint of a path that spans V(P). Thus, |P| > 3.

Lemma 27. |P| =3

Proof. Suppose |P| > 4, with p1, pa, ps, ps the first four members of P along P. In particular, p; = p. Fix
C €C, and let A = {a1,a2,a3} and B = {b1, by, b3} be the partite sets of C such that N¢(p;) = A for each
i€ 4.

By Lemma[I6 N¢(g) € B. So in particular, ¢ # pa. If ¢ has a neighbor in C, say b1, then gbjaibaaspiq
is a 6-cycle with chord pja; and ps Ppyasps is a cycle with chord psas, a contradiction.

So we may assume that for every C' € C, No(¢) = 0. That is, ||q, R|| = da(q). Since ||ps, P|| = 2 by
Lemma 21], ¢ is not adjacent to ps. Then since dg(p3) = 3k — 1 by Corollary 22 dg(q) > 3k — 1 > 5.
Since ||g, P|| < 3, ¢ must be adjacent to two vertices vi,v2 € R\ P. By Lemma 2] N¢(v1) = Ne(v2) = A.
However, this yields the cycles viquaasbiaiv1 and pa Ppsasps with chords viae and psas, respectively, a

contradiction. O
m
p q w p* w p/

Figure 3: Setup for Lemma 2§

Lemma 28. G[P]| =~ Kj 3

Proof. By Lemma 27, we may assume that P = {p,p’,p*}. Recall that P C T, so Lemma 26| implies that
P is an independent set. Lemma 2I]limplies that ||p, P|| = ||p, P|| = ||lp*, P|| = 2, so there exist w and w’ on
P such that w # ¢ and w’ # ¢’ and Np(p) = {¢,w} and Np(p') = {¢’,w’}. Furthermore, since |P| = 3, and
both the neighbor of w on pPw and the neighbor of w’ on w’ Pp’ are in P, we can conclude that w # w’ and
Np(p*) = {w,w'}, i.e. wPw' is the path on three vertices wp*w’.



long path

Since G[P] does not contain a chorded cycle, g¢’ ¢ E, so if w = ¢’ and w’ = ¢, then G = Ky 3. So if
G % Ky 3, then without loss of generality we can assume that ¢ # w’ as in Figure 8 Thus, ¢p’,pw’ ¢ E(G)
so, by Corollary 221 dg(q),dg(w') > 3k — 1.

Fix C € C with partite sets A = {a1, az2,a3} and B = {b1,be, b3} such that No(p) = Ne(p') = Ne(p*) =
A. By Lemma[I6] N¢(¢) € B and No(w') C B.

Since dg(q) >3k —1, ||¢ CUR|| > (3k — 1) — 3(k — 2) = 5. Also, ||¢, P|| < 3. This holds for w’ as well.
Thus, both ¢ and w’ have two neighbors in BU (R \ P). Let v; and vy be distinct vertices in BU (R \ P)
such that v1q, vew’ € E(G). We may assume that ve # bs. Observe that No(v1) = Neo(ve) = A. Then the
cycle pquiaibsasp has chord pay, and the cycle w'veasp’ Pw’ has chord asp*, a contradiction. O

Lemma 29. G = G1(n, k)

Proof. By Lemma 28 let {p1,p2,ps} and {q1, g2} denote the partite sets of G[P]. Recall that P C T so that
G[S U T] contains every vertex of G except for ¢; and ¢s.

By Lemmas 21] and 25 and Corollary 22 ||v, P|| = 2 for all v € R\ P, and by Proposition 26] Ng(v) =
{¢1,¢2}. Since T is an independent set in G, for each w € T\ T, |lu, R|| > (3k — 1) — 3(k — 1) = 2. Thus,
uqy,uq2 € E(G), and so Ng(g;) 2 T fori € [2]. That is, G O K|s|12,/71 = Ksp—1,j¢|-3k+1 = G1(n, k). Since
adding any edge to G1(n, k) results in a graph with k disjoint chorded cycles, we conclude G = G1(n, k). O

4 Suppose V(R)=V(P)

In this section, we assume V(P) = V(R). Since adding any edge to G results in k chorded cycles, by (O1)
|P| > 4. If |P| > 6, we label P = p1q171 - - - r2g2p2. Note that, since G[R] has no chorded cycles, for every
v € R, ||r,R|| <4. When |P| =5, we let P = p1q17qap2, and when |P| = 4, we let P = p1q1g2p2. We call an
edge in E(G[P]) \ E(P) a hop. If Q = v1---v|g| is a spanning path of R, then we call an edge v;v; a hop
(on Q) if |i — j| > 1.

