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A COMPLETE CLASSIFICATION OF WHICH (n, k)-STAR GRAPHS ARE

CAYLEY GRAPHS

KARIMAH SWEET, LI LI, EDDIE CHENG, LÁSZLÓ LIPTÁK, AND DANIEL E. STEFFY

Abstract. The (n, k)-star graphs are an important class of interconnection networks that gener-
alize star graphs, which are superior to hypercubes. In this paper, we continue the work begun by
Cheng et al. (Graphs and Combinatorics 2017) and complete the classification of all the (n, k)-star
graphs that are Cayley.

1. Introduction

The (n, k)-star graph, Sn,k, where 1 ≤ k < n, has as its vertices the k-permutations on the set
{1, . . . , n}. (A k-permutation on {1, . . . , n} is an ordered k-tuple of distinct elements from the set.)
There are two types of edges in Sn,k. A star edge is an edge between two vertices, one of which
can be obtained from the other by exchanging the symbols in position 1 and position i for some
2 ≤ i ≤ k. A residual edge is an edge between two vertices that differ only in their first position.
Each vertex in Sn,k is incident with k − 1 star edges and n− k residual edges.

The class of (n, k)-star graphs was introduced as a potential interconnection structure for dis-
tributed processor computer architectures [9]. In this context, such structures are often referred to
as interconnection networks, and they are evaluated based on their structural properties. Hsu and
Lin [18] record recent progress in this area with an extensive bibliography.

There has been much research on the class of (n, k)-star graphs studying embeddings, broadcast-
ing, Hamiltonicity and surface area as well as their applicability in theoretical computer science.
Recent papers (within the past 3 years) include [4, 5, 7, 8, 10, 13, 17, 20, 23, 28, 29]. The first major
result on Hamiltonicity was given in [17], which proves that (n, k)-star graphs are Hamiltonian; in
fact, an (n, k)-star graph remains Hamiltonian if n − 3 vertices and/or edges are deleted. (There
is a conjecture that every finite connected Cayley graph contains a Hamiltonian cycle; for related
work, see [15,25,26].) While it is well known that other classes of popular interconnection networks
such as the hypercube and star graph are Cayley graphs, it has remained an open question for
(n, k)-star graphs. Our work settles this question by showing which (n, k)-star graphs are Cayley
graphs, providing a deeper understanding of the properties of this class of interconnection networks.

Recall that if G is a finite group and S is a set of some of its non-identity elements, the Cayley
graph Γ(G,S) is the directed graph whose vertex set is G, and whose set of arcs contains an arc
from u to v if and only if there is an element s ∈ S such that v = us. If S ⊂ G is a subset that
generates G, then Γ(G,S) is connected, and if s ∈ S implies s−1 ∈ S, then we can simplify Γ(G,S)
to be an undirected graph by replacing each pair of opposite arcs with an undirected edge.

Since Sn,1 is isomorphic to the complete graph on n vertices, Kn, and Sn,n−1 is isomorphic to
the star graph Sn, both of which are Cayley for all n, we assume throughout the paper that

k ≥ 2 and n ≥ k + 2.

In [6], a classification of the Sn,k graphs that are Cayley is given in the case that k = 2, as
well as a necessary condition for Sn,k to be Cayley for k = 3. In this paper we use Sabidussi’s
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Theorem [27, Lemma 4] to study for which n and k, Sn,k is a Cayley graph. Let us first recall
Sabidussi’s Theorem and give its corollary for (n, k)-star graphs.

Theorem 1.1 (Sabidussi’s Theorem, [27]). Let v be a vertex of a finite graph Γ. The following are
equivalent:

(i) Γ is a Cayley graph;
(ii) there is a subgroup G ≤ Aut(Γ) such that the map ε : G → V (Γ), g 7→ g(v) is bijective;
(iii) there is a subgroup G ≤ Aut(Γ) such that |G| = |V (Γ)| and the stabilizer group Gv is trivial;
(iv) Aut(Γ) contains a subgroup that acts regularly (i.e. transitively and freely) on V (Γ).

We need to introduce some notation to state the following corollary, which follows immediately
from Sabidussi’s Theorem. Let P (n, k) = n!/(n− k)! be the number of k-permutations of n. For a
permutation a = (a1, . . . , an) ∈ Sn (in one-line notation), we define

a := [a1, . . . , ak],

which is a k-permutation in n, hence is a vertex of Sn,k. We say that a is a representative of a. We
denote by e the identity permutation and thus e is the k-permutation [1, 2, . . . , k]. We will show
later (Theorem 2.6) that Aut(Sn,k) ∼= Sn ×Sk−1.

Corollary 1.2. Assume k ≥ 2 and n ≥ k + 2. The following are equivalent:
(i) Sn,k is a Cayley graph;

(ii) there is a subgroup G ≤ Sn ×Sk−1 such that the map ε : G → V (Sn,k), (µ, ν) 7→ µν−1 is
bijective;

(iii) there is a subgroup G ≤ Sn ×Sk−1 such that |G| = |V (Sn,k)| = P (n, k) and the stabilizer
group Ge is trivial.

There are several advantages of the approach using Sabidussi’s Theorem (versus the approach
in [6]):

(a) Computationally, to check that Sn,k is Cayley, we only need to study the (conjugacy classes
of) subgroups of order P (n, k) in Sn ×Sk−1. This turns out to be a much more efficient compu-
tational approach than our previous approach in [6] where we constructed groups using generators
and relations. In fact, by using this approach we were able to compute many examples of Sn,k and
eventually come up with the following statement (first as a conjecture, suggested by our computa-
tions).

