Arpitha P. Bharathi^{1,*}, Sheshayya A. Choudum¹

Abstract

The class of $2K_2$ -free graphs and its various subclasses have been studied in a variety of contexts. In this paper, we are concerned with the colouring of $(P_3 \cup P_2)$ -free graphs, a super class of $2K_2$ -free graphs. We derive a $O(\omega^3)$ upper bound for the chromatic number of $(P_3 \cup P_2)$ -free graphs, and sharper bounds for $(P_3 \cup P_2)$, diamond)-free graphs, where ω denotes the clique number. By applying similar proof techniques we obtain chromatic bounds for $(2K_2, \text{diamond})$ -free graphs. The last two classes are perfect if $\omega \ge 5$ and ≥ 4 respectively.

Keywords: Colouring, Chromatic number, Clique number, $2K_2$ -free graphs, $(P_3 \cup P_2)$ -free graphs, Diamond, Perfect graphs 2000 MSC: 05C15, 05C17

1. Introduction

A graph G is said to be H-free, if G does not contain an induced copy of H. More generally, a class of graphs \mathscr{G} is said to be (H_1, H_2, \cdots) -free if every $G \in \mathscr{G}$ is H_i -free, for i > 1. The class of $2K_2$ -free graphs and its subclasses are subject of research in various contexts: domination (El-Zahar and Erdös [10]), size (Bermond et al. [2], Chung et al. [9]), vertex colouring (Wagon [19], Nagy and Szentmiklossy [16], Gyárfás [12]), edge colouring (Erdös and Nesetril [11]) and algorithmic complexity (Blazsik et al. [3]). Here we are concerned with the colouring of $(P_3 \cup P_2)$ -free graphs, a super class of $2K_2$ free graphs. A comprehensive result of Kral et al. [15] states that the decision problem of COLOURING H-free graphs is P-time solvable if H is an induced subgraph of P_4 or $P_3 \cup P_1$, and it is NP-complete for any other graph H. In particular, COLOURING $2K_2$ -free graphs is NP-complete. However, there have been several studies to obtain tight upper and lower bounds for the chromatic number of $2K_2$ -graphs. A problem of Gyárfás [12] asks for the smallest function f(x) such that $\chi(G) \leq f(\omega(G))$, for every G belonging to the class of 2K₂-free graphs, where $\chi(G)$ and $\omega(G)$ respectively denote the chromatic number and clique number of G. This problem is still open. In this respect, an often quoted result is due to Wagon [19]. It states that if a graph G is $2K_2$ -free, then $\chi(G) \leq {\binom{\omega(G)+1}{2}}$. We look more closely at Wagon's proof and obtain a $O(\omega^3)$ upper bound for the chromatic number of $(P_3 \cup P_2)$ -free graphs, and sharper bounds for $(P_3 \cup P_2, \text{ diamond})$ -free graphs. By applying similar proof techniques we obtain chromatic bounds for $(2K_2, \text{ diamond})$ -free graphs. The last two classes are perfect if the clique number is ≥ 5 and ≥ 4 respectively. The classes of (*H*, diamond)-free graphs and $(H_1, H_2, \text{diamond})$ -free graphs, for various graphs H, H_1 and H_2 , have been studied

^{*}Corresponding author

Email addresses: arpitha.p.bharathi@gmail.com(Arpitha P. Bharathi), sac@retiree.iitm.ac.in(Sheshayya A. Choudum)

¹Department of Mathematics, Christ University, Bengaluru 560029, India

in many papers; see Arbib and Mosca [1], Brandstädt [5], Choudum and Karthick [7], Karthick and Maffrey [14], Gyárfás [12], and Randerath and Schiermeyer [17]. See also a comprehensive book on problems of graph colourings by Jensen and Toft [13] and an extensive book of Brandtstädt et al. [6], for interesting subclasses and superclasses of $2K_2$ -free graphs.