Lemma 30. If Q = vy ---vg| is a spanning path of R and v;v; is a hop with i < j, then viy1 and viyo
cannot both be incident to hops, and similarly, vj_1 and vj_2 cannot both be incident to hops.

Proof. Suppose that, on the contrary, v; v and v;ovg are both hops. Note that, if we consider only the
hop v;v; and the hop vi41vk, v;v;v,41Qu; is a chorded cycle if 4 +3 < £ < j, and v, Qu;v;Quiy1vk is a
chorded cycle if £ < i—1, so k > j. Repeating this argument but now only considering the hops v;+1v, and
ViyoUp gives us that &' > k, but then v;v,11v;12vr Qujv; is a cycle with chord v;1vk, a contradiction. By
symmetry, the lemma holds. O

Lemma 31. For any p € P, dgr(p) = 2 unless R is a path.

Proof. Let vy --- v be a spanning path in R, and let p = v;. Assume dr(p) = 1, and that R is not a path.
Since R is not a path, hops exist. Let v;v;, i < j, be a hop such that for all k,j < k < |R|, vy is not incident
to a hop. Note, because dg(p) = 1, that i # 1.

Let D be the cycle v;v;v;41 -+ -vj—1v;. Since R contains no chorded cycles, v; is incident to exactly one
hop and v;_; is incident to at most one hop. If v;_; is not incident to a hop let x = v;_; and y = v;, and
if v;_1 is incident to exactly one hop, let * = v;_o and y = v;_1. By Lemma [B0] when v;_; is incident to
a hop, v;_2 is not incident to a hop, so in either case, xy € E(D), dr(z) + dr(y) < 5, and px,py ¢ E(G).
Therefore,

2lp,Cll + [{, y},Cll = 2(6k — 2) — (2lp, Bl + | {a, y}, RI) > 12(k —1).

So there exists C € C such that 2||p, C|| + |[{z,y},C|| > 13. Thus, ||v,C| = 4 for some v € {p,x,y}, and
by Lemma [I3] G[C] = K4. Further, ||{z,y},C|| > 5 so that there exists ¢ € C such that zc,yc € E(G) and
D + ¢ contains a chorded cycle. Also 2|p, C|| > 5, which implies ||p,C' — ¢|| > 2 so that C' — ¢ + p contains a
chorded cycle, a contradiction. O



Fdeg

Lemma 32. If |R| > 6, then there exists FT C V(R) such that |FT| = 6 and such that for every C € C and
every pair of distinct vertices u,u’ € F¥, ||[{u,v'},C| > 1.

Proof. First we find F* C V(R) such that ||[FT, R|| < 15. If R is a path, this is trivial, so we assume R has
at least one hop. By Lemmas B0 and [3T], p; is incident to a hop so that ¢; and r; cannot both be incident to
hops. If dr(r;) < 3 for some ¢ € [2], then since dr(¢;) < 3 and dg(p;) = 2 by LemmaBIl ||{pi, qi,r:}, R|| < 7.
If dr(r;) = 4, then dgr(p;) = dr(q;) = 2, so that ||{p;, qi, i}, R|| < 8. Therefore, F* := {p1,q1,71,72,q2,p2}
suffices when either dg(r1) < 3 or dg(re) < 3. In this case, we let rj =ry.

When dg(r1) = dr(r2) = 4, |R| > 7, since R has no chorded cycles, and there exists a vertex u following
ry on P with dg(u) < 3. Here, we let F™ := {p1,q1,u,72,q2,p2}. and let 7§ = w. Thus, in both cases,
Ft ={p1,q1,77,72,q2,pa}

We claim that we can partition F'T into three sets so that each set will consist of two nonadjacent
vertices. Define F := {p1,¢q1,77} and F» := {p2,q2,r2}, and let H be the subgraph of G on the vertex set
FT containing precisely those edges of G with one endpoint in F; and the other in F;. Because R contains
no chorded cycle, every vertex in F» has at most two neighbors in Fj, and vice-versa. That is, H C 3Ks.
Therefore we can label Fy = {f1, fa, fs} so that fips, faqa, and fsro are all nonedges.

