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Colouring of(P3∪P2)-free graphs

Arpitha P. Bharathi1,∗, Sheshayya A. Choudum1

Abstract

The class of 2K2-free graphs and its various subclasses have been studied ina variety of
contexts. In this paper, we are concerned with the colouringof (P3∪P2)-free graphs, a
super class of 2K2-free graphs. We derive aO(ω3) upper bound for the chromatic number
of (P3∪P2)-free graphs, and sharper bounds for(P3∪P2, diamond)-free graphs, where
ω denotes the clique number. By applying similar proof techniques we obtain chromatic
bounds for(2K2, diamond)-free graphs. The last two classes are perfect ifω ≥ 5 and≥ 4
respectively.
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1. Introduction

A graphG is said to beH-free, if G does not contain an induced copy ofH. More
generally, a class of graphsG is said to be(H1,H2, · · ·)-free if everyG ∈ G is Hi-free,
for i ≥ 1. The class of 2K2-free graphs and its subclasses are subject of research in var-
ious contexts: domination (El-Zahar and Erdös [10]), size(Bermond et al. [2], Chung
et al. [9]), vertex colouring (Wagon [19], Nagy and Szentmiklossy [16], Gyárfás [12]),
edge colouring (Erdös and Nesetril [11]) and algorithmic complexity (Blazsik et al. [3]).
Here we are concerned with the colouring of(P3∪P2)-free graphs, a super class of 2K2-
free graphs. A comprehensive result of Kral et al. [15] states that the decision problem
of COLOURING H-free graphs is P-time solvable ifH is an induced subgraph ofP4

or P3∪ P1,and it is NP-complete for any other graphH. In particular, COLOURING
2K2-free graphs is NP-complete. However, there have been several studies to obtain
tight upper and lower bounds for the chromatic number of 2K2-graphs. A problem of
Gyárfás [12] asks for the smallest functionf (x) such thatχ(G) ≤ f (ω(G), for every
G belonging to the class of 2K2-free graphs, whereχ(G) andω(G) respectively denote
the chromatic number and clique number ofG. This problem is still open. In this re-
spect, an often quoted result is due to Wagon [19]. It states that if a graphG is 2K2-free,
then χ(G) ≤

(ω(G)+1
2

)

. We look more closely at Wagon’s proof and obtain aO(ω3)
upper bound for the chromatic number of(P3∪P2)-free graphs, and sharper bounds for
(P3∪P2, diamond)-free graphs. By applying similar proof techniques we obtain chro-
matic bounds for(2K2, diamond)-free graphs. The last two classes are perfect if the
clique number is≥ 5 and≥ 4 respectively. The classes of(H, diamond)-free graphs
and(H1,H2, diamond)-free graphs, for various graphsH,H1 andH2, have been studied
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in many papers; see Arbib and Mosca [1], Brandstädt [5], Choudum and Karthick [7],
Karthick and Maffrey [14], Gyárfás [12], and Randerath and Schiermeyer [17]. See also
a comprehensive book on problems of graph colourings by Jensen and Toft [13] and an
extensive book of Brandtstädt et al. [6], for interesting subclasses and superclasses of
2K2-free graphs.

2. Terminology and Notation

We follow standard terminology of Bondy and Murty [4], and West [20]. All our
graphs are simple and undirected. Ifu, v are two vertices of a graphG(V,E), then their
adjacency is denoted byu ↔ v, and non-adjacency byu = v. Pn,Cn andKn respectively
denote the path, cycle and complete graph onn vertices. A chordless cycle of length≥ 5
is called ahole. If S ⊆V (G), then[S] denotes the subgraph induced byS. If S andT are
two disjoint subsets ofV (G), then[S,T ] denotes the set of edges{st ∈ E(G) : s ∈ S and
t ∈ T}. A subsetQ of V (G) is called aclique if any two vertices inQ are adjacent. The
clique number of G is defined to be max{|Q| : Q is a clique inG}; it is denoted byω(G).
A clique Q is called amaximum clique if |Q| = ω(G)). A subsetI of V (G) is called an
independent set if no two vertices inI are adjacent. Ak-vertex colouring or ak-colouring
or acolouring is a functionf : V (G)→ {1,2, · · · ,k} such thatf (u) 6= f (v), for any two
adjacent verticesu, v in G. It is also referred to as a proper colouring ofG for emphasis.
Thechromatic number χ(G) of G is defined to be min{k : G admits ak-colouring}. If
G1,G2, · · · ,Gk are vertex disjoint graphs, thenG1∪G2∪· · ·∪Gk denotes the graph with
vertex set

⋃k
i=1V (Gi) and edge set

⋃k
i=1E(Gi). If G1 ≃ G2 ≃ ·· · ≃ Gk ≃ H, for someH,

thenG1∪G2∪ · · · ∪Gk is denoted bykH. The three graphs which appear frequently in
this paper are shown in Fig.1.