2. Terminology and Notation

We follow standard terminology of Bondy and Murty [4], and West [20]. All our graphs are simple and undirected. If u, v are two vertices of a graph G(V, E), then their adjacency is denoted by $u \leftrightarrow v$, and non-adjacency by $u \nleftrightarrow v$. P_n, C_n and K_n respectively denote the path, cycle and complete graph on *n* vertices. A chordless cycle of length ≥ 5 is called a *hole*. If $S \subseteq V(G)$, then [S] denotes the subgraph induced by S. If S and T are two disjoint subsets of V(G), then [S,T] denotes the set of edges $\{st \in E(G) : s \in S \text{ and }$ $t \in T$. A subset Q of V(G) is called a *clique* if any two vertices in Q are adjacent. The *clique number* of G is defined to be max{|Q| : Q is a clique in G}; it is denoted by $\omega(G)$. A clique Q is called a *maximum clique* if $|Q| = \omega(G)$. A subset I of V(G) is called an independent set if no two vertices in I are adjacent. A k-vertex colouring or a k-colouring or a *colouring* is a function $f: V(G) \to \{1, 2, \dots, k\}$ such that $f(u) \neq f(v)$, for any two adjacent vertices u, v in G. It is also referred to as a proper colouring of G for emphasis. The chromatic number $\chi(G)$ of G is defined to be min{k : G admits a k-colouring}. If G_1, G_2, \dots, G_k are vertex disjoint graphs, then $G_1 \cup G_2 \cup \dots \cup G_k$ denotes the graph with vertex set $\bigcup_{i=1}^{k} V(G_i)$ and edge set $\bigcup_{i=1}^{k} E(G_i)$. If $G_1 \simeq G_2 \simeq \cdots \simeq G_k \simeq H$, for some H, then $G_1 \cup G_2 \cup \cdots \cup G_k$ is denoted by kH. The three graphs which appear frequently in this paper are shown in Fig.1.

Figure 1: $2K_2$, $P_3 \cup P_2$, Diamond

3. A partition of the vertex set of a graph.

Throughout this paper we use a particular partition of the vertex set of a graph G(V, E) and use its properties. Some of these properties are due to Wagon [19], but are restated for ready reference. In what follows, ω denotes the clique number of a graph under consideration.

Let *A* be a maximum clique in *G* with vertices $1, 2, \dots, \omega$. We iteratively define the sets C_{ij} in the lexicographic order of pairs of vertices *i*, *j* of *A*.

$$C = \phi$$

for *i* : 1 to ω
for *j* : *i* + 1 to ω
$$C_{ij} = \{ v \in V(G) - C \mid v \nleftrightarrow i \text{ and } v \nleftrightarrow j \};$$

$$C = C \cup C_{ij};$$

end end

By definition, there are $\binom{\omega}{2}$ number of C_{ij} sets and these are pairwise disjoint. Also, every vertex in C_{ij} is adjacent to every vertex k of A, where $1 \le k < j, k \ne i$. Moreover, every vertex in V(G) - A which is non-adjacent to two or more vertices of A is in some C_{ij} . So, every vertex $v \in V(G) - (A \cup C)$ is adjacent to all the vertices of A or |A| - 1 vertices of A. The former case is impossible, since A is a maximum clique. Hence we define the following sets. For $a \in A$, let

$$I_a = \{ v \in V(G) - (A \cup C) \mid v \leftrightarrow x, \forall x \in A - \{a\} \text{ and } v \nleftrightarrow a \}.$$

By the above remarks, we conclude that $(A, \bigcup_{i,j} C_{ij}, \bigcup_{a \in A} I_a)$ is a partition of V(G).

4. Colouring of $(P_3 \cup P_2)$ -free graphs

We first observe a few properties of the sets C_{ij} and I_a , and then obtain an $O(\omega^3)$ upper bound for the chromatic number of a $(P_3 \cup P_2)$ -free graph.

Theorem 1. If a graph G is $(P_3 \cup P_2)$ -free, then $\chi(G) \leq \frac{\omega(\omega+1)(\omega+2)}{6}$.

Proof. Let *A* be a maximum clique in *G*. Let $(1, 2, 3, \dots, \omega)$ be a vertex ordering of *A*. Since *G* is $(P_3 \cup P_2)$ -free, the sets C_{ij} and I_a possess a few more properties, in addition to the ones stated in section 3.

Claim 1: Each induced subgraph $[C_{ij}]$ of G is P_3 -free and hence it is a disjoint union of cliques.

If some C_{ij} contains an induced $P_3 = (x, y, z)$, then $[\{x, y, z\} \cup \{i, j\}] \simeq P_3 \cup P_2$, a contradiction.

Claim 2: Each I_a is an independent set.

If some I_a contains an edge vw, then $A \cup \{v, w\} - \{a\}$ is a clique of size $\omega + 1$, a contradiction to the maximality of |A|.

