
Acyclic chromatic index of triangle-free 1-planar graphs

Jijuan Chen Tao Wang∗ Huiqin Zhang
Institute of Applied Mathematics

Henan University, Kaifeng, 475004, P. R. China

August 20, 2016

Abstract

An acyclic edge coloring of a graph G is a proper edge coloring such that every cycle is colored with at least three
colors. The acyclic chromatic index χ′a(G) of a graph G is the least number of colors in an acyclic edge coloring of G.
It was conjectured that χ′a(G) ≤ ∆(G) + 2 for any simple graph G with maximum degree ∆(G). A graph is 1-planar if
it can be drawn on the plane such that every edge is crossed by at most one other edge. In this paper, we prove that
every triangle-free 1-planar graph G has an acyclic edge coloring with ∆(G) + 16 colors.
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1 Introduction
All graphs considered in this paper are simple, undirected and finite. For a plane graph G, we use F(G) to denote the
face set of G. In a plane graph G, the degree of a face f , denoted deg( f ), is the length of the boundary walk. A k-vertex,
k−-vertex and k+-vertex is a vertex with degree k, at most k and at least k, respectively. Analogously, we can define a
k-face, k−-face and k+-face.

An acyclic edge coloring of a graph G is a proper edge coloring such that every cycle is colored with at least three
colors. In other words, the union of any two color classes induces a subgraph such that every component is a path. The
acyclic chromatic index χ′a(G) of a graph G is the least number of colors in an acyclic edge coloring of G.

By Vizing’s theorem, the acyclic chromatic index of G has a trivial lower bound ∆(G). Fiamčík [5] stated the
following conjecture in 1978, which is well known as Acyclic Edge Coloring Conjecture, and Alon et al. [2] restated
it in 2001.

Conjecture 1. For any graph G, χ′a(G) ≤ ∆(G) + 2.

Alon et al. [1] proved that χ′a(G) ≤ 64∆(G) by using probabilistic method. Molloy and Reed [11] improved it to
χ′a(G) ≤ 16∆(G). Ndreca et al. [12] improved the upper bound to d9.62(∆(G) − 1)e. Recently, Esperet and Parreau
[4] further improved it to 4∆(G) − 4 by using the so-called entropy compression method. To my knowledge, the best
known general bound is d3.74(∆(G) − 1)e due to Giotis et al. [7]. Alon et al. [2] proved that there is a constant c such
that χ′a(G) ≤ ∆(G) + 2 for a graph G whenever the girth is at least c∆ log ∆.

Regarding general planar graph G, Fiedorowicz et al. [6] proved that χ′a(G) ≤ 2∆(G) + 29, and Hou et al. [10]
proved that χ′a(G) ≤ max{2∆(G) − 2,∆(G) + 22}. Recently, Basavaraju et al. [3] showed that χ′a(G) ≤ ∆(G) + 12, and
Guan et al. [8] improved it to χ′a(G) ≤ ∆(G) + 10, and Wang et al. [18] further improved it to χ′a(G) ≤ ∆(G) + 7. The
current best upper bound is ∆(G) + 6 by Wang and Zhang [17].

A graph is 1-planar if it can be drawn on the plane such that every edge crosses at most one other edge. Obviously,
the class of 1-planar graphs is a larger class than the one of planar graphs. The concept of 1-planar graph was introduced
by Ringel [13] in 1965, while he simultaneously colored the vertices and faces of a plane graph such that any pair of
adjacent/incident elements receive distinct colors.

The Acyclic Edge Coloring Conjecture was verified for the triangle-free planar graphs, see [14, 16]. Recently,
Song and Miao [15] firstly studied the acyclic chromatic index of triangle-free 1-planar graphs, and gave the following
result.
∗Corresponding author: wangtao@henu.edu.cn
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Theorem 1.1 (Song and Miao [15]). If G is a triangle-free 1-planar graph, then χ′a(G) ≤ ∆(G) + 22.

Note that the upper bound ∆(G) + 22 is far from the conjectured bound ∆(G) + 2. In this paper, we improve the
upper bound to ∆(G) + 16, and we believe it can be further improved.

Theorem 1.2. If G is a triangle-free 1-planar graph, then χ′a(G) ≤ ∆(G) + 16.