Theorem 1.3. For k ≥ 2, n ≥ k+2, the graph Sn,k is Cayley if and only if either of the following
holds:

• n = k + 2.
• k = 2 and n is a prime power.
• k = 3 and n− 1 is a prime power.
• (n, k) is one of the following sporadic cases: (n, k) = (9, 4), (9, 6), (11, 4), (12, 5), (33, 4),
or (33, 30).

(b) If Sn,k is a Cayley graph of a group G, then Sabidussi’s Theorem asserts that we can regard
G as a subgroup of Sn ×Sk−1. The image H of G under the natural projection to Sn turns out
to be k-homogeneous. Using a classification of k-homogeneous groups we can say much more on
H, hence on G. This idea eventually led to the complete proof of the above theorem.

There is another interesting observation that we would like to point out. Among the sporadic
finite simple groups, the first known ones are the Mathieu groups M11,M12,M22,M23,M24. In the
paper we show that the (n, k)-star graph S11,4 (resp. S12,5) is a Cayley graph of the Mathieu group
M11 (resp. M12). Moreover, computation shows that all groups of automorphisms acting regularly
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on the vertices of S11,4 (resp. S12,5) are isomorphic to M11 (resp. M12). So it is interesting to ask
the following:

Question 1.4. For a given pair (G, k) where G is a finite group and k a positive integer, does there
exist a connected k-regular graph S such that G is, up to isomorphism, the only group with Cayley
graph S?

In particular, the answer is affirmative for (M11, 10) and (M12, 11). Some special cases are easy
(for example, when |G| = p is prime, then G has to be Z/pZ and the answer is affirmative if k is
even and 2 ≤ k ≤ p − 1; when k = 2, then the answer is affirmative if G = Z/nZ with odd n),
but in general it seems difficult. A related conjecture is given in [14, Remarks on Theorem 1.3]
which claims that every finite nonabelian simple group G has a GRR of valency 3. This conjecture
immediately implies an affirmative answer for (G, 3) for every finite nonabelian simple G.

In a previous version of the paper, we asked the above question only for finite simple groups G
and without restriction on the valence. That question can be easily answered affirmatively using
the graphical regular representation (GRR), as pointed out by a referee. Here is the explanation.
By definition, a Cayley graph Γ = Γ(G,S) is called a GRR of G if Aut(Γ) ∼= G. If Γ is a GRR of
G, then the above question has an affirmative answer for G. On the other hand, the question of
which groups admit GRR was answered completely by Hetzel (1976) and Godsil (1981): all finite
unsolvable group have GRR, and the only finite solvable groups without GRR are abelian groups
of exponent greater than 2, generalized dicyclic groups, and 13 exceptional groups [2, 16g]. In
particular, all finite simple groups except Z/pZ have GRR. Moreover, the case Z/pZ is easy as seen
above.

The paper is organized as follows. In §2 we determine the automorphism group of Sn,k, Aut(Sn,k).
In §3 we discuss k-homogeneous and k-transitive groups, in particular we list their classifications.
In §4 and §5 we prove the main theorem, Theorem 1.3.

In an earlier attempt at solving this problem, our method in the original manuscript relied
heavily on the classification of 2-transitive and 3/2-transitive groups (which is based on the 15000-
page Classification of Finite Simple Groups), wherein we proved that Aut(Sn,k) was isomorphic
to a semidirect product of permutation groups. It was pointed out to us by a reader (whom we
are grateful to) that by using k-homogeneousness we get a much simpler approach to attack the
problem, and that the semidirect product can be replaced by a direct product. These observations
have allowed us to only use the Classification of Finite Simple Groups in parts of Lemmas 3.2-3.5,
and helped us to complete the project of determining the Cayleyness of all (n, k)-star graphs.

2. The automorphism group Aut(Sn,k)

In this section, we determine Aut(Sn,k) in order to apply Sabidussi’s Theorem.
Let Sn be the symmetric group on the set {1, . . . , n}. Let Sk−1 ≤ Sn be the subgroup of Sn

that only permutes {2, 3, . . . , k}, i.e., the subgroup that fixes {1, k + 1, . . . , n}.

2.1. The construction of the group homomorphism ϕ : Sn ×Sk−1 → Aut(Sn,k).

Definition 2.1. Define ϕ : Sn ×Sk−1 → Aut(Sn,k) by ϕ(µ, ν)(ā) = µaν−1 for any a ∈ Sn, that
is, ϕ(µ, ν) ∈ Aut(Sn,k) is defined as follows:

ϕ(µ, ν) : [a1, . . . , ak] 7→ [µ(aν−1(1)), . . . , µ(aν−1(k))].

The lemma below asserts that it is actually a group homomorphism.

Lemma 2.2. The map ϕ is an injective group homomorphism. As a consequence, Sn,k is vertex-
transitive (which is proved in [9, Theorem 3]).
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Proof. (i) Observe that ϕ(u, v)(ā) does not depend on the choice of a, that is, µ(aν−1(1)), . . . ,
µ(aν−1(k)) are determined by a1, . . . , ak (thus ak+1, . . . , an are irrelavant). This is true because ν
maps the set {1, . . . , k} to itself.