Claim 3: $\omega([C_{ij}]) \leq \omega - (j-2)$, where $j \geq 2$ Let *B* be a maximum clique in $[C_{ij}]$. Every vertex in *B* is adjacent to every vertex in $K = \{1, 2, \dots, j-1\} - \{i\} \subseteq A$, by the definition of C_{ij} . So, $B \cup K$ is a clique of *G*. Hence, $\omega(G) \geq |B \cup K| = \omega([C_{ij}]) + |K| = \omega([C_{ij}]) + j - 2$. Hence the claim.

Table 1 gives the number of sets C_{ij} , for a fixed j, where i < j and $2 \le j \le \omega$. The entries of the last column, follow by Claim 3.

We now properly colour *G* as follows:

- (1) Colour the vertices $1, 2, \dots, \omega$ of A with colours $1, 2, \dots, \omega$ respectively.
- (2) Colour the vertices of C_{ij} with $\omega([C_{ij}])$ new colours, $1 \le i < j \le \omega$. By Claim 1, $[C_{ij}]$ is a disjoint union of cliques and hence one can properly colour $[C_{ij}]$ with $\omega([C_{ij}])$ colours. Note also that one requires at most $\omega (j-2)$ colours, by Claim 3.
- (3) Each vertex in I_a is given the colour of $a \in A$.

Table 1: Clique size of each $[C_{ij}]$							
j	C_{ij} 's	Number of C_{ij} 's	$\omega([C_{ij}]) \leq$				
2	C_{12}	1	ω				
3	C_{13}, C_{23}	2	$\omega - 1$				
4	C_{14}, C_{24}, C_{34}	3	$\omega - 2$				
•							
•			•				
•							
j	$C_{1j}, C_{2j},, C_{j-1j}$	j-1	$\omega - (j-2)$				
•	•	•	•				
•							
ω	$C_{1\omega}, C_{2\omega},, C_{\omega-1\omega}$	$\omega - 1$	2				

It is a proper colouring of G by Claims 1, 2 and 3. We first estimate the number of colours used in step (2) to colour the vertices of C (see Table 1) and then estimate the total number of colours used to colour G entirely.

$$\begin{split} \chi([C]) &\leq 1(\omega) + 2(\omega - 1) + 3(\omega - 2) + \dots + (\omega - 1)2 \\ &= \sum_{k=1}^{\omega - 1} k(\omega + 1 - k) \\ &= \sum_{k=1}^{\omega - 1} k(\omega + 1) - \sum_{k=1}^{\omega - 1} k^2 \\ &= (\omega + 1) \frac{(\omega - 1)(\omega)}{2} - \frac{(\omega - 1)(\omega)(2\omega - 2 + 1)}{6} \\ &= \frac{\omega(\omega - 1)(\omega + 4)}{6} \end{split}$$

Hence,

$$\chi(G) \le |A| + \chi([C])$$

= $\omega + \frac{\omega(\omega - 1)(\omega + 4)}{6}$
= $\frac{\omega(\omega + 1)(\omega + 2)}{6}$

Theorem 2. If a graph G is $(P_4 \cup P_2)$ -free, then $\chi(G) \leq \frac{\omega(\omega+1)(\omega+2)}{6}$.

Proof. The bound for the chromatic number of $(P_3 \cup P_2)$ -free graphs holds for $(P_4 \cup P_2)$ -free graphs too. In this case, each $[C_{ij}]$ is P_4 -free and hence perfect, by a result of Seinsche [18]. So, we can properly colour each $[C_{ij}]$ with at most $\omega(C_{ij}) \leq \omega - (j-2)$ colours, and the entire *G* with at most $\frac{\omega(\omega+1)(\omega+2)}{6}$ colours, as in the proof of Theorem 1. \Box

We next consider $(P_3 \cup P_2, \text{ diamond})$ -free graphs and obtain sharper bounds for the chromatic number. If $\omega = 1$, then obviously chromatic number is 1. So in the following, all graphs have $\omega \ge 2$.

Theorem 3. If a graph G is $(P_3 \cup P_2, diamond)$ -free, then

$$\chi(G) \leq \begin{cases} \omega + 2 & \text{if } \omega = 2\\ \omega + 3 & \text{if } \omega = 3\\ \omega + 1 & \text{if } \omega = 4 \end{cases}$$

and G is perfect if $\omega \geq 5$.

