Coloring the power graph of a semigroup

Yaroslav Shitov
National Research University Higher School of Economics, 20 Myasnitskaya Ulitsa, Moscow 101000, Russia

Abstract

Let G be a semigroup. The vertices of the power graph $\mathcal{P}(G)$ are the elements of G, and two elements are adjacent if and only if one of them is a power of the other. We show that the chromatic number of $\mathcal{P}(G)$ is at most countable, answering a recent question of Aalipour et al.

Keywords: power graph, chromatic number
2010 MSC: 05C15, 20F99

1. Introduction

This note is devoted to the graph constructed in a special way from a given semigroup G. This graph is called the power graph of G, denoted by $\mathcal{P}(G)$, and its vertices are the elements of G. Elements $g, h \in G$ are adjacent if and only if one of them is a power of the other, that is, if we have either $g=h^{k}$ or $h=g^{k}$ for some $k \in \mathbb{N}$. (Here an in what follows, \mathbb{N} denotes the set of positive integers.) This concept has attracted some attention in both the discrete mathematics and group theory, see [2, 3].

Let us consider a related directed graph $D(G)$ on the set G. Assume $D(G)$ contains an edge leading from x to y if and only if y is a power of x. Clearly, the outdegree of any vertex of $D(G)$ is at most countable, and one gets the graph $\mathcal{P}(G)$ by forgetting about the orientations of the edges of $D(G)$. A classical result by Fodor (see [4, 5]) shows that the chromatic number of $\mathcal{P}(G)$ does not exceed any uncountable cardinal. Is this chromatic number always at most countable? This question was studied in [1] by Aalipour et al. They answer this question in the special cases which include groups

[^0]with finite exponent, free groups, and Abelian groups. However, the general version of this problem remained open even for groups, and it was posed in [1] as Question 42. This note gives an affirmative answer to this question. More than that, we prove that the chromatic number of $\mathcal{P}(G)$ is countable even if G is an arbitrary power-associative magma. (Here, a magma is a set endowed with a binary operation. A magma is called power-associative if a sub-magma generated by a single element is associative.)

We proceed with the proof. The order of an element $h \in G$ is the cardinality of the subsemigroup generated by h. An element $h \in G$ is called cyclic if the subsemigroup generated by h is a finite group. In other words, an element h is cyclic if and only if the equality $h=h^{n+1}$ holds for some positive integer n. If h is not cyclic but has a finite order, then the pre-period of h is defined as the largest p such that the element h^{p} occurs in the sequence h, h^{2}, h^{3}, \ldots exactly once.

2. Coloring the elements of finite orders

The following claim allows us to split the set of all cyclic elements into a union of countably many independent sets.

Claim 1. Fix a number $n \in \mathbb{N}$. The subgraph of $\mathcal{P}(G)$ induced by the set of cyclic elements of order n is a union of cliques of size at most n.

Proof. Denote this induced subgraph by P^{\prime}. Let \sim be the relation on P^{\prime} containing those pairs (x, y) such that x is a power of y; this relation is clearly reflexive and transitive. Assuming that $x \sim y$, we get $x=y^{p}$, and we note that p is relatively prime to n because the orders of x, y are equal to n. So we get $p q+p^{\prime} n=1$ for some $p^{\prime} \in \mathbb{Z}, q \in \mathbb{N}$, which shows that $y=x^{q}$. Therefore, \sim is an equivalence relation, and every equivalence class is a subset of the set of powers of some $x \in P^{\prime}$.

As we see from the proof, the sizes of the cliques as in Claim 1 are equal to $\varphi(n)$, where φ is the Euler's totient function. This result is similar to Theorem 15 in [1]. Now we are going to prove that the set of all non-cyclic elements of finite orders can be represented as a union of countably many independent sets. We need the following observation.

Observation 2. If $g \in G$ has a finite order n and pre-period p, then g^{q} is cyclic for all $q>p$.