Therefore, |[F,C|| > 3(6k —2) — 15 = 18(k — 1) — 3. Suppose there exists C' € C for which ||F*,C|| < 14
so that there exists C" € C such that ||F*,C’|| > 19. If we can find vy, vy € F* such that ||[{vi,va}, C'|| <6,
then ||F’ — vy —ve, C’|| > 13, contradicting Lemma [[4l So for F* = {v,vs,...,v6}, ||[{vi,viz1}, C'|| > 7 for
i € {1,3,5}. However this implies |[{v1, v2,vs,vs4},C’|| > 14, a contradiction to Lemma [I4

Thus, ||F*,C|| > 15 for every C € C. If there exists a pair of distinct vertices u,u’ € F* such that
[{u,u'},C|| =0, then ||Ft —u —u/,C|| > 15, again a violation of Lemma [I4l O

Lemma 33. There exists F C V(R) such that p1,p2 € F, |F| =4 and

(a) |F.C|| > 12(k — 1) — 2 if R = Ka3, |F,C| > 12(k — 1) + 2 if R is a path, and ||F,C|| > 12(k — 1)
otherwise, and

(b) if R is not a path, then for every u € F, there exists a path Q in R — u such that F —u C V(Q).

Proof. If R is a path or R 2 Ks 3, let F':= {p1,q1,¢2,p2}. When R is a path, ||F, R|| = 6, and p1g2, p2q1 ¢
E(G); when R = Ky 3, ||F, R|| = 10, and p1p2, ¢1¢2 ¢ E(G). In both cases, @ and@hold.

So we assume R 2 Kj 3 and R is not a path. By Lemma BI] for i € [2], ||p;, P|| = 2. Thus, p; has a
neighbor w; € P — ¢;. Let t; denote the neighbor of w; on w; Pp;. Observe that t; € P, so by Lemma [31]
[t:, Pl = 2. Suppose t1 # to, and, in this case, let F' := {p1,t1,t2,p2}. Then F C P, so @holds and
||F, Rl < 8. If either pit1,pate & E(G) or pite,pat1 € E(G), then@holds. Suppose (say) pit1 € E(G).
Then tl =4q1, and tlpg g E(G) Then w2 g {pl,tl}, hence tQ g {tl,wl} = NR(pl), so also pth g E(G) So
in this case also, @ holds.

So assume t; = to, which implies |lu, P|| = 2 for all u € V(P) — wq — we, as otherwise R contains a
chorded cycle. Also, when t; = t3, we may assume that ¢; # ws since R is not isomorphic to K3 3. In this
case, let F':= {p1,q1, t1, p2} and note that p1t1, 1p2 ¢ E(G). Since dr(u) =2 for all u € F,@holds. Since
t; = tg, prwitiweps is a path in R — ¢; containing F' — ¢; and F'— ¢; C P, @ holds. O

Corollary 34. R is not a path.

Proof. Let F C V(R) be as guaranteed in Lemma B3l If R is a path, then || F,C|| > 12(k — 1) 4+ 2, so that
there exists C' € C such that || F,C|| > 13, which violates Lemma[I4l So R is not path. O

Lemma 35. Let F C V(R) be as guaranteed in Lemmal33. If | F, C|| = 12 for any C € C, then G[C] = K3 3.

Proof. Let F C V(R) be as guaranteed in Lemma B3] and let C € C. Suppose that ||F,C|| = 12. By
Lemmas [[4] and B3] this is true for all C € C, unless R & K3 3. By Lemmas and [[0] C' = K33 unless
|C| = 4, so assume |C| = 4. Note that for any v € F and ¢ € C, if C — ¢ + u is a chorded cycle, then
e, F' — u]| < 2, because there exists a path @ in R such that F —u C V(Q) and G[Q + ¢] cannot contain a
chorded cycle.
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structure

First assume that C' is singly chorded, so we can label V(C') = {¢1, ¢a, ¢3, ¢4} such that cjcacsey is a cycle
and cgeyq is the chord. By Lemma [I3 |ju, C|| = 3 for every u € F, and ||¢;, F|| = 4, for ¢ € {1,3}. Recall
that p1,p2 € F so that C'— ¢; + p; and P — p; + ¢; both contain chorded cycles, a contradiction.

So for the remainder of the proof, we assume G[C] & Ky, with V(C) = {c1, ¢2,¢3,¢4}. Fix u € F, and by
Lemma B3] let @ be a path in R — u such that F —u C V(Q). Suppose ||u,C|| = 3, so |F —u,C|| =9, and
there exists ¢ € C such that c¢ is adjacent to all three vertices in F' — w. This implies @ + ¢ and C — c+u
both contain chorded cycles, a contradiction.

