Colouring of $\left(P_{3} \cup P_{2}\right)$-free graphs

Arpitha P. Bharathi ${ }^{1, *}$, Sheshayya A. Choudum ${ }^{1}$

Abstract

The class of $2 K_{2}$-free graphs and its various subclasses have been studied in a variety of contexts. In this paper, we are concerned with the colouring of $\left(P_{3} \cup P_{2}\right)$-free graphs, a super class of $2 K_{2}$-free graphs. We derive a $O\left(\omega^{3}\right)$ upper bound for the chromatic number of $\left(P_{3} \cup P_{2}\right)$-free graphs, and sharper bounds for $\left(P_{3} \cup P_{2}\right.$, diamond)-free graphs, where ω denotes the clique number. By applying similar proof techniques we obtain chromatic bounds for ($2 K_{2}$, diamond)-free graphs. The last two classes are perfect if $\omega \geq 5$ and ≥ 4 respectively.

Keywords: Colouring, Chromatic number, Clique number, $2 K_{2}$-free graphs, $\left(P_{3} \cup P_{2}\right)$-free graphs, Diamond, Perfect graphs
2000 MSC: 05C15, 05C17

1. Introduction

A graph G is said to be H-free, if G does not contain an induced copy of H. More generally, a class of graphs \mathscr{G} is said to be $\left(H_{1}, H_{2}, \cdots\right)$-free if every $G \in \mathscr{G}$ is H_{i}-free, for $i \geq 1$. The class of $2 K_{2}$-free graphs and its subclasses are subject of research in various contexts: domination (El-Zahar and Erdös [10]), size (Bermond et al. [2], Chung et al. [9]), vertex colouring (Wagon [19], Nagy and Szentmiklossy [16], Gyárfás [12]), edge colouring (Erdös and Nesetril [11]) and algorithmic complexity (Blazsik et al. [3]). Here we are concerned with the colouring of $\left(P_{3} \cup P_{2}\right)$-free graphs, a super class of $2 K_{2}$ free graphs. A comprehensive result of Kral et al. [15] states that the decision problem of COLOURING H-free graphs is P-time solvable if H is an induced subgraph of P_{4} or $P_{3} \cup P_{1}$, and it is NP-complete for any other graph H. In particular, COLOURING $2 K_{2}$-free graphs is NP-complete. However, there have been several studies to obtain tight upper and lower bounds for the chromatic number of $2 K_{2}$-graphs. A problem of Gyárfás [12] asks for the smallest function $f(x)$ such that $\chi(G) \leq f(\omega(G)$, for every G belonging to the class of $2 K_{2}$-free graphs, where $\chi(G)$ and $\omega(G)$ respectively denote the chromatic number and clique number of G. This problem is still open. In this respect, an often quoted result is due to Wagon [19]. It states that if a graph G is $2 K_{2}$-free, then $\chi(G) \leq\binom{\omega(G)+1}{2}$. We look more closely at Wagon's proof and obtain a $O\left(\omega^{3}\right)$ upper bound for the chromatic number of $\left(P_{3} \cup P_{2}\right)$-free graphs, and sharper bounds for ($P_{3} \cup P_{2}$, diamond)-free graphs. By applying similar proof techniques we obtain chromatic bounds for ($2 K_{2}$, diamond)-free graphs. The last two classes are perfect if the clique number is ≥ 5 and ≥ 4 respectively. The classes of (H, diamond)-free graphs and (H_{1}, H_{2}, diamond)-free graphs, for various graphs H, H_{1} and H_{2}, have been studied

[^0]in many papers; see Arbib and Mosca [1], Brandstädt [5], Choudum and Karthick [7], Karthick and Maffrey [14], Gyárfás [12], and Randerath and Schiermeyer [17]. See also a comprehensive book on problems of graph colourings by Jensen and Toft [13] and an extensive book of Brandtstädt et al. [6], for interesting subclasses and superclasses of $2 K_{2}$-free graphs.