Figure 1: 2K2, P3∪P2, Diamond

3. A partition of the vertex set of a graph.

Throughout this paper we use a particular partition of the vertex set of a graphG(V,E)
and use its properties. Some of these properties are due to Wagon [19], but are restated
for ready reference. In what follows,ω denotes the clique number of a graph under con-
sideration.

Let A be a maximum clique inG with vertices 1,2, · · · ,ω. We iteratively define the
setsCi j in the lexicographic order of pairs of verticesi, j of A.

C = φ
for i : 1 toω
for j : i+1 toω
Ci j = {v ∈V (G)−C | v = i andv = j};
C =C∪Ci j;
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end
end

By definition, there are
(ω

2

)

number ofCi j sets and these are pairwise disjoint. Also,
every vertex inCi j is adjacent to every vertexk of A, where 1≤ k < j,k 6= i. Moreover,
every vertex inV (G)−A which is non-adjacent to two or more vertices ofA is in some
Ci j. So, every vertexv ∈ V (G)− (A∪C) is adjacent to all the vertices ofA or |A| −1
vertices ofA. The former case is impossible, sinceA is a maximum clique. Hence we
define the following sets. Fora ∈ A, let

Ia = {v ∈V (G)− (A∪C) | v ↔ x,∀x ∈ A−{a} andv = a}.

By the above remarks, we conclude that(A,
⋃

i, j
Ci j,

⋃

a∈A
Ia) is a partition ofV (G).

4. Colouring of (P3∪P2)-free graphs

We first observe a few properties of the setsCi j and Ia, and then obtain anO(ω3)
upper bound for the chromatic number of a(P3∪P2)-free graph.

Theorem 1. If a graph G is (P3∪P2)-free, then χ(G)≤ ω(ω+1)(ω+2)
6 .

Proof. Let A be a maximum clique inG. Let (1,2,3, · · · ,ω) be a vertex ordering ofA.
SinceG is (P3∪P2)-free, the setsCi j andIa possess a few more properties, in addition to
the ones stated in section 3.

Claim 1: Each induced subgraph [Ci j] of G is P3-free and hence it is a disjoint union
of cliques.
If someCi j contains an inducedP3 = (x,y,z), then[{x,y,z}∪{i, j}]≃ P3∪P2, a contra-
diction.

Claim 2: Each Ia is an independent set.
If someIa contains an edgevw, thenA∪{v,w}−{a} is a clique of sizeω +1, a contra-
diction to the maximality of|A|.

Claim 3: ω
(

[Ci j]
)

≤ ω − ( j−2), where j ≥ 2
Let B be a maximum clique in[Ci j]. Every vertex inB is adjacent to every vertex in
K = {1,2, · · · , j − 1}− {i} ⊆ A, by the definition ofCi j. So, B∪K is a clique ofG.
Hence,ω(G)≥ |B∪K|= ω([Ci j])+ |K|= ω([Ci j])+ j−2. Hence the claim.

Table 1 gives the the number of setsCi j, for a fixed j, wherei < j and 2≤ j ≤ ω.
The entries of the last column, follow by Claim 3.

We now properly colourG as follows:

(1) Colour the vertices 1,2, · · · ,ω of A with colours 1,2, · · · ,ω respectively.

(2) Colour the vertices ofCi j with ω([Ci j]) new colours, 1≤ i< j ≤ω. By Claim 1,[Ci j]
is a disjoint union of cliques and hence one can properly colour [Ci j] with ω([Ci j])
colours. Note also that one requires at mostω − ( j−2) colours, by Claim 3.

(3) Each vertex inIa is given the colour ofa ∈ A.