Now suppose ||lu, C|| = 2 and N¢(u) = {c1,¢c2}. Then ||F — u,C|| = 10, and there exist two vertices in C
adjacent to all three vertices in F' — u. If ¢’ is one of these two vertices and ¢’ ¢ {c1,c2}, then Q + ¢ and
C — ¢ + u both contain chorded cycles, a contradiction. Therefore, every vertex in F' is adjacent to both ¢;
and co. Since ||F, C|| = 12 and ||u, C|| = 2, there exists v € F' — u such that ||v, C|| = 4. By Lemma[33] there
exists a path Q" in R — v such that F —v C V(Q’), so that C — ¢; + v and Q' + ¢; both contain chorded
cycles, a contradiction.

So ||u, C|| € {0,1,4}, for every w € F. Since ||F,C|| = 12, there exists u’ € F such that ||u’,C|| = 0 and
||u,C|| = 4 for every u € F — «’. By Lemma [33] p1,p2 € F, so we may assume ||p1,C|| = 4. Thus, for all
ce C, C —c+ pp is a chorded cycle, and further ||¢, P — p1|| < 2, else P — p1 + ¢ contains a chorded cycle.
Therefore, if ||R\ F, C|| > 0, we can pick ¢ such that ||c, P — p1|| > 3 so that P — p; + ¢ has a chorded cycle,
a contradiction.

Thus |R\ F,C|| = 0. By Lemma B2 |R| < 5, as otherwise we can find F* C V(R) with |F*| = 6 so that
for distinct v,v" € F*\ F, |[{v,v'},C|| > 1, a contradiction. If |R| = 4, then v’ has a neighbor v € F — /.
Since R is not a path, by Lemma BIl R = C}, so replacing C with C’ := C — ¢+ v in C gives a collection of
k — 1 chorded cycles that satisfies (O1) - (O3), but R’ := R — v+ ¢ has a path P’ such that |P’| = |R’| and
such that «' is an endpoint and such that ||u’, R’|| = 1. This is a contradiction to Lemma 311

So assume |R| = 5 so that P = p1qi1rgap2. By Lemma [B1] either pir,por € E(G), or R € {C5,K33}. In
each of these cases, we can assume that F' = {p1, q1, g2, p2}, by the proof Lemma 33l Recall that ||p1,C|| = 4
and ||v/,C|| = 0 for some u’ € F. Furthermore, since |R\ F,C|| =0, ||r,C|| = 0.

Suppose R € {C5, K2 3}. Let F' := {q1,7,q2,p2}, so that v’ € F’, ||[F',C| < 8 and || F’, R|| < 10. Since
Q1q2, rp2 ¢ E(GQ), |F',C = C|| > 12(k — 2) 4+ 2 so that k > 3 and ||F’,C’|| > 13 for some C' € C - C, a
contradiction to Lemma [T4l

Thus pi7, par € E(G). Since three of the five vertices in R send four edges to C, there exists ¢ € [2], such
that at least two vertices in {r, g;, p; } have four neighbors in C, and so have a common neighbor ¢ € C. This
implies that G[{r, ¢;, pi, c}] contains a chorded cycle. Furthermore, there exists v € {ps_;, g3—;} such that v
has four neighbors in C', and so C' — ¢ + v contains a chorded cycle, a contradiction.

Thus, |C| # 4 and G[C] = K3 3, as desired. O

Lemma 36. If R % Ky 3, then G[C] = K33 for all C € C. If R = Ky 3, then G[C] = K3 3 for all but at
most one C' € C, and for any such C, GIC] =2 K112 and GIV(R)UV(C)] 2 K; 4.4.

Proof. Let F C V(R) be as guaranteed by Lemma[B3] If R is not isomorphic to K3 g, then ||F,C|| > 12(k—1).
By Lemma[I4 ||F,C|| < 12 for all C' € C so that in fact, equality holds for all C' € C. Thus, by Lemma [B5]
G[C] = K33 for all C € C.