2. Terminology and Notation

We follow standard terminology of Bondy and Murty [4], and West [20]. All our graphs are simple and undirected. If u, v are two vertices of a graph $G(V, E)$, then their adjacency is denoted by $u \leftrightarrow v$, and non-adjacency by $u \nleftarrow v . P_{n}, C_{n}$ and K_{n} respectively denote the path, cycle and complete graph on n vertices. A chordless cycle of length ≥ 5 is called a hole. If $S \subseteq V(G)$, then $[S]$ denotes the subgraph induced by S. If S and T are two disjoint subsets of $V(G)$, then $[S, T]$ denotes the set of edges $\{s t \in E(G): s \in S$ and $t \in T\}$. A subset Q of $V(G)$ is called a clique if any two vertices in Q are adjacent. The clique number of G is defined to be $\max \{|Q|: Q$ is a clique in $G\}$; it is denoted by $\omega(G)$. A clique Q is called a maximum clique if $|Q|=\omega(G)$). A subset I of $V(G)$ is called an independent set if no two vertices in I are adjacent. A k-vertex colouring or a k-colouring or a colouring is a function $f: V(G) \rightarrow\{1,2, \cdots, k\}$ such that $f(u) \neq f(v)$, for any two adjacent vertices u, v in G. It is also referred to as a proper colouring of G for emphasis. The chromatic number $\chi(G)$ of G is defined to be $\min \{k: G$ admits a k-colouring $\}$. If $G_{1}, G_{2}, \cdots, G_{k}$ are vertex disjoint graphs, then $G_{1} \cup G_{2} \cup \cdots \cup G_{k}$ denotes the graph with vertex set $\bigcup_{i=1}^{k} V\left(G_{i}\right)$ and edge set $\bigcup_{i=1}^{k} E\left(G_{i}\right)$. If $G_{1} \simeq G_{2} \simeq \cdots \simeq G_{k} \simeq H$, for some H, then $G_{1} \cup G_{2} \cup \cdots \cup G_{k}$ is denoted by $k H$. The three graphs which appear frequently in this paper are shown in Fig.1.

Figure 1: $2 K_{2}, P_{3} \cup P_{2}$, Diamond

3. A partition of the vertex set of a graph.

Throughout this paper we use a particular partition of the vertex set of a graph $G(V, E)$ and use its properties. Some of these properties are due to Wagon [19], but are restated for ready reference. In what follows, ω denotes the clique number of a graph under consideration.

Let A be a maximum clique in G with vertices $1,2, \cdots, \omega$. We iteratively define the sets $C_{i j}$ in the lexicographic order of pairs of vertices i, j of A.
$C=\phi$
for i : 1 to ω
for $j: i+1$ to ω
$C_{i j}=\{v \in V(G)-C \mid v \nLeftarrow i$ and $v \leftrightarrow j\} ;$
$C=C \cup C_{i j}$;
end
end

By definition, there are $\binom{\omega}{2}$ number of $C_{i j}$ sets and these are pairwise disjoint. Also, every vertex in $C_{i j}$ is adjacent to every vertex k of A, where $1 \leq k<j, k \neq i$. Moreover, every vertex in $V(G)-A$ which is non-adjacent to two or more vertices of A is in some $C_{i j}$. So, every vertex $v \in V(G)-(A \cup C)$ is adjacent to all the vertices of A or $|A|-1$ vertices of A. The former case is impossible, since A is a maximum clique. Hence we define the following sets. For $a \in A$, let

$$
I_{a}=\{v \in V(G)-(A \cup C) \mid v \leftrightarrow x, \forall x \in A-\{a\} \text { and } v \nleftarrow a\} .
$$

By the above remarks, we conclude that $\left(A, \bigcup_{i, j} C_{i j}, \bigcup_{a \in A} I_{a}\right)$ is a partition of $V(G)$.

4. Colouring of $\left(P_{3} \cup P_{2}\right)$-free graphs

We first observe a few properties of the sets $C_{i j}$ and I_{a}, and then obtain an $O\left(\omega^{3}\right)$ upper bound for the chromatic number of a $\left(P_{3} \cup P_{2}\right)$-free graph.

Theorem 1. If a graph G is $\left(P_{3} \cup P_{2}\right)$-free, then $\chi(G) \leq \frac{\omega(\omega+1)(\omega+2)}{6}$.
Proof. Let A be a maximum clique in G. Let $(1,2,3, \cdots, \omega)$ be a vertex ordering of A. Since G is $\left(P_{3} \cup P_{2}\right)$-free, the sets $C_{i j}$ and I_{a} possess a few more properties, in addition to the ones stated in section 3 .

Claim 1: Each induced subgraph $\left[C_{i j}\right]$ of G is P_{3}-free and hence it is a disjoint union of cliques.
If some $C_{i j}$ contains an induced $P_{3}=(x, y, z)$, then $[\{x, y, z\} \cup\{i, j\}] \simeq P_{3} \cup P_{2}$, a contradiction.

Claim 2: Each I_{a} is an independent set.
If some I_{a} contains an edge $v w$, then $A \cup\{v, w\}-\{a\}$ is a clique of size $\omega+1$, a contradiction to the maximality of $|A|$.