2 Preliminary and structural results
Let S be a multiset and x be an element in S. The multiplicity mulS(x) is the number of times x appears in S. Let S
and T be two multisets. The union of S and T, denoted by S ] T, is a multiset with mulS]T(x) = mulS(x) + mulT(x). A
graph G with maximum degree at most κ is κ-deletion-minimal if χ′a(G) > κ and χ′a(H) ≤ κ for every proper subgraph
H of G.

A partial acyclic edge coloring of G is an acyclic edge coloring of any subgraph of G. Let φ be a partial acyclic edge
coloring of G. LetUφ(v) denote the set of colors used on the edges incident with v. Let Aφ(v) = {1, 2, . . . , κ}\Uφ(v) and
Aφ(uv) = {1, 2, . . . , κ} \ (Uφ(u) ∪ Uφ(v)). Let Υφ(u, v) = Uφ(v) \ {φ(uv)} and Wφ(u, v) = { ui | uui ∈ E(G) and φ(uui) ∈
Υ(u, v) }. Notice that Wφ(u, v) may be not the same as Wφ(v, u). For simplicity, we will omit the subscripts if no
confusion can arise.

An (α, β)-maximal bichromatic path with respect to φ is a maximal path whose edges are colored by α and β
alternately. An (α, β, u, v)-critical path with respect to φ is an (α, β)-maximal bichromatic path which starts at u with α
and ends at v with α. An (α, β, u, v)-alternating path with respect to φ is an (α, β)-bichromatic path starting at u with α
and ending at v with β.

A color α is available for an edge e in G with respect to a partial edge coloring of G if none of the adjacent edges
of e is colored with α. An available color α is valid for an edge e if assigning the color α to e does not result in any
bichromatic cycle in G.

Fact 1 (Basavaraju et al. [3]). Given a partial acyclic edge coloring of G and two colors α, β, there exists at most one
(α, β)-maximal bichromatic path containing a particular vertex v. �

Fact 2 (Basavaraju et al. [3]). Let G be a κ-deletion-minimal graph and uv be an edge of G. If φ is an acyclic edge
coloring of G−uv, then no available color for uv is valid. Furthermore, ifU(u)∩U(v) = ∅, then deg(u)+deg(v) = κ+2;
if |U(u) ∩U(v)| = s, then deg(u) + deg(v) +

∑
w∈W(u,v)

deg(w) ≥ κ + 2s + 2. �

We collect some structural lemmas on κ-deletion-minimal graphs, which are useful for our main result.

Lemma 1. If G is a κ-deletion-minimal graph, then G is 2-connected and δ(G) ≥ 2.

The following two lemmas deal with the local structures of the 2-vertices

Lemma 2 (Wang and Zhang [16]). Let G be a κ-deletion-minimal graph. If v is adjacent to a 2-vertex v0 and NG(v0) =

{w, v}, then v is adjacent to at least κ − deg(w) + 1 vertices of degree at least κ − deg(v) + 2. Moreover,

(A) if κ ≥ deg(v)+1 and wv ∈ E(G), then v is adjacent to at least κ−deg(w)+2 vertices of degree at least κ−deg(v)+2,
and deg(v) ≥ κ − deg(w) + 3;

(B) if κ ≥ ∆(G) + 2 and v is adjacent to precisely κ − ∆(G) + 1 vertices of degree at least κ − ∆(G) + 2, then v is
adjacent to at most deg(v) + ∆(G) − κ − 3 vertices of degree two and deg(v) ≥ κ − ∆(G) + 4. �

Lemma 3 (Wang and Zhang [16]). Let G be a κ-deletion-minimal graph with κ ≥ ∆(G) + 2. If v0 is a 2-vertex, then v0
is adjacent to two (κ − ∆(G) + 4)+-vertices.

Wang and Zhang also gave the following local structure of the 3-vertices.