So assume R = K 5 with partite sets A = {p1,p2,p3} and B = {q1, g2} with |A| = 3 and |B| = 2. Since
A and B are independent, we have || B,C| > 6k — 8 and

214, ¢l =" 2]a,C|l > 3(6k — 2) — 12 = 18k — 18,
acA

so ||A,C|| > 9(k — 1) and ||R,C|| > 15k — 17 = 15(k — 1) — 2. If ||R,C|| > 16 for some C € C, then there
exists some u € R such that ||u,C|| = 4. By Lemma[I4] ||R — u,C| < 12 so that there exists u' € R —u
such that ||u/, C|| < 3. However, |R — v/, C|| > 13, a contradiction to Lemma [T4l

We therefore have that, for ever C € C, 13 < ||R,C|| < 15. Fix C € C. At least two vertices in R have
three neighbors each in C' so that by Lemmas[I3 and [T |C| = 4 or G[C] = K3,3. We claim that G[C] % Kj.
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Suppose on the contrary, G[C| = K. If ||p;, C|| > 3 for some ¢ € [3], Lemma[I4implies that || R, C|| < 12,
a contradiction. So ||p;, C|| < 2 for all i € [3]. Hence ||B,C| > 7 so that for allc € C and j € [2], C —c+g;
is a chorded cycle. As |R,C|| > 13, there exists ¢ € C such that ||¢, R|| > 4. Without loss of generality,
Nr(c) 2 {p1,p2,q1}. However, C — ¢+ ¢q2 and p1cpaqip1 each contain chorded cycles, a contradiction.

So for all C € C, either |C| = 4 and C' is singly chorded or G[C] = K3 3. By Lemma [I3 |ju,C|| < 3 for
all w € A and C € C. Since ||A,C|| > 9(k — 1), we deduce that ||A,C|| =9 and so ||u,C|| =3 for all u € A
and C' € C.

Suppose |C| = 4 and C is singly chorded. We can label V(C) = {¢1,¢2,c3,ca} such that cicacses is a
cycle and cqeyq is the chord. By Lemma I3l uci,ucs € E(G) for all u € A. Since, C' — ¢; + u is a chorded
cycle for i € {1,3}, R — u + ¢; cannot contain a chorded cycle, which implies that Ng(c;) = A. Hence, for
every v € B, No(v) C {c2,ca}, and since |R, C|| > 13, equality holds and N¢(v) = {cz, ¢4} for every v € B.

Fix u € A. Without loss of generality, assume N¢(u) = {¢1,¢3,¢4}. Then C' — ca 4+ u is a chorded cycle.
If ' € A—whas ¢ € Neo(u), then R— u+ c2 contains a chorded cycle, a contradiction. Thus, for all w € A,
Ne(w) = {e1,c3,ca} so that Nr(ca) = V(R) and GIRUC]) = Ky 4.

Recall that ||R,C|| > 15(k — 1) — 2 and ||R,C’|| < 15 for all C’ € C. Further, ||u,C’|| < 3 for allu € R
and C’ € C. Since ||R,C|| =13, |R,C"|| = 15 for every C" € C — C. However, for any u € A, |lu,C’|| < 3 so
that F' := R — u satisfies ||F,C”|| > 12. Furthermore, F' satisfies all the hypotheses of Lemmas [33] and B5]
so that G[C"] =2 K33 for all C" € C — C.

This completes the proof of the lemma. O

Lemma 37. For everyu € R and C € C, ||u,C|| < 3. If P’ is path that spans R, p is an endpoint of P’ and
q is adjacent to p on P’ then dg(p) = 3k — 1 and dg(q) > 3k — 1. In particular, for every C € C ||p,C| =3
and ||q,C|| > 2.

Proof. Let p and p’ be the two endpoints of P/, and let ¢ and ¢’ be the neighbors of p and p’, respectively, on
P’. By Lemmas[I3land B8], ||u, C|| < 3 for all u € R and C' € C. Therefore, if dg(u) = 2, then dg(u) < 3k—1,
so in particular, dg(p) < 3k — 1 and dg(p') < 3k — 1. If pp’ ¢ E, then dg(p') = dg(p) = 3k — 1. Otherwise,
pp’ € E and p is not adjacent to ¢'. In this case, dr(q¢’) = 2 so that dg(p) = 3k — 1. Since ||u, C|| < 3 for all
u € R and C € C, it follows that ||p, C|| = 3. By symmetry, this holds for p’ as well.