Proof. We continue to use the terminology and notation of sections 2 and 3. In particular, we use the sets A, C_{ij} , I_a , and Claims 1, 2 and 3.

*Claim 4: If G is C*₅*-free, then it is a perfect graph.*

Clearly, every hole C_{2k+1} , $k \ge 3$ contains an induced $P_3 \cup P_2$, and the complement \overline{C}_{2k+1} , $k \ge 3$ of the hole contains an induced diamond. So *G* is $(C_{2k+1}, \overline{C}_{2k+1})$ -free for all $k \ge 3$. Hence if *G* is C_5 -free, then *G* is perfect, by the Strong Perfect Graph Theorem [8].

Claim 5: $C_{ij} = \emptyset$, for every $j \ge 4$.

On the contrary, let $x \in C_{ij}$, for some $j \ge 4$. Then by the definition of C_{ij} , there exist two distinct vertices $p, q \in \{1, 2, 3\} \subseteq A$ such that $x \leftrightarrow p$ and $x \leftrightarrow q$. But then $[\{x, j, p, q\}] \simeq$ diamond, a contradiction.

So, we conclude that $C = C_{12} \cup C_{13} \cup C_{23}$, for $j \ge 4$.

Claim 6: If $a \in A$, then I_a is an empty set if $\omega \ge 3$, and it is an independent set if $\omega = 2$. If $\omega \ge 3$, and $x \in I_a$, for some $a \in A - \{1,2\}$, then $[\{x,a,1,2\}] \simeq$ diamond, a contradiction; if a = 1 or 2, then $[\{x,1,2,3\}]$ is a diamond. If $\omega = 2$, then the assertion follows by Claim 2.

Therefore, $V(G) = A \cup C_{12} \cup C_{13} \cup C_{23}$, if $\omega \ge 3$.

Recall that by Claim 3, $\omega([C_{13}]) \leq \omega - 1$, and $\omega([C_{23}]) \leq \omega - 1$. But $[C_{12}]$ may contain an ω -clique. However, we have the following claim.

Claim 7: $\omega([C_{12}]) \leq \omega - 1$, if $\omega(G) \geq 3$, and $C_{23} \neq \emptyset$ or $C_{13} \neq \emptyset$ On the contrary suppose $[C_{12}]$ contains an ω -clique Q, and for definiteness suppose $C_{23} \neq \emptyset$ (if $C_{13} \neq \emptyset$, proof is similar). Let $x \in C_{23}$. If x is adjacent to all the vertices of Q or |Q| - 1 vertices of Q, then we have an $(\omega + 1)$ -clique or a diamond in G, both impossible. Else, there exist two vertices u and v in Q such that $x \nleftrightarrow u$ and $x \nleftrightarrow v$. Then $[\{x, 1, 2\} \cup \{u, v\}] \simeq P_3 \cup P_2$, a contradiction. Hence the claim.

Claim 8: $[C_{13}, A - \{2\}] = \emptyset$, and $[C_{23}, A - \{1\}] = \emptyset$. If there exists an edge $xi \in [C_{13}, A - \{2\}]$, then $[\{x, i, 1, 2\}] \simeq$ diamond, a contradiction. Similarly, $[C_{23}, A - \{1\}] = \emptyset$

We now prove the theorem for different values of ω , by making the cases as stated in the theorem.

• $\omega = 2$; so $A = \{1, 2\}$.

Colouring *G* with four colours is easy in this case, since $V(G) = A \cup C_{12} \cup I_1 \cup I_2$, $\omega([C_{12}]) \leq C_{12} \cup I_1 \cup I_2$

Figure 2: Mycielski-Grötzsch graph

 $\omega = 2$, and I_1 , I_2 are independent sets, by Claim 6. Moreover, $\omega[C_{12}] \le \omega(G) = 2$. The following is a proper 4-colouring of *G*:

- (1) Colour the vertices 1 and 2 of A with colours 1 and 2 respectively.
- (2) Colour $[I_1]$ with colour 1.
- (3) Colour $[I_2]$ with colour 2.
- (4) Colour $[C_{12}]$ with two new colours.