(ii) For any pair (µ, ν) ∈ Sn ×Sk−1, we claim that ϕ(µ, ν) is indeed in Aut(Sn,k).
To show that ϕ(µ, ν) sends different vertices to different vertices, we assume ϕ(µ, ν)(ā) =

ϕ(µ, ν)(b̄) for a, b ∈ Sn. Thus µ(aν−1(i)) = µ(bν−1(i)) for 1 ≤ i ≤ k. Since the set {ν−1(i)|1 ≤ i ≤
k} = {1, . . . , k}, we have µ(aj) = µ(bj) for 1 ≤ j ≤ k, thus aj = bj for 1 ≤ j ≤ k because µ is an
isomorphism. Therefore ā = b̄.

To show that ϕ(µ, ν) sends adjacent vertices to adjacent vertices, we assume ā and b̄ are adjacent,
and denote a′ = µaν−1, b′ = µbν−1. If ā and b̄ are joint by a star edge, say a1 = bj, aj = b1, and
ai = bi (i 6= 1, j), then a′1 = µ(aν−1(1)) = µ(a1) = µ(bj) = µ(bν−1(ν(j))) = b′ν(j), b

′
1 = µ(bν−1(1)) =

µ(b1) = µ(aj) = µ(aν−1(ν(j))) = a′ν(j), a
′
i = µ(aν−1(i)) = µ(bν−1(i)) = b′i (i 6= 1, j). So ā′ and ā′ are

joint by a star edge. A similar argument works for a residual edge. Therefore ϕ is well-defined.

(iii) Next, we show that ϕ is a group homomorphism. Indeed, for any (µ, ν), (µ′, ν ′) ∈ Sn×Sk−1,
let a be any vertex of Sn,k and let a ∈ Sn be any representative of a. We have

ϕ(µ, ν)ϕ(µ′, ν ′)(a) = ϕ(µ, ν)(µ′aν ′−1) = µµ′aν ′−1ν−1 = µµ′a(νν ′)−1 = ϕ(µµ′, νν ′)(ā).

Therefore ϕ(µ, ν)ϕ(µ′, ν ′) = ϕ((µ, ν) · (µ′, ν ′)).

(iv) Then, we show that ϕ is injective. Assume that (µ, ν) ∈ Sn × Sk−1 satisfies ϕ(µ, ν) =
idAut(Sn,k) (the identity automorphism of Sn,k). That is, for any vertex [a1, . . . , ak] of Sn,k,

[µ(a1), . . . , µ(aν−1(k−1)), µ(aν−1(k))] = [a1, . . . , ak].

(Note that ν−1(1) = 1.) The equality of the last coordinate µ(a1) = a1 holds for any a1 = 1, . . . , n,
so µ = idSn

. Then aν−1(i) = ai, thus ν−1(i) = i for 2 ≤ i ≤ k; that is, ν = idSk−1
. Thus ϕ is

injective.

(v) Finally, we show the vertex-transitivity of Sn,k. Indeed, since every vertex of Sn,k is of the
form ā for some (non-unique) a ∈ Sn, we can choose µ = a and ν = e (the identity). Then
ϕ(µ, ν)(ē) = aee = a. �

2.2. Determining Aut(Sn,k). For a vertex v of Sn,k, we say u is a residual-adjacent (resp. star-
adjacent) neighbor of v if u is connected to v by a residual (resp. star) edge.

Lemma 2.3. Assume 2 ≤ a, b, c, d, e, f ≤ n and a 6= b, b 6= c, c 6= d, d 6= e, e 6= f , f 6= a, such that
the following equality of permutations holds:

(1, f)(1, e)(1, d)(1, c)(1, b)(1, a) = id.

Then a = c = e, b = d = f .

Proof. First, observe two simple computations:
– for three distinct numbers i, j, l, the product (1, i)(1, j)(1, l) = (1, l, j, i) has order 4;
– for two distinct numbers i, j, the product (1, i)(1, j)(1, i) = (i, j) has order 2.
Next, we prove the lemma by cases:
If a 6= c and d 6= f , then a, b, c (resp. d, e, f) are three distinct numbers, and thus (1, d, e, f) =

(1, f)(1, e)(1, d) = (1, a)(1, b)(1, c) = (1, c, b, a), which implies d = c (as well as e = b, f = a), a
contradiction to our assumption.

If a = c, then (1, f)(1, e)(1, d) = (a, b) has order 2, so d = f , (d, e) = (1, d)(1, e)(1, d) =
(1, f)(1, e)(1, d) = (a, b), which implies either “a = d and b = e” or “a = e and b = d”. The former
is impossible since it implies a contradiction c = d. So the latter holds, i.e., a = c = e, b = d = f .

If d = f , then the argument is similar to the a = c case. �
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We define an alternating 6-cycle to be a 6-cycle with alternative residual and star edges. We
define a star-edge 6-cycle to be a 6-cycle consisting solely of star edges.

Lemma 2.4. Let u, v, w be three vertices in Sn,k.
(i) If uv is a residual edge and vw is a star edge, then there is a unique alternating 6-cycle

containing uv and vw.
(ii) If uv and vw are both star edges, then there is a unique star-edge 6-cycle containing uv and

vw.

Proof. (i) Denote v = [a1, . . . , ak]. Assume u is obtained from v by replacing a1 = i by l, and w
is obtained from v by swapping the first number a1 with the r-th number ar = j. Then there is a
6-cycle connecting v and five vertices obtained from v by replacing (i, j) = (a1, ar) by (j, i), (l, i),
(i, l), (j, l), (l, j), respectively.