Since ||¢, R|| < 3, if we can show that dg(gq) > 3k — 1, it follows that ||g,C|| > 2 for all C' € C. So assume
da(q) < 3k — 2. Now, gp’ € E(G), as otherwise dg(q) > 3k — 1. If |R| = 4, then by Lemma [BI] R contains
a chorded cycle. So |R| > 4, and as a result ¢¢’ ¢ E(G). Since dg(q) < 3k — 2, we get dg(q") > 3k, and
furthermore, since dr(¢’) < 3 and ||¢/, C|| < 3 for all C' € C, we deduce that ||¢’, C|| = 3 and dr(¢’) = 3. This
implies pq’ € E(G), as otherwise we get a chorded cycle in R. Furthermore, dg(gq) = 3k — 2 and ||¢, R|| < 3
so that ||g,C|| > 1 for all C € C.

Since |R| > 5, there exists 7’ ¢ {p,p’'} a neighbor of ¢’ on P’. Note that v’ € P so that by the above,
da(r') = 3k — 1 and ||7',C|| = 3 for all C € C. If |R| > 6, then /¢ ¢ E(G) and dg(q) > 3k —1, a
contradiction. Hence, |R| = 5, and, furthermore, R = K 3 with partite sets {¢,¢'} and {p,p’,r'}. Observe
that for all uw € {p,7’,¢',p’'} and C € C, ||u,C|| = 3.

If know fix C' € C, such that ||¢,C|| < 2, which must exist because d(q) = 3k — 2 and dr(q) = 3.
By Lemma B8, G[C] € {K33,K1,1,2}. Furthermore, if G[C] & Kj 19, then G[C' U R] = Kj 4,4, but this
contradicts the fact that ||¢’,C' U R|| = 6. Hence, C' = K33 and let A and B denote its partite sets. By
Lemmas [[3 and [[6, we may assume N¢(p) = No(r') = Ne(p') = A, Ne(¢') = B, and Ne(q) € B. Since
llg, C|| < 2, there exists b € B\ Nc(gq). We can replace C' with C' — b+ p’ and replace P’ with b’ P'p. Our
new collection and path satisfy (O1)-(03). However, b is an endpoint of our new path and by the above,
da(b) = 3k — 1. Since bg ¢ E(G), da(q) > 3k — 1, a contradiction. O

Lemma 38. R is either isomorphic to Ka 3 or Ka .

Proof. If |R| = 4, then Lemmas BTl implies that R & K5 5, so assume |R| > 5 and R is not isomorphic to
Ka3. Let P = uy,...,ug|, p := u1, q := uz, ¢ := ujgj—1 and p’ := up. Let C' € C. By Lemma [36,
G[C] = K33, so we let A = {a1,a2,a3} and B = {b1,bs, b3} be its partite sets. Recall that by Lemma [[3 if
lu, C|| = 3 for any u € R, then N¢(u) € {A, B}.

12
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First assume that R is Hamiltonian (that is, R contains a cycle of size |R|). Since every vertex in R is
the endpoint of a path spanning R, by Lemma BT, ||u, C|| = 3 for every C € C and v € R. By Lemma [IG]
we can assume that No(u;) = A if 7 is odd and N(u;) = B is i is even. Therefore, Lemma [I6] implies that
|R| is even, which further implies that |R| > 6. Then for any a € A and b € B, G[{u1,...,u4,a,b}] and
C — a — b+ us + ug contain chorded cycles, a contradiction.

So we can assume R is not Hamiltonian. Let pw be a hop on P so that w # p’. First assume w # ¢'.
Without loss generality assume that No(p') = A. By Lemmas [[60 and B, Neo(p) N Ne(g) = 0, and so there
exists ¢¢’ € E(C) such that pcc’qPwp is a cycle with chord pg. By Lemmas [I6l and B7, |No(p') —c— /| > 2
and |[No(¢') —c—d| > 1,80 C —c— ¢ +p' + ¢ contains a chorded cycle, a contradiction.

Now we can assume that both pq’ and ¢p’ are edges. Since R # Ko 3, we have that |R| > 6. Let r # p
and 7’ # p’ be the neighbors of ¢ and ¢’, respectively, on P. Note that r and r’ are endpoints of paths
spanning R so that ||r,C|| = ||+/,C|| = 3. By Lemmas [I0 and B7, and because pq¢’, qp’ € E(G), we may
assume that No(p) = Ne(r) = No(r') = Ne(p') = A and Ne(q) U No(q') € B. In particular, we may
assume gb; € E(G) so that paibsasbigp is a cycle with chord pag, and rPp’asr is a cycle with chord asr’, a
contradiction.

So |R| =5 and R = Ky 3, as desired. O
Lemma 39. If G[C] & K33 for every C € C, then G = G1(n, k).