An extremal $(P_3 \cup P_2, \text{ diamond})$ -free graph *G* with $\omega(G) = 2$, and $\chi(G) = 4$ is the Mycielski-Grötzsch graph; see Fig. 2. It is well known that this graph has clique number 2 and chromatic number 4. The graph is clearly diamond free since it is triangle free. It can be observed that this graph is $(P_3 \cup P_2)$ -free by selecting every edge P_2 and then verifying that the second neighborhood of P_2 , is P_3 -free. There are not too many cases for such a verification because of the symmetry of edges; we need to choose only three kinds of edges: v_1v_2 , v_1u_2 and u_1w .

• $\omega = 3$; so $A = \{1, 2, 3\}$.

At the outset, recall that every $I_a = \emptyset$, by Claim 6. So, $V(G) = A \cup C_{12} \cup C_{23} \cup C_{13}$. Moreover, $\omega[C_{12}] \le 2$, $\omega[C_{13}] \le 2$, $\omega[C_{23}] \le 2$, by Claims 7 and 3. We colour *G* with six colours as follows:

- (1) Colour the vertices 1, 2, 3 of A with colours 1, 2, 3 respectively.
- (2) Colour $[C_{12}]$ with colours 1 and 2.
- (3) Colour $[C_{23}]$ with colours 3 and 4.
- (4) Colour $[C_{13}]$ with colours 5 and 6.

It is a proper colouring by the above observations.

Remarks:

(i) If some C_{ij} is empty, we may not require all the six colours.

Figure 3: ($P_3 \cup P_2$, diamond)-free graph with $\omega = 3$ and $\chi = 4$

- (ii) We do not have extremal graphs with chromatic number 6.
- (iii) However, we do have a graph with chromatic number 4 (see Fig. 3). In this figure, *A* is an ω -clique and $N_i \subseteq V(G)$ such that every vertex of N_i is adjacent to *i* and only *i* of *A*, $i \in \{1, 2\}$.
- $\omega = 4$; so $A = \{1, 2, 3, 4\}$.

We colour G with five colours by considering two cases.

Case 1: $[C_{23}, C_{13}] \neq \emptyset$; let $ab \in [C_{23}, C_{13}]$. Clearly, $[\{a, b, 2\}] \simeq P_3$.

Claim 9: a is an isolated vertex in $[C_{23}]$, and b is an isolated vertex in $[C_{13}]$. Suppose, $a \leftrightarrow c$, for some $c \in C_{23}$. If $c \leftrightarrow b$, then $[\{a, b, c, 1\}] \simeq$ diamond, a contradiction. If $c \leftrightarrow b$, then $[\{a, b, c\} \cup \{3, 4\}] \simeq P_3 \cup P_2$, since no vertex of $C_{23} \cup C_{13}$ is adjacent to the vertex $4 \in A$, by Claim 8. Hence, we conclude that *a* is an isolated vertex in C_{23} . Similarly, *b* is an isolated vertex in C_{13} .

Claim 10: C_{23} and C_{13} are independent sets.

Suppose there exists an edge cd in $[C_{23}]$, where $c \neq a$ and $d \neq a$, by Claim 9. If $c \nleftrightarrow b$ and $d \nleftrightarrow b$, then $[\{a, b, 2\} \cup \{c, d\}] \simeq P_3 \cup P_2$. Next, without loss of generality, suppose that $c \leftrightarrow b$. Then $[\{a, b, c\} \cup \{3, 4\}] \simeq P_3 \cup P_2$, by Claim 8 and by the definition of C_{ij} 's, a contradiction. Hence, C_{23} is independent. Similarly C_{13} is independent.

We now colour *G* with five colours as follows:

- (1) Colour the vertices 1, 2, 3, 4 of A with colours 1, 2, 3, 4 respectively.
- (2) Colour $[C_{12}]$ with colours 1, 2 and a new colour 5.
- (3) Colour $[C_{13}]$ with colour 3.
- (4) Colour $[C_{23}]$ with colour 4.

It is a proper colouring by Claims 8, 7 and 10.

Case 2: $[C_{23}, C_{13}] = \emptyset$.

If both C_{23} and C_{13} are empty sets, then G is C_5 -free, since $[C_{12}]$ is P_3 -free and any 5-cycle contains at most two vertices of A. So, G is perfect, by Claim 4. If one of the sets C_{23} or C_{13} is nonempty, then we have the following assertion.