Next, we show that such a 6-cycle is unique. Assume u v w x y z u is such a cycle
(“ ” denotes a residual edge, “ ” denotes a star edge). For simplicity we only prove the special
case v = e = [1, . . . , k], u = [k + 1, 2, 3, . . . , k], w = [2, 1, 3, . . . , k] (the general case is proven in the
same way with much more cumbersome notation). Then x = [p, 1, 3, . . . , k] for some k+1 ≤ p ≤ n, y
is a permutation of the set A = {p, 1, 3, . . . , k} (because x, y are star-adjacent), z is a permutation
of the set B = {k + 1, 2, . . . , k} (because u, z are star-adjacent). For yz to be a residual edge,
the sets A and B must differ by only one number. Therefore p = k + 1, x = [k + 1, 1, 3, . . . , k],
y = [1, k + 1, 3, . . . , k], z = [2, k + 1, 3, . . . , k]. So the 6-cycle is unique.

(ii) Denote by sj (1 ≤ j ≤ k − 1) the action on k-permutations by swapping a1 with aj+1.
Assume u = sj(v) and w = sk(v). Then the 6-cycle

u sj(u)

=

v

sksj(u)

=

w

sjsksj(u) sksjsksj(u) sjsksjsksj(u) (sksj)
3(u)

=

u

satisfies the requirement.
Next we check that there is only one such 6-cycle. Equivalently, if sasbscsdsesf (u) = u, then

a = c = e, b = d = f . This follows from Lemma 2.3. �

For a vertex x in a graph Γ, we denote by Stabx the subgroup of Aut(Γ) consisting of all
automorphisms that fix x. We recall the following orbit stabilizer equality [11, Theorem 1.4A]: if
Γ is a vertex-transitive graph with m vertices and x is any vertex, then

(1) |Aut(Γ)| = m|Stabx|.

We need the following lemma.

Lemma 2.5. Let k ≥ 2 and n ≥ k + 2. An edge of Sn,k is a residual edge if and only if it is in
a 3-cycle. As a consequence, an automorphism of Sn,k sends a residual edge (resp. star edge) to a
residual edge (resp. star edge).

Proof. A residual edge with an endpoint [a1, a2, . . . , an] is in a complete graph of n− k+1 vertices
of the form {[i, a2, . . . , ak] | i 6= a2, . . . , ak}. Thus all edges in this complete graph are residual, and
therefore a residual edge is in a 3-cycle. In contrast, a star edge xy is not in a 3-cycle. Indeed,
without loss of generality we assume the endpoints x = [1, 2, 3, . . . , k] and y = [2, 1, 3, . . . , k].
Assume the contrary that xyz is a 3-cycle with the third vertex z = [a1, . . . , ak]. If xz is residual,
then [a2, . . . , ak] = [2, . . . , k] and a1 6= 1, . . . , k; therefore yz is neither residual because [a2, . . . , ak] 6=
[1, 3 . . . , k], nor star because {a1, . . . , ak} 6= {1, . . . , k} as sets. If xz is star, then yz is also star,
and [a1, . . . , ak] is a permutation of [1, . . . , k] of opposite parity with both x = [1, 2, . . . , k] and
y = [2, 1, . . . , k]; but this is impossible, because the permutations x and y are of opposite parity.
This shows that a star edge is not in a 3-cycle. �
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Theorem 2.6. The group homomorphism ϕ in Definition 2.1 is an isomorphism:

Sn ×Sk−1
ϕ

∼=
// Aut(Sn,k)

Moreover, for a vertex v of Sn,k, let u1, . . . , un−k (resp. w1, . . . , wk−1) be the residual-adjacent
(resp. star-adjacent) neighbors of v arranged in any order. For a vertex v′ of Sn,k, let u

′
1, . . . , u

′
n−k

(resp. w′
1, . . . , w

′
k−1) be the residual-adjacent (resp. star-adjacent) neighbors of v′ arranged in any

order. Then there is a unique automorphism f ∈ Aut(Sn,k) sending v to v′, ui to u′i (1 ≤ i ≤ n−k),
wi to w′

i (1 ≤ i ≤ k − 1).

Proof. First, we show that ϕ is an isomorphism. It suffices to show the following inequality (note
that we already have “≥” since ϕ is injective by Lemma 2.2):

|Aut(Sn,k)| ≤ |Sn ×Sk−1| = n!(k − 1)!.

Let e = [1, . . . , k] ∈ V (Sn,k). Since Sn,k is a vertex-transitive graph, (1) implies

|Aut(Sn,k)| = |Sn,k| |Stabe| =
n!

(n− k)!
|Stabe|.

Thus it suffices to show the following (note that we already have “≥”):

|Stabe| ≤ (n− k)!(k − 1)!.

To show this inequality, note that we have a group homomorphism (which is well-defined because
of Lemma 2.5)

π : Stabe → Sn−k ×Sk−1, f 7→ (f1, f2)

where f1 is the restriction of f to the set of n − k residual-adjacent neighbors of e, and f2 is the
restriction of f to the set of k − 1 star-adjacent neighbors of e.

Since |Sn−k ×Sk−1| = (n− k)!(k− 1)!, it suffices to show that π is injective, in other words, the
following claim:

Claim: if f ∈ Aut(Sn,k) is in the kernel of π, then f is the trivial automorphism, that is, it fixes
every vertex. As a consequence, π is bijective.

Proof of claim: let V be the set of vertices v such that f fixes v and all its adjacent vertices. Then
e ∈ V since f is in the kernel of π. If V consists of all vertices of Sn,k then we are done. Otherwise
assume V does not contain all vertices of Sn,k. Since Sn,k is connected, there is a vertex u /∈ V
that is adjacent to a vertex v ∈ V . We consider in two cases:

Case 1: uv is a residual edge. Then a residual-adjacent neighbor of u is either v or residual-
adjacent to v, so it is fixed by f . So there exists a star-adjacent neighbor w of u not fixed by f .
By Lemma 2.4(i), there is a unique alternating 6-cycle containing uv and wu, say

w u v x y z w.