Claim 3: $\omega\left(\left[C_{i j}\right]\right) \leq \omega-(j-2)$, where $j \geq 2$
Let B be a maximum clique in $\left[C_{i j}\right]$. Every vertex in B is adjacent to every vertex in $K=\{1,2, \cdots, j-1\}-\{i\} \subseteq A$, by the definition of $C_{i j}$. So, $B \cup K$ is a clique of G. Hence, $\omega(G) \geq|B \cup K|=\omega\left(\left[C_{i j}\right]\right)+|K|=\omega\left(\left[C_{i j}\right]\right)+j-2$. Hence the claim.

Table 1 gives the the number of sets $C_{i j}$, for a fixed j, where $i<j$ and $2 \leq j \leq \omega$. The entries of the last column, follow by Claim 3.

We now properly colour G as follows:
(1) Colour the vertices $1,2, \cdots, \omega$ of A with colours $1,2, \cdots, \omega$ respectively.
(2) Colour the vertices of $C_{i j}$ with $\omega\left(\left[C_{i j}\right]\right)$ new colours, $1 \leq i<j \leq \omega$. By Claim 1, $\left[C_{i j}\right]$ is a disjoint union of cliques and hence one can properly colour $\left[C_{i j}\right]$ with $\omega\left(\left[C_{i j}\right]\right)$ colours. Note also that one requires at most $\omega-(j-2)$ colours, by Claim 3 .
(3) Each vertex in I_{a} is given the colour of $a \in A$.

Table 1: Clique size of each $\left[C_{i j}\right]$

j	$C_{i j}{ }^{\prime}$ s	Number of $C_{i j}{ }^{\prime}$'s	$\omega\left(\left[C_{i j}\right]\right) \leq$
2	C_{12}	1	ω
3	C_{13}, C_{23}	2	$\omega-1$
4	C_{14}, C_{24}, C_{34}	3	$\omega-2$
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	$\omega-(j-2)$	
j	$C_{1 j}, C_{2 j}, \ldots, C_{j-1 j}$	$j-1$	\cdot
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot		
ω	$C_{1 \omega}, C_{2 \omega}, \ldots, C_{\omega-1} \omega$	$\omega-1$	2

It is a proper colouring of G by Claims 1,2 and 3 . We first estimate the number of colours used in step (2) to colour the vertices of C (see Table 1) and then estimate the total number of colours used to colour G entirely.

$$
\begin{aligned}
\chi([C]) & \leq 1(\omega)+2(\omega-1)+3(\omega-2)+\ldots+(\omega-1) 2 \\
& =\sum_{k=1}^{\omega-1} k(\omega+1-k) \\
& =\sum_{k=1}^{\omega-1} k(\omega+1)-\sum_{k=1}^{\omega-1} k^{2} \\
& =(\omega+1) \frac{(\omega-1)(\omega)}{2}-\frac{(\omega-1)(\omega)(2 \omega-2+1)}{6} \\
& =\frac{\omega(\omega-1)(\omega+4)}{6}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\chi(G) & \leq|A|+\chi([C]) \\
& =\omega+\frac{\omega(\omega-1)(\omega+4)}{6} \\
& =\frac{\omega(\omega+1)(\omega+2)}{6}
\end{aligned}
$$

Theorem 2. If a graph G is $\left(P_{4} \cup P_{2}\right)$-free, then $\chi(G) \leq \frac{\omega(\omega+1)(\omega+2)}{6}$.
Proof. The bound for the chromatic number of $\left(P_{3} \cup P_{2}\right)$-free graphs holds for $\left(P_{4} \cup P_{2}\right)$ free graphs too. In this case, each $\left[C_{i j}\right]$ is P_{4}-free and hence perfect, by a result of Seinsche [18]. So, we can properly colour each $\left[C_{i j}\right]$ with at most $\omega\left(C_{i j}\right) \leq \omega-(j-2)$ colours, and the entire G with at most $\frac{\omega(\omega+1)(\omega+2)}{6}$ colours, as in the proof of Theorem 1

We next consider $\left(P_{3} \cup P_{2}\right.$, diamond)-free graphs and obtain sharper bounds for the chromatic number. If $\omega=1$, then obviously chromatic number is 1 . So in the following, all graphs have $\omega \geq 2$.