Claim 11: If C_{23} or C_{13} is non empty, then the other is independent. Suppose $C_{23} \neq \emptyset$ and $x \in C_{23}$. If uv is an edge in $[C_{13}]$, then $[\{x, 1, 3\} \cup \{u, v\}] \simeq P_3 \cup P_2$, a contradiction. Hence C_{13} is independent. Similarly, C_{23} is independent if $C_{13} \neq \emptyset$.

Without loss of generality, we henceforth assume that $C_{23} \neq \emptyset$. Since C_{13} is nonempty or empty, we consider two subcases.

Subcase 2.1: C_{13} is nonempty.

This implies that both C_{23} and C_{13} are independent sets, by Claim 11.

- (1) Colour the vertices 1, 2, 3, 4 of A with colours 1, 2, 3, 4 respectively.
- (2) Colour $[C_{12}]$ with colours 1, 2 and a new colour 5.
- (3) Colour $[C_{13}]$ with colour 3.
- (4) Colour $[C_{23}]$ with colour 3.

It is a proper 5-colouring by Claims 7, 11 and the fact that $[C_{23}, C_{13}] = \emptyset$.

Subcase 2.2: C_{13} is empty.

We now examine this subcase based on number of components in C_{23} and the maximum cliques in C_{12} .

Case 2.2.a: C_{23} has exactly one component.

Recall that every component of C_{23} is K_1 , K_2 or K_3 , by Claim 3. If the component is K_1 , then colour *G* with five colours as follows:

- (1) Colour the vertices 1, 2, 3, 4 of A with colours 1, 2, 3, 4 respectively.
- (2) Colour $[C_{23}]$ with colour 3.

(3) Colour $[C_{12}]$ with colours 1, 2 and a new colour 5.

It is a proper 5-colouring by Claim 7 and by our assumptions.

If the component is K_2 or K_3 , let cd be an edge in $[C_{23}]$ (see Fig. 4). We claim that C_{12} is independent. Else, there is an edge ab in $[C_{12}]$. If c is neither adjacent to a nor adjacent to b, then $[\{c, 1, 2\} \cup \{a, b\}] \simeq P_3 \cup P_2$, a contradiction. Without loss of generality, assume that $a \leftrightarrow c$. But then $a \nleftrightarrow d$; else, $[\{a, c, d, 1\}] \simeq$ diamond. By definition of C_{12} and C_{23} , no vertex in $\{a, c, d\}$ is adjacent to vertex 2 of A. By Claim 8, a is adjacent to at most one vertex of $A - \{1, 2\}$, namely 3 or 4. So $[\{a, c, d\} \cup \{2, 3\}] \simeq P_3 \cup P_2$ or $[\{a, c, d\} \cup \{2, 4\}] \simeq P_3 \cup P_2$, a contradiction. Hence, C_{12} is independent. Recall that $\omega([C_{23}]) \leq 3$, by Claim 3.

We colour G with four colours:

(1) Colour the vertices 1, 2, 3, 4 of *A* with colours 1, 2, 3, 4 respectively.

- (2) Colour C_{23} with colours 2, 3 and 4.
- (3) Colour C_{12} with colour 1.

It is a proper 4-colouring by Claims 3 and 8.

Figure 4: $[C_{23}]$ has one component

Case 2.2.b: C_{23} has ≥ 2 components; let *x* and *y* be vertices of two distinct components (see Fig. 5).

Our first claim is that $\omega([C_{12}]) \le 2$. On the contrary suppose that $[\{a, b, c\}]$ is a triangle in $[C_{12}]$. Since $\{x, 1, 2\}$ induces a P_3 , x is adjacent to every vertex of the triangle; else we have an induced diamond or $P_3 \cup P_2$ in G. Similarly y is adjacent to every vertex of the triangle. Then $[\{a, b, x, y\}] \simeq$ diamond. Hence, $\omega([C_{12}]) \le 2$. So we can colour G with 4 colours as follows:

- (1) Colour the vertices 1, 2, 3, 4 of A with colours 1, 2, 3, 4 respectively.
- (2) Colour C_{23} with colours 3 and 4.
- (3) Colour C_{12} with colour 1 and 2.

It is a proper 4-colouring by the above observations and Claim 8.

Figure 5: $[C_{23}]$ has more than one component

• $\omega \geq 5$.