Since f fixes u, v and x, f must fix the 6-cycle (because of the uniqueness), thus f fixes w, a
contradiction.

Case 2: uv is a star edge. Let w be adjacent to u, we assert that f fixes w, thus gives a
contradiction. We show this in two cases. If uw is a residual edge, Lemma 2.4(i) asserts that there
is a unique alternating 6-cycle containing uv and uw, say w u v x y a w. Since f
fixes u, v, x, f must fix the 6-cycle, thus it fixes w. If uw is a star edge, Lemma 2.4(ii) asserts that
there is a unique star-edge 6-cycle consisting of uv and uw, say w u v x y a w.
Since f fixes u, v, x, f also fixes w.

This completes the proof of claim.

Next we show the “Moreover” part. Since Sn,k is vertex-transitive, there exists σ, τ ∈ Aut(Sn,k)
such that σ(v) = e, τ(v′) = e. For any f satisfying the condition, replacing f by τfσ−1 if necessary,
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we can assume that v = v′ = e. Then the existence and uniqueness of f follows from the above
conclusion that π is bijective. �

Remark 2.7. The map ϕ is not surjective if n = k+1 (the case we do not consider in this paper).
In this case, let Sn−1 be the symmetric group on the set {2, 3, 4, . . . , n}, regarded as a subgroup of
Sn. Let Sn ×Sn−1 be defined as before. It can be shown that Aut(Sn,n−1) ∼= Sn ×Sn−1.

3. k-homogeneous and k-transitive groups

Recall that a permutation group G on the set Ω is k-homogeneous (resp. k-transitive) if it acts
transitively on the set of k-combinations (resp. k-permutations) of Ω, where the integer k satisfies
1 ≤ k ≤ n (denote n := |Ω|). Moreover, G is sharply k-transitive if it acts regularly (i.e. transitively
and freely) on the set of k-permutations; in this case, |G| = P (n, k).

Fix n and k such that Sn,k
∼= Γ(G,S) is a Cayley graph. For convenience of notation, we regard

the isomorphism ϕ of Theorem 2.6 as an identity of Aut(Sn,k) with the internal direct product:

Sn ×Sk−1 = Aut(Sn,k)

(so we view Sn and Sk−1 as subgroups of Aut(Sn,k)). By Theorem 1.1, we can identify G with
a subgroup of Sn × Sk−1. We define H to be the image π1(G) under the natural projection
π1 : Sn ×Sk−1 → Sn, that is,

H = {µ ∈ Sn : (µ, ν) ∈ G for some ν ∈ Sk−1}.

Define T = G ∩ ker(π1). Since T can be viewed as a subgroup of Sk−1, we have that |T | divides
(k − 1)!. By the first isomorphism theorem, we have H ∼= G/T , thus |H| = |G|/|T |.

Lemma 3.1. H is k-homogeneous.

Proof. It suffices to prove that for any k-combination {a1, . . . , ak} ⊆ {1, . . . , n}, there is a permu-
tation µ ∈ H such that {µ(1), . . . , µ(k)} = {a1, . . . , ak}.

Since G acts regularly on Sn,k, there exists (µ, ν) ∈ Sn×Sk−1 that sends the vertex e = [1, . . . , k]
to the vertex [a1, . . . , ak]. That is,

[µ(ν−1(1)), . . . , µ(ν−1(k))] = [a1, . . . , ak].

On the other hand, ν permutes 2, . . . , k and fixes 1, so {ν−1(1), . . . , ν−1(k)} = {1, . . . , k}, thus
{µ(1), . . . , µ(k)} = {a1, . . . , ak}. �

In the rest of paper, p always denotes a prime number, and q denotes a prime power (that is,
q = pm for some prime p and positive integer m).

Lemma 3.2. [22] Let G be k-homogeneous on a set of n points, where 2 ≤ k ≤ n/2. Then
(i) G is (k − 1)-homogeneous.
(ii) G is (k − 1)-transitive.
(iii) if k ≥ 5, then G is k-transitive.

Lemma 3.3. [19] Let G be k-homogeneous but not k-transitive on a set of n points, where k ≤ n/2.
Then, up to permutation isomorphism, one of the following holds:

(i) k = 2 and G ≤ AΓL(1, q) with n = q ≡ 3 (mod 4);
(ii) k = 3 and PSL(2, q) ≤ G ≤ PΓL(2, q), where n− 1 = q ≡ 3 (mod 4);
(iii) k = 3 and G = AGL(1, 8), AΓL(1, 8) or AΓL(1, 32);
(iv) k = 4 and G = PSL(2, 8), PΓL(2, 8), or PΓL(2, 32).

Lemma 3.4 (Jordan, Zassenhaus, [11, §7.6]). A finite sharply 2-transitive group is obtained from
a finite near field F and has order |F | × |F#| = q(q − 1), with degree q = |F |.
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A sharply 3-transitive group is either PGL(2, q) (with order (q + 1)q(q − 1), degree q + 1, where
q is the order of the finite field F ), or a twisted version of it (with the same order and degree).

The only sharply 4-transitive group is M11 (with degree 11).
The only sharply 5-transitive group is M12 (with degree 12).