Proof．We have $g^{n+1}=g^{p+1}$ ，so that $\left(g^{q}\right)^{n-p+1}=g^{p+1} g^{(n-p) q} g^{q-p-1}=g^{q}$ ．
Claim 3．Let $g, h \in G$ be distinct elements with finite orders．If g, h have the same pre－period p ，then they are non－adjacent in $\mathcal{P}(G)$ ．

Proof．Assume the result is not true．Then we have $g=h^{t}$ ，for some $t>1$ ． （We omit the case $h=g^{t}$ ，which is considered similarly．）Observation 2／shows that $g^{p}=h^{t p}$ is a cyclic element，which contradicts to the initial assumption that p is the pre－period of g ．

3．Coloring the elements of the infinite order

In the following claim，we assume $m, n \in \mathbb{N}$ ，and we denote by $G(x, m, n)$ the set of all $y \in G$ satisfying $x^{m}=y^{n}$ ．

Claim 4．Let $x \in G$ be an element of the infinite order．Then the set $G(x, m, n)$ is independent in $\mathcal{P}(G)$ ．

Proof．Assume that $k \in \mathbb{N}$ and $y, z \in G$ are such that $x^{m}=y^{n}, x^{m}=z^{n}$ ， $y=z^{k}$ ．Then we have $x^{m k}=z^{k n}=y^{n}=x^{m}$ ．Since x has the infinite order， we get $k=1$ ，which implies $y=z$ and completes the proof．

In what follows，we denote by $\pi \subset G$ the set of elements of finite orders and by $\mathcal{P}_{*}(G)$ the graph obtained from $\mathcal{P}(G)$ by removing the vertices in π ．

Claim 5．Let $x \in G$ be an element of the infinite order．We define the set $C(x)=\bigcup_{m, n \in \mathbb{N}} G(x, m, n)$ ．Then $C(x)$ is a connected component of $\mathcal{P}_{*}(G)$ ．

Proof．If we have $x^{m_{1}}=g^{n_{1}}, x^{m_{2}}=h^{n_{2}}$ with $m_{1}, m_{2}, n_{1}, n_{2} \in \mathbb{N}$ ，then both g and h are adjacent to $x^{m_{1} m_{2}} \in C(x)$ ，which shows that $C(x)$ is connected． Now assume that an element $z \in \mathcal{P}_{*}(G)$ is adjacent to a vertex y in $C(x)$ ． Then we have $x^{m}=y^{n}$ and $y^{p}=z^{q}$ with positive integers m, n, p, q（and either $p=1$ or $q=1$ ，but this fact is not relevant for our proof）．We get $x^{m p}=z^{n q}$ ，which implies that z belongs to $C(x)$ as well．In other words，the vertices in $C(x)$ can be adjacent only to vertices in $C(x)$ ．

Now we are ready to prove our main result，which states that G is a union of countably many independent subsets of $\mathcal{P}(G)$ ．Claim $⿴ 囗 ⿰ 丿 ㇄$ subgraph of $\mathcal{P}(G)$ induced by the cyclic elements can be covered by countably many independent sets．Claim 3 proves the same result for the subgraph induced by those elements that have finite orders but are not cyclic．These
claims together allow us to cover the set π by countably many independent sets of $\mathcal{P}(G)$.

We denote by $\left\{C_{\alpha}\right\}$ the set of all connected components of the graph $\mathcal{P}_{*}(G)$, which is obtained from $\mathcal{P}(G)$ by removing the vertices in π. We choose an element x_{α} in every connected component C_{α}, and we deduce from Claim 5 that $C_{\alpha}=C\left(x_{\alpha}\right)$ for all indexes α. Claim 4 shows that every $C\left(x_{\alpha}\right)$ is the union of the independent sets $G\left(x_{\alpha}, m, n\right)$ over all pairs of positive integers (m, n). We see that $G \backslash \pi$ is the union of the independent sets $\cup_{\alpha} G\left(x_{\alpha}, m, n\right)$, which completes the proof.

References

[1] G. Aalipour, S. Akbari, P. J. Cameron, R. Nikandish, F. Shaveisi, On the structure of the power graph and the enhanced power graph of a group, preprint (2016) arXiv:1603.04337.
[2] P. J. Cameron, The power graph of a finite group, II, J. Group Theory 13 (2010) 779-783.
[3] P. J. Cameron, S. Ghosh, The power graph of a finite group, Discrete Math. 311 (2011) 1220-1222.
[4] G. Fodor, Proof of a conjecture of P. Erdős, Acta. Sci. Math. Hung. 14 (1952) 219-227.
[5] P. Komjáth, A note on uncountable chordal graphs, Discrete Math. 338 (2015) 1565-1566.

[^0]: Email address: yaroslav-shitov@yandex.ru (Yaroslav Shitov)