It is enough to show that *G* is C_5 -free, in view of Claim 4.4. On the contrary, suppose that *G* contains an induced C_5 . As before, $V(G) - A = C = C_{12} \cup C_{13} \cup C_{23}$. Since at most two vertices of C_5 can belong to the clique *A*, a $P_3 = (a, b, c)$ is an induced subgraph of [*C*]. Since each C_{ij} is P_3 -free, either (*i*) two vertices are in one C_{ij} , and the third vertex is in one of the other two C_{ij} 's, or (*ii*) each C_{ij} contains a vertex.

Claim 12: A vertex of C_{12} *is adjacent to at most one vertex of* A*.*

The claim is obvious for $\omega = 2,3$. Next, assume that $\omega \ge 4$. If some vertex $x \in C_{12}$ is adjacent to two distinct vertices say, *i* and *j* of $A - \{1,2\}$, then $[\{1,x,i,j\}] \simeq$ diamond, a contradiction.

Hence by the above claim, for any two vertices $x, y \in C_{12}$, there is a vertex, say 5, in *A* which is neither adjacent to *x* nor *y*. Also, by Claim 8, $[C_{13} \cup C_{23}, \{3,4,5\}] = \emptyset$. So, whether (*i*) or (*ii*) holds, there exists an edge *ij* in [*A*] such that $[\{a, b, c\} \cup \{i, j\}] \simeq P_3 \cup P_2$, a contradiction. For the choice of an appropriate edge *ij*, it is enough if we consider the following four cases:

- (a) If P_3 is an induced subgraph of $[\{C_{12} \cup C_{13}\}]$, then $[\{a, b, c, 1, 5\}] \simeq P_3 \cup P_2$.
- (b) If P_3 is an induced subgraph of $[\{C_{12} \cup C_{23}\}]$, then $[\{a, b, c, 2, 5\}] \simeq P_3 \cup P_2$.
- (c) If P_3 is an induced subgraph of $[\{C_{13} \cup C_{23}\}]$, then $[\{a, b, c, 4, 5\}] \simeq P_3 \cup P_2$.
- (d) If (*ii*) holds, then $[\{a, b, c, 4, 5\}] \simeq P_3 \cup P_2$, where without loss of generality we assume that the vertex of (a, b, c) that is in C_{12} is adjacent to the vertex $3 \in A$.

5. $(2K_2, \text{ diamond})$ -free graphs

The Claims of Section 4 are valid for $(2K_2, \text{diamond})$ -free graphs too. So we continue to use the Claims made in Sections 3 and 4. In what follows, we assume that graphs have clique number at least 2, as before.

Theorem 4. If a graph G is $(2K_2, diamond)$ -free, then

$$\chi(G) \leq \begin{cases} \omega + 1 & \text{if } \omega = 2\\ \omega & \text{if } \omega \geq 3 \end{cases}$$

and G is perfect if $\omega \geq 4$.

Proof. Since the proof is similar to the proof of Theorem 3, we give an outline. As before, consider the partition $(A, \bigcup C_{ij}, \bigcup I_a)$ of V(G). In this case, every C_{ij} is K_2 -free, and so it is an independent set.

If $\omega = 2$, then $V(G) = A \cup C_{12} \cup I_1 \cup I_2$. So one can easily colour *G* with three colours. Next suppose $\omega \ge 3$. If $j \in A$, then $I_j = \emptyset$. Else, some $x \in I_j$. So, if $a, b \in A - \{j\}$, then $[\{x, j, a, b\}] \simeq$ diamond, a contradiction. Also, $C_{ij} = \emptyset$, if $j \ge 4$; else *G* contains an induced diamond. Hence $V(G) = C_{12} \cup C_{13} \cup C_{23}$. An ω -colouring of *G* is obtained as follows:

- (1) Colour the vertices $1, 2, \dots, \omega$ of *A*, by colours $1, 2, \dots, \omega$.
- (2) Colour every vertex of C_{12} with colour 1, colour every vertex of C_{13} with colour 3, colour every vertex of C_{23} with colour 2.

Remark: There exist $(2K_2, \text{diamond})$ -free graphs with $\omega = 3$, which are not perfect. See Fig. 6, where each circled vertex is multiplied by an independent set.

Figure 6: Graphs that are not perfect and have $\chi(G) = \omega(G)$

Now we prove perfectness for $\omega \geq 4$.