Lemma 3.5 ( [21, §3], [11]). There are no 6-transitive groups other than An and Sn.
The only 5-transitive groups are An for all n ≥ 7, Sn for all n ≥ 5, M12 (n = 12) and M24 (n =

24).
The only 4-transitive but not 5-transitive groups are A6 (n = 6), S4 (n = 4), M11 (n = 11) and

M23 (n = 23).
The 3-transitive but not 4-transitive groups are:

• A5 (n = 5), S3 (n = 3),
• AGL(d, 2) (n = 2d),
• 24.A7 (n = 24),
• M11 (n = 12),
• M22 or M22.2(= Aut(M22)) (n = 22),
• or a 3-transitive subgroup of PΓL(2, q) (n = q + 1).

4. Proof of Theorem 1.3

Recall that Sn,n−2 is Cayley for n ≥ 3 (see [6, Proposition 4]). So from now on we assume k ≥ 2
and n ≥ k + 3.

Lemma 4.1. (i) If H is k-transitive, then H is sharply k-transitive.
(ii) If there exists a sharply k-transitive group H ≤ Sn, then Sn,k is Cayley.

Proof. (i) Since H acts transitively on the set of k-permutations of Ω and |H| ≤ |G| = P (n, k)
(which is the number of k-permutations), this H-action must be regular. So H is sharply k-
transitive.

(ii) Let G = {(µ, 1)|µ ∈ H} ≤ Sn ×Sk−1. Then G, which is isomorphic to H, acts regularly on
V (Sn,k), thus by Theorem 1.1, Sn,k is Cayley. �

4.1. The case k = 2. We need to show that Sn,2 is Cayley if and only if n is a prime power. (It
is proved in [6], but we give a different proof here.)

For the “if” part: assume n is a prime power. By Lemma 3.4 there exists a sharply 2-transitive
group G ≤ Sn. Then the conclusion follows from Lemma 4.1.

For the “only if” part: G ≤ Sn×S1
∼= Sn, soH ∼= G is sharply 2-transitive. Then the conclusion

follows from Lemma 3.4.

4.2. The case k = 3. We need to show that Sn,3 is Cayley if and only if n− 1 is a prime power.
The “if” part follows from Lemma 3.4 and 4.1 using a similar argument as in the above case

k = 2. (It is also proved in [6].)
For the “only if” part: by Lemma 3.1, H is 3-homogeneous. Since n ≥ k + 3 = 2k, by Lemma

3.3, it suffices to discuss the following three cases:
(i) H is 3-transitive. By Lemma 4.1, H is sharply 3-transitive. Lemma 3.4 then implies that

n− 1 is a prime power.
(ii) PSL(2, q) ≤ H ≤ PΓL(2, q) and n− 1 = q is a prime power.
(iii) H = AGL(1, 8), AΓL(1, 8) or AΓL(1, 32). Then n = 8 or 32, so n − 1 = 7 or 31, which is

prime in either case.
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4.3. The case 4 ≤ k ≤ n/2. We need to show that Sn,k is Cayley if and only if (n, k) =
(9, 4), (11, 4), (12, 5), (33, 4). For the “if” part, the cases (n, k) = (11, 4) and (12, 5) are clear be-
cause there exist sharply k-transitive groups of degree n (Lemma 3.4); the cases (9, 4), (33, 4) will
be proved later.

For the “only if” part: by Lemma 3.1, H is k-homogeneous. By Lemma 3.3, it suffices to discuss
the following two cases:

(i) H is k-transitive. By Lemma 4.1, H is sharply k-transitive. Lemma 3.4 then implies that
(n, k) = (11, 4) or (12, 5).

(ii) k = 4 and H = PSL(2, 8), PΓL(2, 8), or PΓL(2, 32). The corresponding (n, k) = (9, 4) or
(33, 4).

4.4. The case n/2 < k ≤ n− 3. We need to show that Sn,k is Cayley if and only if (n, k) = (9, 6),

(33, 30), and possibly some (2d, 2d − 3) for large d. We will prove the “if” part later.
For the “only if” part: we consider two cases:

(a) H is 3-transitive. First, recall that except the alternating group An, any proper subgroup of
Sn has index at least n. So it is “difficult” to have a subgroup of Sn with a small index. Along
the line is the following much stronger result which will play an important role in this paper.

Theorem 4.2. [11, Theorem 5.2B] Let a ≥ 5, 1 ≤ r ≤ a/2, and suppose T ≤ Sa has index
|Sa : T | <

(a
r

)

. Then one of the following holds:
(i) for some ∆ ⊆ {1, . . . , a}, with |∆| < r, we have A(∆) ≤ T ≤ S{∆}, where the group A(∆)

consists of all elements in the alternating group Aa that fix every element in ∆, the group S{∆}

consists of all elements in the symmetric group Sa that fix the set ∆ (but may permute elements
in ∆).

(ii) a = 2m is even, T is imprimitive with two blocks of size m, and |Sa : T | = 1
2

(

a
m

)

.
(iii) one of the six exceptional cases happens (where r is the minimum number satisfying the hy-

potheses of the theorem 1 ): (a, r, |Sa : T |) = (6, 3, 15), (5, 2, 6), (6, 2, 6), (6, 2, 12), (7, 3, 30), (8, 3, 30).

Now we discuss case-by-case the list given in Lemma 3.5:

If H = An or Sn, then |H| does not divide P (n, k) since k ≤ n− 3. So this case is impossible.