3



Table 1: Clique size of each[Ci j]

j Ci j’s Number ofCi j’s ω([Ci j])≤

2 C12 1 ω
3 C13,C23 2 ω −1
4 C14,C24,C34 3 ω −2
. . . .
. . . .
. . . .
j C1 j,C2 j, ...,C j−1 j j−1 ω − ( j−2)
. . . .
. . . .
. . . .
ω C1 ω ,C2 ω , ...,Cω−1 ω ω −1 2

It is a proper colouring ofG by Claims 1, 2 and 3. We first estimate the number of
colours used in step (2) to colour the vertices ofC (see Table 1) and then estimate the
total number of colours used to colourG entirely.

χ([C])≤ 1(ω)+2(ω −1)+3(ω −2)+ ...+(ω −1)2

=
ω−1

∑
k=1

k(ω +1− k)

=
ω−1

∑
k=1

k(ω +1)−
ω−1

∑
k=1

k2

= (ω +1)
(ω −1)(ω)

2
−

(ω −1)(ω)(2ω −2+1)
6

=
ω(ω −1)(ω +4)

6

Hence,

χ(G)≤ |A|+χ([C])

= ω +
ω(ω −1)(ω +4)

6

=
ω(ω +1)(ω +2)

6

Theorem 2. If a graph G is (P4∪P2)-free, then χ(G)≤ ω(ω+1)(ω+2)
6 .

Proof. The bound for the chromatic number of(P3∪P2)-free graphs holds for(P4∪P2)-
free graphs too. In this case, each[Ci j] is P4-free and hence perfect, by a result of Seinsche
[18]. So, we can properly colour each[Ci j] with at mostω(Ci j) ≤ ω − ( j−2) colours,

and the entireG with at mostω(ω+1)(ω+2)
6 colours , as in the proof of Theorem 1.

We next consider(P3∪P2, diamond)-free graphs and obtain sharper bounds for the
chromatic number. Ifω = 1, then obviously chromatic number is 1. So in the following,
all graphs haveω ≥ 2.

4



Theorem 3. If a graph G is (P3∪P2, diamond)-free, then

χ(G)≤











ω +2 if ω = 2

ω +3 if ω = 3

ω +1 if ω = 4

and G is perfect if ω ≥ 5.

Proof. We continue to use the terminology and notation of sections 2and 3. In particular,
we use the setsA, Ci j, Ia, and Claims 1, 2 and 3.

Claim 4: If G is C5-free, then it is a perfect graph.
Clearly, every holeC2k+1,k≥3 contains an inducedP3∪P2, and the complementC2k+1,k≥
3 of the hole contains an induced diamond. SoG is (C2k+1,C2k+1)-free for all k ≥ 3.
Hence ifG is C5-free, thenG is perfect, by the Strong Perfect Graph Theorem [8].

Claim 5: Ci j = /0, for every j ≥ 4.
On the contrary, letx ∈Ci j, for somej ≥ 4. Then by the definition ofCi j, there exist two
distinct verticesp,q ∈ {1,2,3} ⊆ A such thatx ↔ p andx ↔ q. But then[{x, j, p,q}]≃
diamond, a contradiction.

So, we conclude thatC =C12∪C13∪C23, for j ≥ 4.

Claim 6: If a ∈ A, then Ia is an empty set if ω ≥ 3, and it is an independent set if ω = 2.
If ω ≥ 3, andx ∈ Ia, for somea ∈ A−{1,2}, then[{x,a,1,2}]≃ diamond, a contradic-
tion; if a = 1 or 2, then [{x,1,2,3}] is a diamond. Ifω = 2, then the assertion follows by
Claim 2.

Therefore,V (G) = A∪C12∪C13∪C23, if ω ≥ 3.

Recall that by Claim 3,ω([C13]) ≤ ω − 1, andω([C23]) ≤ ω −1. But [C12] may con-
tain anω-clique. However, we have the following claim.

Claim 7: ω([C12])≤ ω −1, if ω(G)≥ 3, and C23 6= /0 or C13 6= /0
On the contrary suppose[C12] contains anω-clique Q, and for definiteness suppose
C23 6= /0 (if C13 6= /0, proof is similar). Letx ∈ C23. If x is adjacent to all the vertices
of Q or |Q| −1 vertices ofQ, then we have an(ω +1)-clique or a diamond inG, both
impossible. Else, there exist two verticesu andv in Q such thatx = u andx = v. Then
[{x,1,2}∪{u,v}]≃ P3∪P2, a contradiction. Hence the claim.