Lemma 4 (Wang and Zhang [16]). Let G be a κ-deletion-minimal graph with κ ≥ ∆(G) + 2 and v be a 3-vertex with
NG(v) = {w, v1, v2}. If deg(w) = κ − ∆(G) + 2, then G has the following properties:

(a) there is exactly one common color at w and v for any acyclic edge coloring of G − wv. By symmetry, we may
assume that the color on vv1 is the common color;
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(b) deg(v1) = ∆(G) ≥ deg(v2) ≥ κ − ∆(G) + 3;

(c) the edge wv is not contained in any triangle in G and w is adjacent to exactly one 3−-vertex;

(d) the vertex v1 is adjacent to at least κ − deg(v2) + 1 vertices of degree at least κ − ∆(G) + 2;

(e) the vertex v2 is adjacent to at least κ − ∆(G) vertices of degree at least κ − deg(v2) + 2;

(f) the vertex v2 is adjacent to at least κ − ∆(G) + 1 vertices of degree at least four. �

Lemma 5 (Hou et al. [9]). If G is a κ-deletion-minimal graph with κ ≥ ∆(G) + 2, then every 3-vertex is adjacent to
three (κ − ∆(G) + 2)+-vertices.

Lemma 6. If G is a κ-deletion-minimal graph with κ ≥ ∆(G)+2, then every vertex is adjacent to at least two 4+-vertices.

Proof. Let w be a vertex with neighbors w0, w1, . . . , wτ−1. Suppose to the contrary that w is adjacent to at most one
4+-vertex. By Lemma 2, no 2-vertex is adjacent to w. Let w0 be a 3-vertex with neighbors w, v1, v2. Since G is κ-
deletion-minimal, the graph G − ww0 has an acyclic edge coloring φ with φ(wwi) = i for 1 ≤ i ≤ τ − 1. Note that
deg(w) + deg(w0) = deg(w) + 3 , κ + 2, Fact 2 guarantees |U(w) ∩ U(w0)| ≥ 1. Without loss of generality, we may
assume that w0v1 is colored with 1.

Case 1. |U(w) ∩ U(w0)| = 1. Note that G cannot be acyclically edge colored with κ colors, thus there exists a
(1, α, w, w0)-critical path for α ∈ A(ww0), and then A(ww0) ⊆ Υ(w, w1) ∩ Υ(w0, v1). In this case, we consider the
following two situations according to the degree of w1.

Subcase 1.1. w1 is a 3-vertex. Recall that there exists a (1, α, w, w0)-critical path for α ∈ A(ww0), thus τ = κ − 2 =

∆ and Υ(w, w1) ⊆ {∆,∆ + 1,∆ + 2}. If there exists another vertex ws with Υ(w, ws) ⊆ {∆,∆ + 1,∆ + 2}, then we
can exchange the colors on ww1 and wws, and additionally color ww0 with an element in A(ww0). Hence, we have
Υ(w, ws)∩ {1, 2, . . . ,∆− 1} , ∅ for s ≥ 2. Let w2, w3, . . . , wτ−2 be 3-vertices. For i ≥ 2, uncolor wwi and color ww0 with
i, we obtain an acyclic edge coloring φi of G − wwi.

There exists a (λα, α, w, w2)-critical path for each α in A(ww2), for otherwise we can color ww0 with 2 and recolor
ww2 with α. It follows that there exists x, y ∈ A(ww2) with λx = λy = λ, and then {x, y} ⊆ Υ(w, wλ). By Fact 1, we have
that λ , 1, and then the vertex wλ is a 4+-vertex and λ = τ − 1.

By similar arguments, we conclude that there exists a (τ − 1, α1, w, w3)-critical path and a (τ − 1, α2, w, w3)-critical
path for some α1, α2 in A(ww3). Note that {α1, α2} ∪ {x, y} ⊆ {∆,∆ + 1,∆ + 2}, thus {α1, α2} ∩ {x, y} , ∅, but this
contradicts Fact 1.

Subcase 1.2. w1 is a 4+-vertex. Note that |A(v1) ∩ {2, 3, . . . , τ − 1}| ≥ 1, otherwise deg(v1) ≥ κ − 1 ≥ ∆ + 1. By
symmetry, we may assume that 2 is a missing color at v1. Uncolor ww2 and color ww0 with 2, the resulting coloring is
an acyclic edge coloring ϕ of G − ww2. By Fact 2, we have that Υ(w, w2) ∩ {1, 2, . . . , τ − 1} , ∅.