If H = M11 (n = 11), then 6 ≤ k ≤ 8, and 11 · 10 · 9 · 8 = |H| = P (11, k)/t, where t|(k− 1)!. The
only possible solution is k = 8 and t = 7 · 6 · 5 · 4. Assume T ≤ S7 has order t = 7 · 6 · 5 · 4, thus
|S7 : T | = 6 < 7, which is impossible.

If H = M12 (n = 12), then 6 ≤ k ≤ 9, and 12 · 11 · 10 · 9 · 8 = |H| = P (12, k)/t, where t|(k − 1)!.
The possible solutions are k = 8 and t = 7 · 6 · 5, or k = 9 and t = 7 · 6 · 5 · 4.

First, assume T ≤ S7 has order t = 7 · 6 · 5, thus |S7 : T | = 24. Using notation in Theorem
4.2, (a, r, |Sa : T |) = (7, 3, 24), clearly not the case (ii) or (iii) in Theorem 4.2. So it has to be case
(i): there is ∆ with |∆| < 3 and A(∆) ≤ T . But since A(∆)

∼= Aa−|∆||, |A(∆)| = (a − |∆|)!/2 is a
multiple of (a− 2)!/2 = 5!/2 = 60, therefore A(∆) ≤ T implies 60| 7 · 6 · 5, a contradiction.

Next, assume T ≤ S8 has order t = 7 · 6 · 5 · 4, thus |S8 : T | = 48. Using notation in Theorem
4.2, (a, r, |Sa : T |) = (8, 3, 48), clearly not the case (ii) or (iii) in Theorem 4.2. So again it has to
be case (i). As above, |A(∆)| is a multiple of (a − 2)!/2 = 6!/2 = 360, and divides 7 · 6 · 5 · 4, a

1Even though this minimum condition on r is not stated in [11, Theorem 5.2B], a Remark after Theorem 5.2B
mentions that “the group are listed only with the minimum r for which they satisfy the hypotheses of the theorem”.
Without the minimum condition, there could be more exceptional cases such as (6, 3, 6), (6, 3, 12), (8, 4, 30).
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contradiction. So this case is impossible.

IfH = M23 (n = 23), then 3·16·20·21·22·23 = |H| = P (23, k)/t where t|(k−1)!. The only possible
solution is k = 20, and t = 19 ·18 · · · · ·4/(3 ·16). Assume T ≤ S19 has order t = 19 ·18 · · · · ·4/(3 ·16),
thus |S19 : T | = 3 · 16 · 6. Using notation in Theorem 4.2, (a, r, |Sa : T |) = (19, 3, 3 · 16 · 6), clearly
not the case (ii) or (iii) in Theorem 4.2. So again it has to be case (i). As above, |A(∆)| is a multiple
of 17!/2, and divides 19 · 18 · · · · · 4/(3 · 16), therefore 3 · 16 · 3|19 · 18, a contradiction. So this case
is impossible.

If H = M24 (n = 24), then 3 · 16 · 20 · 21 · 22 · 23 · 24 = |H| = P (24, k)/t where t|(k − 1)!. The
possible solutions are k = 20 and t = 19 · 18 · · · · · 5/(3 · 16), or k = 21 and t = 19 · 18 · · · · · 4/(3 · 16).

First, assume T ≤ S19 has order t = 19 · 18 · · · · · 5/(3 · 16), thus |S19 : T | = 3 · 16 · 24.
Using notation in Theorem 4.2, (a, r, |Sa : T |) = (19, 4, 3 · 16 · 24), clearly not the case (ii) or
(iii) in Theorem 4.2. So it has to be case (i): there is ∆ with |∆| < 4 and A(∆) ≤ T . But since
A(∆)

∼= Aa−|∆||, |A(∆)| = (a−|∆|)!/2 is a multiple of (a−3)!/2 = 16!/2, therefore A(∆) ≤ T implies
16!/2 | 19 · 18 · · · · · 5/(3 · 16), that is, 3 · 16 · 12|19 · 18 · 17, a contradiction.

Next, assume T ≤ S20 has order t = 19 · 18 · · · · · 4/(3 · 16), thus |S20 : T | = 3 · 16 · 120. Using
notation in Theorem 4.2, (a, r, |Sa : T |) = (20, 5, 3 · 16 · 120), clearly not the case (ii) or (iii) in
Theorem 4.2. So again it has to be case (i). As above, |A(∆)| is a multiple of (a − 4)!/2 = 16!/2,
therefore 16!/2 | 19 · 18 · · · · · 4/(3 · 16), that is, 3 · 16 · 3|19 · 18 · 17, a contradiction.

So this case is impossible.

If H = 24.A7 (n = 24), by Lemma 3.5, H is not 4-transitive, so k = 13. But t = P (16, 13)/|H| =
P (16, 13)/8!, which does not divide 12!. So this case is impossible.

If H = M11 (n = 12), then k = 9 (because H is not 4-transitive). Then t = P (12, 9)/|H| =
P (12, 9)/(11 · 10 · 9 · 8) = 12 · 7 · 6 · 5 · 4. Assume T ≤ S8 has order t, then |S8 : T | = 4 < 8, which
is impossible.

If H = M22 or M22.2 (n = 22), then k = 19 (because H is not 4-transitive). Then t =
P (22, 19)/|H|, which is either P (22, 19)/(3 · 6 · 22 · 21 · 20) or half of it. In either case, 19|t, thus
t ∤ 18!. So this case is impossible.