Claim 8: [C13, A−{2}] = /0, and [C23,A−{1}] = /0.
If there exists an edgexi ∈ [C13, A−{2}], then[{x, i,1,2}]≃ diamond, a contradiction.
Similarly, [C23, A−{1}] = /0

We now prove the theorem for different values ofω, by making the cases as stated in
the theorem.

• ω = 2; soA = {1,2}.

ColouringG with four colours is easy in this case, sinceV (G)=A∪C12∪I1∪I2, ω([C12])≤
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Figure 2: Mycielski-Grötzsch graph

ω = 2, andI1, I2 are independent sets, by Claim 6. Moreover,ω[C12] ≤ ω(G) = 2. The
following is a proper 4-colouring ofG:

(1) Colour the vertices 1 and 2 ofA with colours 1 and 2 respectively.

(2) Colour[I1] with colour 1.

(3) Colour[I2] with colour 2.

(4) Colour[C12] with two new colours.

An extremal(P3∪P2, diamond)-free graphG with ω(G) = 2, andχ(G) = 4 is the
Mycielski-Grötzsch graph; see Fig. 2. It is well known thatthis graph has clique number
2 and chromatic number 4. The graph is clearly diamond free since it is triangle free.
It can be observed that this graph is(P3∪P2)-free by selecting every edgeP2 and then
verifying that the second neighborhood ofP2, is P3-free. There are not too many cases
for such a verification because of the symmetry of edges; we need to choose only three
kinds of edges:v1v2, v1u2 andu1w.

• ω = 3; soA = {1,2,3}.

At the outset, recall that everyIa = /0, by Claim 6. So,V (G) = A∪C12∪C23∪C13.
Moreover,ω[C12]≤ 2, ω[C13]≤ 2, ω[C23]≤ 2, by Claims 7 and 3. We colourG with six
colours as follows:

(1) Colour the vertices 1, 2, 3 ofA with colours 1, 2, 3 respectively.

(2) Colour[C12] with colours 1 and 2.

(3) Colour[C23] with colours 3 and 4.

(4) Colour[C13] with colours 5 and 6.

It is a proper colouring by the above observations.

Remarks:

(i) If someCi j is empty, we may not require all the six colours.

6
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A

1

N1

N2

Figure 3:(P3∪P2, diamond)-free graph withω = 3 andχ = 4

(ii) We do not have extremal graphs with chromatic number 6.

(iii) However, we do have a graph with chromatic number 4 (seeFig. 3). In this figure,
A is anω-clique andNi ⊆ V (G) such that every vertex ofNi is adjacent toi and
only i of A, i ∈ {1,2}.

• ω = 4; soA = {1,2,3,4}.

We colourG with five colours by considering two cases.

Case 1: [C23, C13] 6= /0; let ab ∈ [C23,C13].
Clearly,[{a,b,2}]≃ P3.

Claim 9: a is an isolated vertex in [C23], and b is an isolated vertex in [C13].
Suppose,a ↔ c, for somec ∈ C23. If c ↔ b, then[{a,b,c,1}]≃ diamond, a contradic-
tion. If c = b, then[{a,b,c}∪{3,4}]≃ P3∪P2, since no vertex ofC23∪C13 is adjacent
to the vertex 4∈ A, by Claim 8. Hence, we conclude thata is an isolated vertex inC23.
Similarly, b is an isolated vertex inC13.

Claim 10: C23 and C13 are independent sets.
Suppose there exists an edgecd in [C23], wherec 6= a andd 6= a, by Claim 9. Ifc = b
andd = b, then[{a,b,2}∪{c,d}]≃ P3∪P2. Next, without loss of generality, suppose
thatc ↔ b. Then[{a,b,c}∪{3,4}]≃ P3∪P2, by Claim 8 and by the definition ofCi j’s,
a contradiction. Hence,C23 is independent. SimilarlyC13 is independent.

We now colourG with five colours as follows:

(1) Colour the vertices 1, 2, 3, 4 ofA with colours 1, 2, 3, 4 respectively.

(2) Colour[C12] with colours 1, 2 and a new colour 5.