• Υ(w, w2) = {ρ, ρ′} and ρ′ ≥ τ. There exists a (ρ, α, w, w2)-critical path for α ∈ A(ww0) ∩ A(ww2), thus ρ , 1 and
wρ is a 3-vertex. Now, we can reduce it to Subcase 1.1 with ϕ playing the role of φ.

• Υ(w, w2) = {ρ, ρ′} ⊆ {1, 2, . . . , τ − 1}. Note that none of τ, τ + 1, . . . , κ is valid for ww2 under ϕ, thus there exists
a (ρ, α1, w, w2)-critical path and a (ρ, α2, w, w2)-critical path for some α1, α2 from {τ, τ + 1, . . . , κ}. It is obvious
that {α1, α2} ∩ A(ww0) , ∅, thus ρ , 1 and Υ(w, wρ) = {α1, α2}. So we may assume that ρ = 3.

If 3 < U(v1), then we can color ww0 with 3 and recolor ww3 with an element in {τ, τ + 1, . . . , κ} \ {α1, α2}. It
follows that 3 ∈ U(v1).

Suppose that 4 < U(v1) and Υ(w, w4) = {p, q}. For each α ∈ A(ww4), there exists a (p, α, w, w4)-critical path or a
(q, α, w, w4)-critical path, for otherwise we can color ww0 with 4 and recolor ww4 with α.

– Suppose that q ≥ τ. Thus there exists a (p, α, w, w4)-critical path for each α ∈ A(ww4), and then p , 3 and
A(ww4) ⊆ Υ(w, wp). Note that A(ww0) ∩ A(ww4) , ∅, so we have that p , 1. In fact wp is a 3-vertex and
Υ(w, wp) = A(ww4). We can exchange the colors on ww3 and wwp, color ww0 with 4 and recolor ww4 with
an element in A(ww4).
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– Suppose that {p, q} ⊆ {1, 2, . . . , τ − 1}. Note that A(ww4) = {τ, τ + 1, . . . , κ} and |A(ww4)| ≥ 3, so we
may assume that there exists a (p, ξ1, w, w4)-critical path and a (p, ξ2, w, w4)-critical path for some ξ1, ξ2 ∈

A(ww4). It concludes that {ξ1, ξ2} ⊆ Υ(w, wp). Clearly, {ξ1, ξ2} ∩ A(ww0) , ∅, and then p ∈ {1, 3} due to
Fact 1. So wp is a 3-vertex with Υ(w, wp) = {ξ1, ξ2}. We can exchange the colors on ww3 and wwp, color
ww0 with 2 and uncolor ww2, and then we obtain a new acyclic edge coloring of G − ww2. Under this new
coloring, there exists a (ρ′, α, w, w2)-critical path for each α ∈ A(ww2), and then A(ww2) ⊆ Υ(w, wρ′ ). If
ρ′ = 1, then there exists a (1, α, w, w2)-critical path and a (1, α, w, w0)-critical path for each α ∈ A(ww0),
which contradicts Fact 1. If ρ′ , 1, then deg(wρ′ ) ≥ 1 + |A(ww2)| ≥ 4, a contradiction.

By similar arguments, {4, 5, . . . , τ − 1} ⊆ U(v1), and then {1, 3, 4, . . . , τ − 1} ∪ A(ww0) ⊆ U(v1). It follows that
A(v1) = {2, φ(w0v2)}. We recolor w0v1 with 2, and then we reduce it to Subcase 1.1.

Case 2. |U(w) ∩U(w0)| = 2. By symmetry, we may assume that w0v2 is colored with 2. There exists a (1, α, w0, w)-
critical path or a (2, α, w0, w)-critical path for α ∈ {τ, τ + 1, . . . , κ}, thus {τ, τ + 1, . . . , κ} ⊆ Υ(w, w1) ∪ Υ(w, w2).

Subcase 2.1. Either Υ(w0, v1) + {τ, . . . , κ} or Υ(w0, v2) + {τ, . . . , κ}. By symmetry, we may assume that τ < Υ(w0, v2).
Note that τ is not valid for ww0, thus there exists a (1, τ, w0, w)-critical path, and then there exists no (1, τ, w0, v2)-critical
path. Recoloring w0v2 with τ results in a new acyclic edge coloring σ of G − ww0 with |Uσ(w) ∩ Uσ(w0)| = 1 and it
takes us back to Case 1.