Theorem 3. If a graph G is $\left(P_{3} \cup P_{2}\right.$, diamond $)$-free, then

$$
\chi(G) \leq \begin{cases}\omega+2 & \text { if } \omega=2 \\ \omega+3 & \text { if } \omega=3 \\ \omega+1 & \text { if } \omega=4\end{cases}
$$

and G is perfect if $\omega \geq 5$.
Proof. We continue to use the terminology and notation of sections 2 and 3. In particular, we use the sets $A, C_{i j}, I_{a}$, and Claims 1,2 and 3 .

Claim 4: If G is C_{5}-free, then it is a perfect graph.
Clearly, every hole $C_{2 k+1}, k \geq 3$ contains an induced $P_{3} \cup P_{2}$, and the complement $\bar{C}_{2 k+1}, k \geq$ 3 of the hole contains an induced diamond. So G is $\left(C_{2 k+1}, \bar{C}_{2 k+1}\right)$-free for all $k \geq 3$. Hence if G is C_{5}-free, then G is perfect, by the Strong Perfect Graph Theorem [8].

Claim 5: $C_{i j}=\emptyset$, for every $j \geq 4$.
On the contrary, let $x \in C_{i j}$, for some $j \geq 4$. Then by the definition of $C_{i j}$, there exist two distinct vertices $p, q \in\{1,2,3\} \subseteq A$ such that $x \leftrightarrow p$ and $x \leftrightarrow q$. But then $[\{x, j, p, q\}] \simeq$ diamond, a contradiction.

So, we conclude that $C=C_{12} \cup C_{13} \cup C_{23}$, for $j \geq 4$.
Claim 6: If $a \in A$, then I_{a} is an empty set if $\omega \geq 3$, and it is an independent set if $\omega=2$. If $\omega \geq 3$, and $x \in I_{a}$, for some $a \in A-\{1,2\}$, then $[\{x, a, 1,2\}] \simeq$ diamond, a contradiction; if $\mathrm{a}=1$ or 2 , then [$\{\mathrm{x}, 1,2,3\}$] is a diamond. If $\omega=2$, then the assertion follows by Claim 2.

Therefore, $V(G)=A \cup C_{12} \cup C_{13} \cup C_{23}$, if $\omega \geq 3$.
Recall that by Claim 3, $\omega\left(\left[C_{13}\right]\right) \leq \omega-1$, and $\omega\left(\left[C_{23}\right]\right) \leq \omega-1$. But $\left[C_{12}\right]$ may contain an ω-clique. However, we have the following claim.

Claim 7: $\omega\left(\left[C_{12}\right]\right) \leq \omega-1$, if $\omega(G) \geq 3$, and $C_{23} \neq \emptyset$ or $C_{13} \neq \emptyset$
On the contrary suppose $\left[C_{12}\right]$ contains an ω-clique Q, and for definiteness suppose $C_{23} \neq \emptyset$ (if $C_{13} \neq \emptyset$, proof is similar). Let $x \in C_{23}$. If x is adjacent to all the vertices of Q or $|Q|-1$ vertices of Q, then we have an $(\omega+1)$-clique or a diamond in G, both impossible. Else, there exist two vertices u and v in Q such that $x \leftrightarrow u$ and $x \leftrightarrow v$. Then $[\{x, 1,2\} \cup\{u, v\}] \simeq P_{3} \cup P_{2}$, a contradiction. Hence the claim.

Claim 8: $\left[C_{13}, A-\{2\}\right]=\emptyset$, and $\left[C_{23}, A-\{1\}\right]=\emptyset$.
If there exists an edge $x i \in\left[C_{13}, A-\{2\}\right]$, then $[\{x, i, 1,2\}] \simeq$ diamond, a contradiction. Similarly, $\left[C_{23}, A-\{1\}\right]=\emptyset$

We now prove the theorem for different values of ω, by making the cases as stated in the theorem.

- $\omega=2$; so $A=\{1,2\}$.

Colouring G with four colours is easy in this case, since $V(G)=A \cup C_{12} \cup I_{1} \cup I_{2}, \omega\left(\left[C_{12}\right]\right) \leq$

Figure 2: Mycielski-Grötzsch graph
$\omega=2$, and I_{1}, I_{2} are independent sets, by Claim 6. Moreover, $\omega\left[C_{12}\right] \leq \omega(G)=2$. The following is a proper 4 -colouring of G :
(1) Colour the vertices 1 and 2 of A with colours 1 and 2 respectively.
(2) Colour $\left[I_{1}\right]$ with colour 1 .
(3) Colour $\left[I_{2}\right]$ with colour 2.
(4) Colour $\left[C_{12}\right]$ with two new colours.