(3) Colour[C13] with colour 3.

(4) Colour[C23] with colour 4.

7



It is a proper colouring by Claims 8, 7 and 10.

Case 2: [C23,C13] = /0.
If both C23 andC13 are empty sets, thenG is C5-free, since[C12] is P3-free and any 5-
cycle contains at most two vertices ofA. So,G is perfect, by Claim 4. If one of the sets
C23 or C13 is nonempty, then we have the following assertion.

Claim 11: If C23 or C13 is non empty, then the other is independent.
SupposeC23 6= /0 andx ∈C23. If uv is an edge in[C13], then[{x,1,3}∪{u,v}]≃ P3∪P2,
a contradiction. HenceC13 is independent. Similarly,C23 is independent ifC13 6= /0.

Without loss of generality, we henceforth assume thatC23 6= /0. SinceC13 is nonempty or
empty, we consider two subcases.

Subcase 2.1:C13 is nonempty.
This implies that bothC23 andC13 are independent sets, by Claim 11.

(1) Colour the vertices 1, 2, 3, 4 ofA with colours 1, 2, 3, 4 respectively.

(2) Colour[C12] with colours 1, 2 and a new colour 5.

(3) Colour[C13] with colour 3.

(4) Colour[C23] with colour 3.

It is a proper 5-colouring by Claims 7, 11 and the fact that[C23,C13] = /0.

Subcase 2.2:C13 is empty.
We now examine this subcase based on number of components inC23 and the maximum
cliques inC12.
Case 2.2.a:C23 has exactly one component.
Recall that every component ofC23 is K1, K2 or K3, by Claim 3. If the component isK1,
then colourG with five colours as follows:

(1) Colour the vertices 1, 2, 3, 4 ofA with colours 1, 2, 3, 4 respectively.

(2) Colour[C23] with colour 3.

(3) Colour[C12] with colours 1, 2 and a new colour 5.

It is a proper 5-colouring by Claim 7 and by our assumptions.
If the component isK2 or K3, let cd be an edge in[C23] (see Fig. 4). We claim thatC12 is
independent. Else, there is an edgeab in [C12]. If c is neither adjacent toa nor adjacent to
b, then[{c,1,2}∪{a,b}]≃ P3∪P2, a contradiction. Without loss of generality, assume
that a ↔ c. But thena = d; else,[{a,c,d,1}] ≃ diamond. By definition ofC12 and
C23, no vertex in{a,c,d} is adjacent to vertex 2 ofA. By Claim 8, a is adjacent to
at most one vertex ofA −{1,2}, namely 3 or 4. So[{a,c,d} ∪ {2,3}] ≃ P3 ∪ P2 or
[{a,c,d}∪ {2,4}] ≃ P3∪ P2, a contradiction. Hence,C12 is independent. Recall that
ω([C23])≤ 3, by Claim 3.
We colour G with four colours:

(1) Colour the vertices 1, 2, 3, 4 ofA with colours 1, 2, 3, 4 respectively.

8



(2) ColourC23 with colours 2, 3 and 4.

(3) ColourC12 with colour 1.

It is a proper 4-colouring by Claims 3 and 8.

1

2

3

4

A

1

a b

c d

C12

C23

Figure 4:[C23] has one component

Case 2.2.b:C23 has≥ 2 components; letx andy be vertices of two distinct components
(see Fig. 5).
Our first claim is thatω([C12]) ≤ 2. On the contrary suppose that[{a,b,c}] is a triangle
in [C12]. Since{x,1,2} induces aP3, x is adjacent to every vertex of the triangle; else we
have an induced diamond orP3∪P2 in G. Similarly y is adjacent to every vertex of the
triangle. Then[{a,b,x,y}]≃ diamond. Hence,ω([C12])≤ 2. So we can colourG with 4
colours as follows:

(1) Colour the vertices 1, 2, 3, 4 ofA with colours 1, 2, 3, 4 respectively.

(2) ColourC23 with colours 3 and 4.

(3) ColourC12 with colour 1 and 2.

It is a proper 4-colouring by the above observations and Claim 8.

1

2

3

4

a b
c

x y

C12

C23

A

Figure 5:[C23] has more than one component
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• ω ≥ 5.