Subcase 2.2. Υ(w0, v1) ⊇ {τ, . . . , κ} and Υ(w0, v2) ⊇ {τ, . . . , κ}.

(∗1) Note that at most one of w1 and w2 is a 4+-vertex, so we may assume that w2 is a 3-vertex. If Υ(w, w2) ⊆
{τ+1, τ+2, . . . , κ}, then we can recolor ww2 with an element in {τ, τ+1, . . . , κ}\Υ(w, w2), and then reduce it to Case 1. So
we may assume that Υ(w, w2) = {ρ, ρ′} with ρ < τ. There exists a (1, α, w, w0)-critical path for α ∈ {τ, τ+1, . . . , κ} \ {ρ′},
thus {τ, τ+ 1, . . . , κ} \ {ρ′} ⊆ Υ(w, w1). If w1 is a 3-vertex, then Υ(w, w1)∪ {ρ′} = {τ, τ+ 1, . . . , κ} = {∆,∆ + 1,∆ + 2}, and
then we can recolor ww1 with an element in {τ, τ+ 1, . . . , κ} \Υ(w, w1) and reduce it to Case 1. Hence, w1 is a 4+-vertex.

(∗2) Since A(v1) ∩ {3, 4, . . . , τ − 1} , ∅, we may assume that 3 is a missing color at v1. Recoloring w0v1 with 3 must
create a (3, 2)-bichromatic cycle containing w0v1, for otherwise the resulting coloring is a new acyclic edge coloring of
G −ww0, and then one of w2 and w3 must be a 4+-vertex by a similar argument in the last paragraph. Let σ be obtained
by uncoloring ww3 and coloring ww0 with 3. It is obvious that σ is an acyclic edge of G − ww3. We can conclude that
Υ(w, w3) ⊆ {1, 2, . . . , τ − 1}, otherwise we reduce it to Case 1.

(∗3) Let Υ(w, w3) = {p, q}. By a similar argument as in the paragraph marked with (∗1), one of wp and wq is a 4+-
vertex. So we may assume that p = 1. For α ∈ {τ, τ + 1, . . . , κ} \ {ρ′}, there exists no (1, α, w, w3)-critical path, so there
exists a (q, α, w, w3)-critical path and {τ, τ + 1, . . . , κ} \ {ρ′} ⊆ Υ(w, wq). Since wq is a 3-vertex, thus Υ(w, wq) ∪ {ρ′} =

{τ, τ+ 1, . . . , κ} = {∆,∆ + 1,∆ + 2}. Hence, there exists a (1, ρ′, w, w3)-critical path, for otherwise we can color ww0 with
3 and recolor ww3 with ρ′.

Recall that recoloring w0v1 with 3 creates a (3, 2)-bichromatic cycle containing w0v1, this implies that 2 ∈ U(v1)
and |A(v1) ∩ {3, 4, . . . , τ − 1}| ≥ 2. So we may assume that 4 is also a missing color at v1. By a similar argument as in
the paragraphs marked with (∗2) and (∗3), there exists a (1, ρ′, w, w4)-critical path, but this contradicts Fact 1. �

In [17], Wang and Zhang presented the following structural lemma of the 4-vertices.

Lemma 7 (Wang and Zhang [17]). Let G be a κ-deletion-minimal graph with κ ≥ ∆(G) + 2, and let w0 be a 4-vertex
with NG(w0) = {w, v1, v2, v3}.

(A) If degG(w) ≤ κ − ∆(G), then ∑
x∈NG(w0)

degG(x) ≥ 2κ − degG(w0) + 8 = 2κ + 4. (1)
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(B) If degG(w) ≤ κ − ∆(G) + 1 and ww0 is contained in two triangles, then∑
x∈NG(w0)

degG(x) ≥ 2κ − degG(w0) + 9 = 2κ + 5. (2)

Furthermore, if the equality holds in (2), then all the other neighbors of w are 6+-vertices. �

3 Proof of Theorem 1.2
Now, we are ready to prove the main result in this paper.

Proof of Theorem 1.2. Suppose that G is a counterexample to the theorem in the sense that |V |+ |E| is minimum. It is
easy to see that G is a κ-deletion-minimal graph, where κ := ∆(G) + 16. By Lemma 1, the graph G is 2-connected and
δ(G) ≥ 2.