An extremal $\left(P_{3} \cup P_{2}\right.$, diamond)-free graph G with $\omega(G)=2$, and $\chi(G)=4$ is the Mycielski-Grötzsch graph; see Fig. [2, It is well known that this graph has clique number 2 and chromatic number 4. The graph is clearly diamond free since it is triangle free. It can be observed that this graph is $\left(P_{3} \cup P_{2}\right)$-free by selecting every edge P_{2} and then verifying that the second neighborhood of P_{2}, is P_{3}-free. There are not too many cases for such a verification because of the symmetry of edges; we need to choose only three kinds of edges: $v_{1} v_{2}, v_{1} u_{2}$ and $u_{1} w$.

- $\omega=3$; so $A=\{1,2,3\}$.

At the outset, recall that every $I_{a}=\emptyset$, by Claim 6. So, $V(G)=A \cup C_{12} \cup C_{23} \cup C_{13}$. Moreover, $\omega\left[C_{12}\right] \leq 2, \omega\left[C_{13}\right] \leq 2, \omega\left[C_{23}\right] \leq 2$, by Claims 7 and 3 . We colour G with six colours as follows:
(1) Colour the vertices $1,2,3$ of A with colours 1, 2, 3 respectively.
(2) Colour $\left[C_{12}\right]$ with colours 1 and 2.
(3) Colour $\left[C_{23}\right]$ with colours 3 and 4.
(4) Colour $\left[C_{13}\right]$ with colours 5 and 6.

It is a proper colouring by the above observations.
Remarks:
(i) If some $C_{i j}$ is empty, we may not require all the six colours.

Figure 3: ($P_{3} \cup P_{2}$, diamond)-free graph with $\omega=3$ and $\chi=4$
(ii) We do not have extremal graphs with chromatic number 6.
(iii) However, we do have a graph with chromatic number 4 (see Fig. 3). In this figure, A is an ω-clique and $N_{i} \subseteq V(G)$ such that every vertex of N_{i} is adjacent to i and only i of $A, i \in\{1,2\}$.

- $\omega=4$; so $A=\{1,2,3,4\}$.

We colour G with five colours by considering two cases.
Case 1: $\left[C_{23}, C_{13}\right] \neq \emptyset$; let $a b \in\left[C_{23}, C_{13}\right]$.
Clearly, $[\{a, b, 2\}] \simeq P_{3}$.
Claim 9: a is an isolated vertex in $\left[C_{23}\right]$, and b is an isolated vertex in $\left[C_{13}\right]$.
Suppose, $a \leftrightarrow c$, for some $c \in C_{23}$. If $c \leftrightarrow b$, then $[\{a, b, c, 1\}] \simeq$ diamond, a contradiction. If $c \nleftarrow b$, then $[\{a, b, c\} \cup\{3,4\}] \simeq P_{3} \cup P_{2}$, since no vertex of $C_{23} \cup C_{13}$ is adjacent to the vertex $4 \in A$, by Claim 8 . Hence, we conclude that a is an isolated vertex in C_{23}. Similarly, b is an isolated vertex in C_{13}.

Claim 10: C_{23} and C_{13} are independent sets.
Suppose there exists an edge $c d$ in $\left[C_{23}\right]$, where $c \neq a$ and $d \neq a$, by Claim 9. If $c \nleftarrow b$ and $d \nleftarrow b$, then $[\{a, b, 2\} \cup\{c, d\}] \simeq P_{3} \cup P_{2}$. Next, without loss of generality, suppose that $c \leftrightarrow b$. Then $[\{a, b, c\} \cup\{3,4\}] \simeq P_{3} \cup P_{2}$, by Claim 8 and by the definition of $C_{i j}$'s, a contradiction. Hence, C_{23} is independent. Similarly C_{13} is independent.

We now colour G with five colours as follows:
(1) Colour the vertices $1,2,3$, 4 of A with colours 1, 2, 3, 4 respectively.
(2) Colour $\left[C_{12}\right]$ with colours 1,2 and a new colour 5.
(3) Colour $\left[C_{13}\right]$ with colour 3 .
(4) Colour $\left[C_{23}\right]$ with colour 4.

It is a proper colouring by Claims 8, 7 and 10 .
Case 2: $\left[C_{23}, C_{13}\right]=\emptyset$.
If both C_{23} and C_{13} are empty sets, then G is C_{5}-free, since [C_{12}] is P_{3}-free and any 5cycle contains at most two vertices of A. So, G is perfect, by Claim 4. If one of the sets C_{23} or C_{13} is nonempty, then we have the following assertion.