Proof. By Lemma B8 R € {K32,K23}. So let Uy,Uz C V(R) be the partite sets of R such that |U;| >
|Usz| = 2, and let uy € Uy, Va := Ng(u1), and Vi := V(G) \ Va. Since u; is the end of spanning path of R,
Lemma [37 implies that |Va| = 3k — 1. Since |G| < 6(k —1) +5, |[V1| < 3k. We aim to show that Ng(v) = Va
for all v € V4. This will imply that G = G1(n, k).

Fix v € Vi — uy. Since ujv ¢ E(G), Lemma BT implies that dg(v) > 3k — 1. If v € Uy, then v is the
end of a spanning path of R, and by Lemmas [13] and B7 Ng(v) = Ng(ui) = Va. So we may assume
v € V1 \ Uy, and in particular, v € C for some C € C.

Define V{ := {u € Vi : ||u, Uz|| > 1}, and suppose v € V{ \ Uy. Recall that we are assuming G[C] = K3 3
for all C' € C so that by Lemma [[3] G[C — v + u1] & K3,3. Furthermore, v is an end of a path of length
|R| in R' := R — uy + v. This new collection and path satisfy (01)-(03), so by Lemma B8 R’ = R and
Ng(v) = Ng(ul) = VQ

Now suppose v € V1 \ V{. Since dg(v) > 3k — 1 and v has at most 3(k — 1) neighbors in V3, v must have
two neighbors in V;. By Lemmas [[6 and 37 for every us € Us, dg(uz) > 3k — 1 and Ng(uz) C Vi, so that
|[V/| > 3k — 1. Since |V;| < 3k, v has a neighbor, say v, in V{. However, by the above, Ng(v') = V3, which
contradicts the fact that v’ is an edge. Therefore, V/ = V; which finishes the proof of the lemma. o

Lemma 40. Suppose there ezists C € C with |C| = 4. Then G = Gy (k).

Proof. By Lemmas [30 and B8, we can assume R = Kj 3, G[C] = K112, and GI[RUC] 2 K; 44. Let A" and
B’ be the two partite sets of size four and {c} be the partite set of size one in G[R U C]. By symmetry,
we can assume that any v € A’ U B’ is an end of a spanning path in R or the end of a spanning path of
GV (G)\V(C")] for some collection C’ of k—1 vertex disjoint cycles that satisfies (01)-(03), so, by Lemma[37]
dg(v) =3k—1and ||v,C — C|| = 3(k — 2). By Lemma[3@ for all D € C — C, G[D] & K3 3, and, with Lemma
[I6, we deduce that ||v, D|| = 3 and that we can label the partite sets of D as Ap and Bp so that for every
p € A, Np(p) = Bp and for every ¢ € B', Np(q) = Ap. Therefore, there exists a partition {A, B, {c}} of
V(G) such that for every p € A’, Na(p) = B + ¢, for every q € B', Na(q) = A+ ¢, and |A| = |B| = 3k — 2.

Ifu € V(G)\(A'UB’), then there exists D € C—C, such that u € D. Let p € A'/NV(R), and ¢ € B'NV(R)
and label {w,w'} = {p,q} so that vw ¢ E(G) and uw’ € E(G). We have that G[D — u + w] = K33 and
G[R — w+ u] = K39, so there exists a collection C’ of k — 1 vertex disjoint cycles containing C' that satisfies
(01)-(03), and there exists a spanning path of of G[V(G) \ V(C’)] such that u is an endpoint or u is the
neighbor of an endpoint. Therefore, by Lemma BT dg(u) > 3k — 1, so, with Lemma [B6], we have that
Ne(u) = (V(C)\ Neg(w')) + ¢ and, for any D’ € C' — C, by Lemma[I6, Np/(u) = D'\ Np/(w'). Therefore,
either Ng(u) 2 B+cifu € Aor Ng(u) D A+cif u € B. Hence, G contains G2(k) as a spanning subgraph.
As Gs(k) is edge-maximal with respect to not containing k disjoint chorded cycles, G = G5 (k). O
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Using Lemmas 36 B8 BY, and @0, we conclude G € {G1(n, k), G2(k)}.

5 Concluding Remarks

Many variations on Theorems [ and Bl have appeared, and suggest further extensions of Theorem We
present only a small selection below.
A result of Gould, Hirohata, and Horn [§] implies the following;:

Theorem 41. Let G be a graph on |G| > 6k vertices with §(G) > 3k. Then G contains k disjoint doubly
chorded cycles.