It is similar to the proof of Theorem 3, Case $\omega = 5$. By Claim 4.4, it is enough if we show that *G* is *C*₅-free. On the contrary, if *G* contains an induced 5-cycle, then $C(=C_{12} \cup C_{13} \cup C_{23})$ contains an edge *xy* of the 5-cycle. Since C_{ij} 's are independent, no $[C_{ij}]$ contains *xy*. We use Claims 8 and 12 and arrive at a contradiction:

- (a) If $xy \in [C_{12}, C_{13}]$, then $[\{x, y, 1, 3\}] = 2K_2$ or $[\{x, y, 1, 4\}] = 2K_2$.
- (b) If $xy \in [C_{12}, C_{23}]$, then $[\{x, y, 2, 3\}] = 2K_2$ or $[\{x, y, 2, 4\}] = 2K_2$.
- (c) If $xy \in [C_{13}, C_{23}]$, then $[\{x, y, 1, 3\}] = 2K_2$ or $[\{x, y, 1, 4\}] = 2K_2$.

So, G is C_5 -free and hence it is perfect.

Acknowledgements

Both the authors thank Christ University, Bengaluru for providing all the facilities to do this research.

References

- [1] Arbib, C., Mosca, R., On (*P*₅, diamond)-free graphs. Discrete Mathematics 250, 1-22 (2002)
- [2] Bermond, J.C., Bond, J., Paoli, M., Peyrat, C.: Surveys in Combinatorics. Proceedings of the Ninth British Combinatorics Conference, Lecture Notes Series 82 (1983)
- [3] Blázsik, Z., Hujter, M., Pluhár, A., Tuza, Z.: Graphs with no induced C_4 and $2K_2$. Discrete Mathematics 115, 51-55 (1993)
- [4] Bondy, J.A., Murty, U.S.R.: Graph Theory. Graduate Texts in Mathematics. Springer (2008)
- [5] Brandstädt, A., (P₅, diamond)-free graphs revisited: structure and linear time optimization. Discrete Applied Mathematics 138, 13-27 (2004)

- [6] Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for Industrial Mathematics and Applications (1999)
- [7] Choudum, S.A., Karthick, T.: First fit coloring of $\{P_5, K_4 e\}$ -free graphs. Discrete Applied Mathematics 310, 3398-3403 (2010)
- [8] Chudnovsky, M., Seymour, P., Robertson, N., Thomas, R.: The strong perfect graph theorem. Annals of Mathematics 164(1), 51-229 (2006)
- [9] Chung, F.R.K., Gyárfás, A., Tuza, Z., Trotter, W.T.: The maximum number of edges in 2*K*₂-free graphs of bounded degree. Discrete Mathematics 81, 129-135 (1990)
- [10] El-Zahar, M., Erdös, P.: On the existence of two non-neighboring subgraphs in a graph. Combinatorica 5, 295-300 (1985)
- [11] Erdös, P.: Problems and results on chromatic numbers in finite and infinite graphs.
 In: Graph Theory with Applications to Algorithms and Computer Science, Kalamazoo, Michigan, 1984, pp. 201-213. John Wiley and Sons, New York (1985)
- [12] Gyárfás, A.: Problems from the world surrounding perfect graphs. Zastosowania Matematyki 19(3-4), 413-441 (1987)
- [13] Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley (1994)
- [14] Karthick, T., Maffray, F.: Vizing Bound for the Chromatic Number on Some Graph Classes. Graphs and Combinatorics, 1-14 (2015)
- [15] Kral, D., Kratochovil, J., Tuza, Zs., Woeginger G.J.: Complexity of colouring graphs without forbidden induced subgraphas. Proceedings of WG 2001, LNCS, Vol 224,Springer Verlag, 254-262, (2001)
- [16] Nagy, Zs. and Szentmiklossy, Z.: A \$20 open problem of Erdös to show that if G is $2K_2$ -free graph with clique number 3, then its chromatic number is 4 (Unpublished)
- [17] Randerath, B., Schiermeyer, I.: Vertex colouring and forbidden subgraphs A survey. Graphs and Combinatorics 20, 1-40 (2004)
- [18] Seinsche, D.: On a property of the class of *n*-colorable graphs. Journal of Combinatorial Theory, Series B 16, 191-193 (1974)
- [19] Wagon, S.: A bound on the chromatic number of graphs without certain induced subgraphs. Journal of Combinatorial Theory, Series B 29(3), 345-346 (1980)
- [20] West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall, Englewood Cliffs (2000)