Claim 11: If C_{23} or C_{13} is non empty, then the other is independent.
Suppose $C_{23} \neq \emptyset$ and $x \in C_{23}$. If $u v$ is an edge in $\left[C_{13}\right]$, then $[\{x, 1,3\} \cup\{u, v\}] \simeq P_{3} \cup P_{2}$, a contradiction. Hence C_{13} is independent. Similarly, C_{23} is independent if $C_{13} \neq \emptyset$.

Without loss of generality, we henceforth assume that $C_{23} \neq \emptyset$. Since C_{13} is nonempty or empty, we consider two subcases.

Subcase 2.1: C_{13} is nonempty.
This implies that both C_{23} and C_{13} are independent sets, by Claim 11.
(1) Colour the vertices $1,2,3,4$ of A with colours $1,2,3,4$ respectively.
(2) Colour $\left[C_{12}\right]$ with colours 1,2 and a new colour 5 .
(3) Colour $\left[C_{13}\right]$ with colour 3.
(4) Colour $\left[C_{23}\right]$ with colour 3 .

It is a proper 5-colouring by Claims 7,11 and the fact that $\left[C_{23}, C_{13}\right]=\emptyset$.
Subcase 2.2: C_{13} is empty.
We now examine this subcase based on number of components in C_{23} and the maximum cliques in C_{12}.
Case 2.2.a: C_{23} has exactly one component.
Recall that every component of C_{23} is K_{1}, K_{2} or K_{3}, by Claim 3. If the component is K_{1}, then colour G with five colours as follows:
(1) Colour the vertices 1, 2, 3, 4 of A with colours 1, 2, 3, 4 respectively.
(2) Colour $\left[C_{23}\right]$ with colour 3 .
(3) Colour $\left[C_{12}\right]$ with colours 1, 2 and a new colour 5.

It is a proper 5 -colouring by Claim 7 and by our assumptions.
If the component is K_{2} or K_{3}, let $c d$ be an edge in [C_{23}] (see Fig. (4). We claim that C_{12} is independent. Else, there is an edge $a b$ in $\left[C_{12}\right]$. If c is neither adjacent to a nor adjacent to b, then $[\{c, 1,2\} \cup\{a, b\}] \simeq P_{3} \cup P_{2}$, a contradiction. Without loss of generality, assume that $a \leftrightarrow c$. But then $a \leftrightarrow d$; else, $[\{a, c, d, 1\}] \simeq$ diamond. By definition of C_{12} and C_{23}, no vertex in $\{a, c, d\}$ is adjacent to vertex 2 of A. By Claim 8, a is adjacent to at most one vertex of $A-\{1,2\}$, namely 3 or 4 . So $[\{a, c, d\} \cup\{2,3\}] \simeq P_{3} \cup P_{2}$ or $[\{a, c, d\} \cup\{2,4\}] \simeq P_{3} \cup P_{2}$, a contradiction. Hence, C_{12} is independent. Recall that $\omega\left(\left[C_{23}\right]\right) \leq 3$, by Claim 3 .
We colour G with four colours:
(1) Colour the vertices 1, 2, 3, 4 of A with colours $1,2,3,4$ respectively.
(2) Colour C_{23} with colours 2, 3 and 4.
(3) Colour C_{12} with colour 1 .

It is a proper 4 -colouring by Claims 3 and 8 .

Figure 4: $\left[C_{23}\right]$ has one component
Case 2.2.b: C_{23} has ≥ 2 components; let x and y be vertices of two distinct components (see Fig. 5]).
Our first claim is that $\omega\left(\left[C_{12}\right]\right) \leq 2$. On the contrary suppose that $[\{a, b, c\}]$ is a triangle in $\left[C_{12}\right]$. Since $\{x, 1,2\}$ induces a P_{3}, x is adjacent to every vertex of the triangle; else we have an induced diamond or $P_{3} \cup P_{2}$ in G. Similarly y is adjacent to every vertex of the triangle. Then $[\{a, b, x, y\}] \simeq$ diamond. Hence, $\omega\left(\left[C_{12}\right]\right) \leq 2$. So we can colour G with 4 colours as follows:
(1) Colour the vertices 1, 2, 3, 4 of A with colours 1, 2, 3, 4 respectively.
(2) Colour C_{23} with colours 3 and 4.
(3) Colour C_{12} with colour 1 and 2 .

It is a proper 4-colouring by the above observations and Claim 8.

Figure 5: $\left[C_{23}\right]$ has more than one component

- $\omega \geq 5$.

