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Coloring the power graph of a semigroup
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Abstract

Let G be a semigroup. The vertices of the power graph P(G) are the elements
of G, and two elements are adjacent if and only if one of them is a power of
the other. We show that the chromatic number of P(G) is at most countable,
answering a recent question of Aalipour et al.
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1. Introduction

This note is devoted to the graph constructed in a special way from a
given semigroup G. This graph is called the power graph of G, denoted by
P(G), and its vertices are the elements of G. Elements g, h ∈ G are adjacent
if and only if one of them is a power of the other, that is, if we have either
g = hk or h = gk for some k ∈ N. (Here an in what follows, N denotes the
set of positive integers.) This concept has attracted some attention in both
the discrete mathematics and group theory, see [2, 3].

Let us consider a related directed graphD(G) on the set G. Assume D(G)
contains an edge leading from x to y if and only if y is a power of x. Clearly,
the outdegree of any vertex of D(G) is at most countable, and one gets the
graph P(G) by forgetting about the orientations of the edges of D(G). A
classical result by Fodor (see [4, 5]) shows that the chromatic number of
P(G) does not exceed any uncountable cardinal. Is this chromatic number
always at most countable? This question was studied in [1] by Aalipour
et al. They answer this question in the special cases which include groups
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with finite exponent, free groups, and Abelian groups. However, the general
version of this problem remained open even for groups, and it was posed
in [1] as Question 42. This note gives an affirmative answer to this question.
More than that, we prove that the chromatic number of P(G) is countable
even if G is an arbitrary power-associative magma. (Here, a magma is a set
endowed with a binary operation. A magma is called power-associative if a
sub-magma generated by a single element is associative.)

We proceed with the proof. The order of an element h ∈ G is the cardi-
nality of the subsemigroup generated by h. An element h ∈ G is called cyclic

if the subsemigroup generated by h is a finite group. In other words, an ele-
ment h is cyclic if and only if the equality h = hn+1 holds for some positive
integer n. If h is not cyclic but has a finite order, then the pre-period of h
is defined as the largest p such that the element hp occurs in the sequence
h, h2, h3, . . . exactly once.

2. Coloring the elements of finite orders

The following claim allows us to split the set of all cyclic elements into a
union of countably many independent sets.

Claim 1. Fix a number n ∈ N. The subgraph of P(G) induced by the set of

cyclic elements of order n is a union of cliques of size at most n.

Proof. Denote this induced subgraph by P ′. Let ∼ be the relation on P ′

containing those pairs (x, y) such that x is a power of y; this relation is
clearly reflexive and transitive. Assuming that x ∼ y, we get x = yp, and
we note that p is relatively prime to n because the orders of x, y are equal
to n. So we get pq + p′n = 1 for some p′ ∈ Z, q ∈ N, which shows that
y = xq. Therefore, ∼ is an equivalence relation, and every equivalence class
is a subset of the set of powers of some x ∈ P ′.

As we see from the proof, the sizes of the cliques as in Claim 1 are equal
to ϕ(n), where ϕ is the Euler’s totient function. This result is similar to
Theorem 15 in [1]. Now we are going to prove that the set of all non-cyclic
elements of finite orders can be represented as a union of countably many
independent sets. We need the following observation.

Observation 2. If g ∈ G has a finite order n and pre-period p, then gq is

cyclic for all q > p.
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Proof. We have gn+1 = gp+1, so that (gq)n−p+1 = gp+1g(n−p)qgq−p−1 = gq.

Claim 3. Let g, h ∈ G be distinct elements with finite orders. If g, h have

the same pre-period p, then they are non-adjacent in P(G).

Proof. Assume the result is not true. Then we have g = ht, for some t > 1.
(We omit the case h = gt, which is considered similarly.) Observation 2 shows
that gp = htp is a cyclic element, which contradicts to the initial assumption
that p is the pre-period of g.

3. Coloring the elements of the infinite order

In the following claim, we assume m,n ∈ N, and we denote by G(x,m, n)
the set of all y ∈ G satisfying xm = yn.

Claim 4. Let x ∈ G be an element of the infinite order. Then the set

G(x,m, n) is independent in P(G).

Proof. Assume that k ∈ N and y, z ∈ G are such that xm = yn, xm = zn,
y = zk. Then we have xmk = zkn = yn = xm. Since x has the infinite order,
we get k = 1, which implies y = z and completes the proof.

In what follows, we denote by π ⊂ G the set of elements of finite orders
and by P∗(G) the graph obtained from P(G) by removing the vertices in π.

Claim 5. Let x ∈ G be an element of the infinite order. We define the set

C(x) =
⋃

m,n∈N G(x,m, n). Then C(x) is a connected component of P∗(G).

Proof. If we have xm1 = gn1, xm2 = hn2 with m1, m2, n1, n2 ∈ N, then both
g and h are adjacent to xm1m2 ∈ C(x), which shows that C(x) is connected.
Now assume that an element z ∈ P∗(G) is adjacent to a vertex y in C(x).
Then we have xm = yn and yp = zq with positive integers m,n, p, q (and
either p = 1 or q = 1, but this fact is not relevant for our proof). We get
xmp = znq, which implies that z belongs to C(x) as well. In other words, the
vertices in C(x) can be adjacent only to vertices in C(x).

Now we are ready to prove our main result, which states that G is a union
of countably many independent subsets of P(G). Claim 1 shows that the
subgraph of P(G) induced by the cyclic elements can be covered by countably
many independent sets. Claim 3 proves the same result for the subgraph
induced by those elements that have finite orders but are not cyclic. These
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claims together allow us to cover the set π by countably many independent
sets of P(G).

We denote by {Cα} the set of all connected components of the graph
P∗(G), which is obtained from P(G) by removing the vertices in π. We
choose an element xα in every connected component Cα, and we deduce from
Claim 5 that Cα = C(xα) for all indexes α. Claim 4 shows that every C(xα)
is the union of the independent sets G(xα, m, n) over all pairs of positive
integers (m,n). We see that G \ π is the union of the independent sets
∪αG(xα, m, n), which completes the proof.
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