It is enough to show thatG is C5-free, in view of Claim 4.4. On the contrary, suppose
thatG contains an inducedC5. As before,V (G)−A =C =C12∪C13∪C23. Since at most
two vertices ofC5 can belong to the cliqueA, a P3 = (a,b,c) is an induced subgraph of
[C]. Since eachCi j is P3-free, either (i) two vertices are in oneCi j, and the third vertex is
in one of the other twoCi j’s, or (ii) eachCi j contains a vertex.

Claim 12: A vertex of C12 is adjacent to at most one vertex of A.
The claim is obvious forω = 2,3. Next, assume thatω ≥ 4. If some vertexx ∈ C12 is
adjacent to two distinct vertices say,i andj of A−{1,2}, then[{1,x, i, j}]≃ diamond, a
contradiction.

Hence by the above claim, for any two verticesx,y ∈ C12, there is a vertex, say 5, in
A which is neither adjacent tox nor y. Also, by Claim 8,[C13∪C23,{3,4,5}] = /0. So,
whether (i) or (ii) holds, there exists an edgei j in [A] such that[{a,b,c}∪{i, j}]≃P3∪P2,
a contradiction. For the choice of an appropriate edgei j, it is enough if we consider the
following four cases:

(a) If P3 is an induced subgraph of[{C12∪C13}], then[{a,b,c,1,5}]≃ P3∪P2.

(b) If P3 is an induced subgraph of[{C12∪C23}], then[{a,b,c,2,5}]≃ P3∪P2.

(c) If P3 is an induced subgraph of[{C13∪C23}], then[{a,b,c,4,5}]≃ P3∪P2.

(d) If (ii) holds, then[{a,b,c,4,5}]≃ P3∪P2, where without loss of generality we as-
sume that the vertex of(a,b,c) that is inC12 is adjacent to the vertex 3∈ A.

5. (2K2, diamond)-free graphs

The Claims of Section 4 are valid for(2K2, diamond)-free graphs too. So we continue
to use the Claims made in Sections 3 and 4. In what follows, we assume that graphs have
clique number at least 2, as before.

Theorem 4. If a graph G is (2K2, diamond)-free, then

χ(G)≤

{

ω +1 if ω = 2

ω if ω ≥ 3

and G is perfect if ω ≥ 4.

Proof. Since the proof is similar to the proof of Theorem 3, we give anoutline. As
before, consider the partition(A,

⋃

Ci j,
⋃

Ia) of V (G). In this case, everyCi j is K2-free,
and so it is an independent set.
If ω = 2, thenV (G) = A∪C12∪ I1∪ I2. So one can easily colourG with three colours.
Next supposeω ≥ 3. If j ∈ A, then I j = /0. Else, somex ∈ I j. So, if a,b ∈ A−{ j},
then[{x, j,a,b}]≃ diamond, a contradiction. Also,Ci j = /0, if j ≥ 4; elseG contains an
induced diamond. HenceV (G) = C12∪C13∪C23. An ω-colouring ofG is obtained as
follows:

10



(1) Colour the vertices 1,2, · · · ,ω of A, by colours 1,2, · · · ,ω.

(2) Colour every vertex ofC12 with colour 1, colour every vertex ofC13 with colour 3,
colour every vertex ofC23 with colour 2.

Remark: There exist(2K2, diamond)-free graphs withω = 3, which are not perfect.
See Fig. 6, where each circled vertex is multiplied by an independent set.

Figure 6: Graphs that are not perfect and haveχ(G) = ω(G)

Now we prove perfectness forω ≥ 4.
It is similar to the proof of Theorem 3, Caseω = 5. By Claim 4.4, it is enough if
we show thatG is C5-free. On the contrary, ifG contains an induced 5-cycle, then
C(=C12∪C13∪C23) contains an edgexy of the 5-cycle. SinceCi j’s are independent, no
[Ci j] containsxy. We use Claims 8 and 12 and arrive at a contradiction:

(a) If xy ∈ [C12,C13], then[{x,y,1,3}] = 2K2 or [{x,y,1,4}] = 2K2.

(b) If xy ∈ [C12,C23], then[{x,y,2,3}] = 2K2 or [{x,y,2,4}] = 2K2.

(c) If xy ∈ [C13,C23], then[{x,y,1,3}] = 2K2 or [{x,y,1,4}] = 2K2.

So,G is C5-free and hence it is perfect.
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