It is enough to show that G is C_{5}-free, in view of Claim 4.4. On the contrary, suppose that G contains an induced C_{5}. As before, $V(G)-A=C=C_{12} \cup C_{13} \cup C_{23}$. Since at most two vertices of C_{5} can belong to the clique A, a $P_{3}=(a, b, c)$ is an induced subgraph of [C]. Since each $C_{i j}$ is P_{3}-free, either (i) two vertices are in one $C_{i j}$, and the third vertex is in one of the other two $C_{i j}$'s, or (ii) each $C_{i j}$ contains a vertex.

Claim 12: A vertex of C_{12} is adjacent to at most one vertex of A.
The claim is obvious for $\omega=2,3$. Next, assume that $\omega \geq 4$. If some vertex $x \in C_{12}$ is adjacent to two distinct vertices say, i and j of $A-\{1,2\}$, then $[\{1, x, i, j\}] \simeq$ diamond, a contradiction.

Hence by the above claim, for any two vertices $x, y \in C_{12}$, there is a vertex, say 5 , in A which is neither adjacent to x nor y. Also, by Claim $8,\left[C_{13} \cup C_{23},\{3,4,5\}\right]=\emptyset$. So, whether (i) or $(i i)$ holds, there exists an edge $i j$ in $[A]$ such that $[\{a, b, c\} \cup\{i, j\}] \simeq P_{3} \cup P_{2}$, a contradiction. For the choice of an appropriate edge $i j$, it is enough if we consider the following four cases:
(a) If P_{3} is an induced subgraph of $\left[\left\{C_{12} \cup C_{13}\right\}\right]$, then $[\{a, b, c, 1,5\}] \simeq P_{3} \cup P_{2}$.
(b) If P_{3} is an induced subgraph of $\left[\left\{C_{12} \cup C_{23}\right\}\right]$, then $[\{a, b, c, 2,5\}] \simeq P_{3} \cup P_{2}$.
(c) If P_{3} is an induced subgraph of $\left[\left\{C_{13} \cup C_{23}\right\}\right]$, then $[\{a, b, c, 4,5\}] \simeq P_{3} \cup P_{2}$.
(d) If (ii) holds, then $[\{a, b, c, 4,5\}] \simeq P_{3} \cup P_{2}$, where without loss of generality we assume that the vertex of (a, b, c) that is in C_{12} is adjacent to the vertex $3 \in A$.

5. $\left(2 K_{2}\right.$, diamond)-free graphs

The Claims of Section 4 are valid for ($2 K_{2}$, diamond)-free graphs too. So we continue to use the Claims made in Sections 3 and 4. In what follows, we assume that graphs have clique number at least 2 , as before.

Theorem 4. If a graph G is $\left(2 K_{2}\right.$, diamond)-free, then

$$
\chi(G) \leq \begin{cases}\omega+1 & \text { if } \omega=2 \\ \omega & \text { if } \omega \geq 3\end{cases}
$$

and G is perfect if $\omega \geq 4$.
Proof. Since the proof is similar to the proof of Theorem 3 we give an outline. As before, consider the partition $\left(A, \cup C_{i j}, \bigcup I_{a}\right)$ of $V(G)$. In this case, every $C_{i j}$ is K_{2}-free, and so it is an independent set.
If $\omega=2$, then $V(G)=A \cup C_{12} \cup I_{1} \cup I_{2}$. So one can easily colour G with three colours.
Next suppose $\omega \geq 3$. If $j \in A$, then $I_{j}=\emptyset$. Else, some $x \in I_{j}$. So, if $a, b \in A-\{j\}$, then $[\{x, j, a, b\}] \simeq$ diamond, a contradiction. Also, $C_{i j}=\emptyset$, if $j \geq 4$; else G contains an induced diamond. Hence $V(G)=C_{12} \cup C_{13} \cup C_{23}$. An ω-colouring of G is obtained as follows:
(1) Colour the vertices $1,2, \cdots, \omega$ of A, by colours $1,2, \cdots, \omega$.
(2) Colour every vertex of C_{12} with colour 1 , colour every vertex of C_{13} with colour 3, colour every vertex of C_{23} with colour 2 .

Remark: There exist ($2 K_{2}$, diamond)-free graphs with $\omega=3$, which are not perfect. See Fig. 6, where each circled vertex is multiplied by an independent set.