Since G is κ-deletion-minimal, it has the following local structures.

(C1) Every 2-vertex is adjacent to two 20+-vertices (Lemma 3).

(C2) Every 3-vertex is adjacent to three 18+-vertices (Lemma 5).

(C3) Every 18-vertex is adjacent to at most one 3-vertex (Lemma 4).

(C4) Every vertex is adjacent to at least two 4+-vertices (Lemma 6).

(C5) Every 4-vertex is adjacent to four 10+-vertices, or a 9−-vertex and three 22+-vertices (Lemma 7 (A)).

Suppose that G contains a 5-vertex v adjacent to three 7−-vertices. Let NG(v) = {u, v1, v2, v3, v4} with deg(u) ≤
7, deg(v1) ≤ 7 and deg(v2) ≤ 7. By the minimality of G, the graph G−uv has an acyclic edge coloring φ with ∆(G) + 16
colors. Moreover, when we choose the acyclic edge coloring φ, we assume that the number of common colors on the
edges incident with u and v is minimum, that is, |U(u) ∩ U(v)| = m is minimum among all the acyclic edge colorings
of G − uv. We can easily obtain that m ≥ 1 from Fact 2. Let NG(u) = {v, u1, . . . , ut}, t ≤ 6.

The first case: m = 1. Assume that uu1 and vv1 have the same color 1. Note that all the available colors for uv
are invalid, hence there exists a (1, α, u, v)-critical path for each α in A(uv), and thus A(uv) ⊆ U(u1). But |A(uv)| ≥
κ − (6 + 4 − 1) > ∆, thus |U(u1)| ≥ |A(uv)| + 1 > ∆, a contradiction.

The second case: m ≥ 2. Assume that uui and vvi have the same color i for each i ∈ {1, 2, . . . ,m}. For each α ∈ A(uv),
there exists an (iα, α, u, v)-critical path for some iα ∈ {1, 2, . . . ,m}. Note that |A(uv)| ≥ κ − 10 + m ≥ κ − 8 ≥ ∆ + 8,

deg(v1) + deg(v2) + deg(v3) + deg(v4) − 4 < 2|A(uv)|,

thus there exists an available color α∗ such that it appears exactly once in S, where S is defined as S := Υ(v, v1) ]
Υ(v, v2) ] Υ(v, v3) ] Υ(v, v4). Without loss of generality, we may assume that it appears inU(v1), and then there exists
a (1, α∗, u, v)-critical path. Now, we revise φ by recoloring vv2 with α∗, which yields a new acyclic edge coloring of
G − uv, but it contradicts the minimality of m. Therefore, the graph G does not contain a 5-vertex adjacent to three
7−-vertices. That is,

(C6) every 5-vertex is adjacent to at least three 8+-vertices.

Discharging Part. In the following, we may assume that G has been embedded on the plane such that every edge
is crossed by at most one other edge. Moreover, the number of crossings is as small as possible. We treat each of the
crossings as a vertex and obtain an associated plane graph G†.

Since the number of crossings is as small as possible in the embedding, we have the following claim.

Claim 1. Every 2-vertex is incident with two 4+-faces in G†.

Since G is triangle-free and every 2-vertex is incident with two 4+-faces in G†, we have the following statement. A
similar statement has been proven in [15].

Claim 2. Every `-vertex is incident with at most
⌊

2(`−λ)
3

⌋
3-faces in G†, where λ is the number of adjacent 2-vertices.
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We use the discharging method to derive a contradiction. Here, we need the following rewritten Euler’s formula
for the associated plane graph G†: ∑

v∈V(G†)

(deg(v) − 4) +
∑

f∈F(G†)

(deg( f ) − 4) = −8. (3)

At first, we assign the initial charge of every vertex v to be deg(v) − 4 and the initial charge of every face f to be
deg( f ) − 4. Next, we design appropriate discharging rules and redistribute charges among vertices and faces, such
that the final charge of every vertex and every face is nonnegative, which leads to a contradiction. Note that all the
adjacencies between vertices in the discharging rules are refer to the adjacencies between vertices in G, not in G†.