While it is not clear that |G| > 6k is necessary, it would be interesting to characterize the sharpness
examples for this theorem; that is, if |G| > 6k and §(G) = 3k — 1 but G does not contain k disjoint doubly
chorded cycles, what does G look like? For more results on the existence of k£ disjoint multiply chorded
cycles, see [9]

Additionally, rather than consider §(G) or o2(G), one may consider the neighborhood union, min{|N (z)U
N(y)| : zy € E(G)}. See the following results.

Theorem 42 (Faudree-Gould, [6]). If G has n > 3k vertices and |N(z) U N(y)| > 3k for all nonadjacent
pairs of vertices x,y, then G contains k disjoint cycles.

Theorem 43 (Gould-Hirohata-Horn, [8]). Let G be a graph on at least 4k vertices such that for any non-
adjacent z,y € V(G), |[N(x) UN(y)| > 4k + 1. Then G contains k disjoint chorded cycles.

Theorem 44 (Gould-Hirohata-Horn, [8]). Let G be a graph on n > 30k vertices such that for any nonad-
jacent z,y € V(G), |[N(x) UN(y)| > 2k + 1. Then G contains k disjoint cycles.

Theorem 45 (Qiao, [13]). Let r, s be nonnegative integers, and let G be a graph on at least 3r + 4s vertices
such that for any nonadjacent x,y € V(G), |N(x) UN(y)| > 3r +4s+ 1. Then G contains r + s disjoint
cycles, s of them chorded.

6 Acknowledgements

The authors would like to thank Ron Gould, Megan Cream, and Michael Pelsmajer for productive conver-
sations about this problem.

References

. Bialostocki, D. Finkel, an . Gyartas, Disjoint chorded cycles in graphs, Discrete Mathematics
1] A. Bial ki, D. Finkel, and A. Gyarfas, Disjoi horded les i hs, Ds Math .cs 308
(2008), no. 23, 5886-5890.

[2] S. Chiba, S. Fujita, Y. Gao, and G. Li, On a sharp degree sum condition for disjoint chorded cycles in
graphs. Graphs Combin. 26 (2010), no. 2, 173-186.

[3] K. Corrddi and A. Hajnal, On the maximal number of independent circuits in a graph, Acta Math.
Acad. Sci. Hungar. 14 (1963) 423-439.

[4] G. Dirac, Some results concerning the structure of graphs, Canad. Math. Bull. 6 (1963) 183-210.
[5] H. Enomoto, On the existence of disjoint cycles in a graph, Combinatorica 18(4) (1998) 487-492.

[6] J. Faudree and R. Gould, A note on neighborhood unions and independent cycles, Ars Combin. 76
(2005), 29-31. 05C69

14



o]

(]
HE G

G

KKY

5 =
=] [=] E S

[7]

)

=)

[10]

[11]

[12]

[13]

D. Finkel, On the number of independent chorded cycles in a graph, Discrete Mathematics 308 (2008)
no 22, 5265-5268.

R. Gould, K. Hirohata, and P. Horn, Independent cycles and chorded cycles in graphs, J. Comb. 4
(2013), no. 1, 105122.

R. Gould, P. Horn, and C. Magnant, Multiply chorded cycles, SIAM J. Discrete Math. 28 (2014), no.
1, 160-172.

H. A. Kierstead, A. V. Kostochka, and E. C. Yeager, On the Corradi-Hajnal Theorem and a question
of Dirac, Journal of Combinatorial Theory, Series B, to appear.

H. A. Kierstead, A. V. Kostochka, and E. C. Yeager, The (2k — 1)-connected multigraphs with at most
k — 1 disjoint cycles, Combinatorica, to appear.

H. A. Kierstead, A. V. Kostochka, T.N. Molla, and E. C. Yeager, Sharpening an Ore-type version of
the Corradi-Hajnal Theorem, submitted.

S. Qiao, Neighborhood unions and disjoint chorded cycles in graphs, Discrete Mathematics 312 (2012),
no. 5, 891-897.

H. Wang, On the maximum number of disjoint cycles in a graph, Discrete Mathematics 205 (1999)
183-190.

15



	1 Introduction
	1.1 Outline

	2 Setup and Preliminaries
	2.1 Notation
	2.2 Setup
	2.3 Preliminary Results

	3 Suppose V(R) =V(P).
	4 Suppose V(R)=V(P)
	5 Concluding Remarks
	6 Acknowledgements