Figure 6: Graphs that are not perfect and have $\chi(G)=\omega(G)$
Now we prove perfectness for $\omega \geq 4$.
It is similar to the proof of Theorem 3] Case $\omega=5$. By Claim 4.4, it is enough if we show that G is C_{5}-free. On the contrary, if G contains an induced 5 -cycle, then $C\left(=C_{12} \cup C_{13} \cup C_{23}\right)$ contains an edge $x y$ of the 5 -cycle. Since $C_{i j}$'s are independent, no $\left[C_{i j}\right]$ contains $x y$. We use Claims 8 and 12 and arrive at a contradiction:
(a) If $x y \in\left[C_{12}, C_{13}\right]$, then $[\{x, y, 1,3\}]=2 K_{2}$ or $[\{x, y, 1,4\}]=2 K_{2}$.
(b) If $x y \in\left[C_{12}, C_{23}\right]$, then $[\{x, y, 2,3\}]=2 K_{2}$ or $[\{x, y, 2,4\}]=2 K_{2}$.
(c) If $x y \in\left[C_{13}, C_{23}\right]$, then $[\{x, y, 1,3\}]=2 K_{2}$ or $[\{x, y, 1,4\}]=2 K_{2}$.

So, G is C_{5}-free and hence it is perfect.

Acknowledgements

Both the authors thank Christ University, Bengaluru for providing all the facilities to do this research.

References

[1] Arbib, C., Mosca, R., On (P_{5}, diamond)-free graphs. Discrete Mathematics 250, 1-22 (2002)
[2] Bermond, J.C., Bond, J., Paoli, M., Peyrat, C.: Surveys in Combinatorics. Proceedings of the Ninth British Combinatorics Conference, Lecture Notes Series 82 (1983)
[3] Blázsik, Z., Hujter, M., Pluhár, A., Tuza, Z.: Graphs with no induced C_{4} and $2 K_{2}$. Discrete Mathematics 115, 51-55 (1993)
[4] Bondy, J.A., Murty, U.S.R.: Graph Theory. Graduate Texts in Mathematics. Springer (2008)
[5] Brandstädt, A., (P_{5}, diamond)-free graphs revisited: structure and linear time optimization. Discrete Applied Mathematics 138, 13-27 (2004)
[6] Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for Industrial Mathematics and Applications (1999)
[7] Choudum, S.A., Karthick, T.: First fit coloring of $\left\{P_{5}, K_{4}-e\right\}$-free graphs. Discrete Applied Mathematics 310, 3398-3403 (2010)
[8] Chudnovsky, M., Seymour, P., Robertson, N., Thomas, R.: The strong perfect graph theorem. Annals of Mathematics 164(1), 51-229 (2006)
[9] Chung, F.R.K., Gyárfás, A., Tuza, Z., Trotter, W.T.: The maximum number of edges in $2 K_{2}$-free graphs of bounded degree. Discrete Mathematics 81, 129-135 (1990)
[10] El-Zahar, M., Erdös, P.: On the existence of two non-neighboring subgraphs in a graph. Combinatorica 5, 295-300 (1985)
[11] Erdös, P.: Problems and results on chromatic numbers in finite and infinite graphs. In: Graph Theory with Applications to Algorithms and Computer Science, Kalamazoo, Michigan, 1984, pp. 201-213. John Wiley and Sons, New York (1985)
[12] Gyárfás, A.: Problems from the world surrounding perfect graphs. Zastosowania Matematyki 19(3-4), 413-441 (1987)
[13] Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley (1994)
[14] Karthick, T., Maffray, F.: Vizing Bound for the Chromatic Number on Some Graph Classes. Graphs and Combinatorics, 1-14 (2015)
[15] Kral, D., Kratochovil, J., Tuza, Zs., Woeginger G.J.: Complexity of colouring graphs without forbidden induced subgraphas. Proceedings of WG 2001, LNCS, Vol 224,Springer Verlag, 254-262, (2001)
[16] Nagy, Zs. and Szentmiklossy, Z.: A $\$ 20$ open problem of Erdös to show that if G is $2 K_{2}$-free graph with clique number 3, then its chromatic number is 4 (Unpublished)
[17] Randerath, B., Schiermeyer, I.: Vertex colouring and forbidden subgraphs - A survey. Graphs and Combinatorics 20, 1-40 (2004)
[18] Seinsche, D.: On a property of the class of n-colorable graphs. Journal of Combinatorial Theory, Series B 16, 191-193 (1974)
[19] Wagon, S.: A bound on the chromatic number of graphs without certain induced subgraphs. Journal of Combinatorial Theory, Series B 29(3), 345-346 (1980)
[20] West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall, Englewood Cliffs (2000)

[^0]: *Corresponding author
 Email addresses: arpitha.p.bharathi@gmail.com(Arpitha P. Bharathi), sac@retiree.iitm.ac.in (Sheshayya A. Choudum)
 ${ }^{1}$ Department of Mathematics, Christ University, Bengaluru 560029, India