Discharging rules:

(R1) every 2-vertex receives 1 from each adjacent vertex;

(R2) every 3-vertex receives 3
2 from the adjacent 18-vertex;

(R3) every 3-vertex receives 1
2 from each adjacent 19+-vertex;

(R4) every 3-vertex receives 1
2 from each incident 5+-face;

(R5) every 3-face receives 1
2 from each incident non-crossing vertex;

(R6) every non-crossing 4-vertex receives 1
4 from each adjacent vertex if it is adjacent to four 10+-vertices;

(R7) every non-crossing 4-vertex receives 1
3 from each adjacent 22+-vertex if it is adjacent to a 9−-vertex and three

22+-vertices;

(R8) every 5-vertex receives 1
6 from each adjacent 8+-vertex.

If w is an arbitrary 2-vertex, then its final charge is 2 − 4 + 2 × 1 = 0. Let w be an arbitrary 3-vertex. Note
that w is incident with at most two 3-faces. If w is incident with at most one 3-face, then its final charge is at least
3 − 4 + 3

2 −
1
2 = 0. On the other hand, if w is incident with exactly two 3-faces, then it is incident with a 5+-face and it

receives 1
2 from the 5+-face, and then its final charge is at least 3 − 4 + 3

2 + 1
2 − 2 × 1

2 = 0. Hence, the final charge of an
arbitrary 3-vertex is nonnegative.

It is obvious that the final charge of a crossing 4-vertex is zero. Let w be an arbitrary non-crossing 4-vertex. If w is
adjacent to four 10+-vertices, then its final charge is at least 4 − 4 + 4 × 1

4 − 2 × 1
2 = 0. If w is adjacent to a 9−-vertex

and three 22+-vertices, then its final charge is at least 4 − 4 + 3 × 1
3 − 2 × 1

2 = 0.
If w is a 5-vertex, then it is adjacent to at least three 8+-vertices, then its final charge is at least 5−4+3× 1

6−3× 1
2 = 0.

If w is an arbitrary `-vertex with ` = 6, 7, then its final charge is at least ` − 4 − 2`
3 ×

1
2 ≥ 0.

If w is an arbitrary `-vertex with ` = 8, 9, then its final charge is at least ` − 4 − 2`
3 ×

1
2 −

1
6` ≥ 0.

Let w be an arbitrary 10+-vertex in the following. Suppose that w is adjacent to at least one 2-vertex. Let λ be the
number of adjacent 2-vertices. By Lemma 2, it is adjacent to at least seventeen 18+-vertices, thus its final charge is at
least `−4− 2(`−λ)

3 × 1
2 −λ×1− (`−λ−17)× 1

2 = `−λ
6 + 9

2 > 0. So we may assume that w is not adjacent to any 2-vertex.

• If w is an `-vertex with ` ≥ 22, then its final charge is at least ` − 4 −
⌊

2`
3

⌋
× 1

2 − ` ×
1
2 ≥ 0.

• If w is an `-vertex with ` = 19, 20, 21, then its final charge is least 19 − 4 −
⌊

2×19
3

⌋
× 1

2 − 17 × 1
2 − 2 × 1

4 = 0,

20 − 4 −
⌊

2×20
3

⌋
× 1

2 − 18 × 1
2 − 2 × 1

4 = 0, or 21 − 4 −
⌊

2×21
3

⌋
× 1

2 − 19 × 1
2 − 2 × 1

4 = 0.

• If w is an 18-vertex, then it is adjacent to at most one 3-vertex, and then its final charge is at least 18− 4− 2×18
3 ×

1
2 −

3
2 − 17 × 1

4 > 0.

• If w is an `-vertex with 10 ≤ ` ≤ 17, then it is only adjacent to 4+-vertices, and then its final charge is at least
` − 4 − 2`

3 ×
1
2 − ` ×

1
4 > 0.

It is obvious that every 3-face has the final charge 3 − 4 + 2 × 1
2 = 0. Every 4-face has the final charge as its initial

charge, zero. By (C2), there is no consecutive 3-vertices lying on a face boundary, thus every 5+-face f has final charge
at least deg( f ) − 4 −

⌊
deg( f )

2

⌋
× 1

2 ≥ 0.
Now, the final charge of every vertex and every face is nonnegative, which derives the desired contraction. �
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