If H is a 3-transitive subgroup of PΓL(2, q) (n = q + 1), then k = q − 2 (because H is
not 4-transitive). Then t = P (q + 1, q − 2)/|H| is a multiple of P (q + 1, q − 2)/(rq(q2 − 1)) =
(q − 2)(q − 3) · · · 4/r (recall that q = pr). It follows from t|(q − 3)! that q − 2(= pr − 2) divides
6r. From the inequality 6r ≥ pr − 2 ≥ 2r − 2 we get 1 ≤ r ≤ 5. It is then easy to verify by hand
that there are two solutions: q = 23, 25. Correspondingly, (n, k) = (9, 6) or (33, 30), as we expected.

If H = AGL(d, 2), the proof is lengthy and tricky, so we leave it to Section 5.

(b) H is not 3-transitive. By Lemma 3.1, H is k-homogeneous, thus is also (n−k)-homogeneous,
where n− k ≥ 3. Then by Lemma 3.2, n = k+3 and H is 3-homogeneous. Then H is listed as (ii)
or (iii) of Lemma 3.3. The case (ii) is discussed in (a). So we only need to discuss (iii).

If H = AGL(1, 8), then n = 8, k = 5, and

P (8, 5)

t
= |H| = 56

where t|4!. But then t = P (8, 5)/56 = 120 > 4!, and we have reached a contradiciton.
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If H = AΓL(1, 8), which has order 168, n = 8, k = 5, and

P (8, 5)

t
= |H| = 168

where t|4!. But then t = P (8, 5)/168 = 40 > 4!, and we have reached another contradiction.

If H = AΓL(1, 32), n = 32, k = 29, and

P (32, 29)

t
= |H| = 32 · 31 · 5

where t|28!. But then t = P (32, 29)/(32 · 31 · 5) > 28!, and we have reached another contradiction.

4.5. Constructive proof of Cayleyness. In this subsection, we shall prove that S9,4, S9,6, S33,4,
S33,30 are Cayley.

First we define λ-transitivity introduced by W. Martin and B. Sagan [24]. Let Ω be a set with n
elements and let λ = (λ1, . . . , λm) be a partition. A permutation group G on the set Ω is called λ-
transitive if G acts transitively on the set of ordered tuples (P1, . . . , Pm) of pairwise disjoint subsets
of Ω satisfying |Pi| = λi for 1 ≤ i ≤ m (we say that the ordered tuples have type λ). Of course,
λ-transitivity does not change if we permute numbers in λ.

For convenience, we say that G is sharply λ-transitive (resp. λ-free) if G acts regularly (resp.
freely) on the above set of ordered tuples. Since the number of such ordered tuples is n!/

∏

λi!, it
is obvious that if |G| = n!/

∏

λi!, then the following three conditions are equivalent:

• G is sharply λ-transitive;
• G is λ-transitive;
• G is λ-free.

The following lemma follows from the recent classification of λ-transitive groups (see [1, 12]);
nevertheless, we include a straightforward proof here for self-containedness.

Lemma 4.3. The following permutation groups are sharply λ-transitive: PSL(2, 8) ≤ S9 for
λ = (5, 3, 1), and PΓL(2, 32) ≤ S33 for λ = (29, 3, 1).

Proof. Since |PSL(2, 8)| = 9 · 8 · 7 = 9!/(5!3!1!) and |PΓL(2, 32)| = 5 · 33 · 32 · 31 = 33!/(29!3!1!), it
suffices to prove these two groups are λ-free.

For PSL(2, 8): denote the finite field F8 = F2[z]/(z
3 + z + 1),

0̄ =

[

0
1

]

, 1̄ =

[

1
1

]

, z̄ =

[

z
1

]

,∞ =

[

1
0

]

∈ P1(F8).

Recall that µ ∈ PSL(2, 8) acts on P1(F8) by matrix multiplication

[

x
y

]

7→

[

α β
γ δ

] [

x
y

]

=

[

αx+ βy
γx+ δy

]

.

Assume that µ fixes ∞ and permutes 0̄, 1̄, z̄ (thus permutes the remaining 5 elements). We want
to show that µ = id. Since µ(∞) = ∞, we have γ = 0, and without loss of generality we assume
δ = 1. Then

{β, α + β, αz + β} = {0, 1, z}.

A case-by-case computation shows that α = 1, β = 0, thus µ = id.

For PΓL(2, 32): denote the finite field F32 = F2[z]/(z
5 + z2 + 1) and 0̄, 1̄, z̄ as above. Recall

that µ acts by

[

x
y

]

7→

[

α β
γ δ

] [

xσ

yσ

]

=

[

αxσ + βyσ

γxσ + δyσ

]

for some σ ∈ Aut(F32), where σ = ϕm for

some 0 ≤ m ≤ 4 where ϕ is the Frobenius automorphism defined by x 7→ x2. In particular
σ(z) ∈ {z, z2, z4, z8, z16} = {z, z2, z4, z3 + z2 + 1, z4 + z3 + z + 1}.
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As above, assume µ fixes ∞ and permutes 0̄, 1̄, z̄; and we can assume that γ = 0, δ = 1. Then

{β, α + β, αzσ + β} = {0, 1, z}.

We do a case-by-case computation as follows:
If (β, α+ β, αzσ + β) = (0, 1, z): then α = 1, zσ = z, σ = id, thus µ = id.
If (β, α+ β, αzσ + β) = (0, z, 1): then α = z, zzσ = 1, zσ = z−1 = z4 + z, which is impossible.
If (β, α+ β, αzσ + β) = (1, 0, z): then α = β = 1, zσ + 1 = z, zσ = z + 1, which is impossible.
If (β, α + β, αzσ + β) = (1, z, 0): then β = 1, α = z + 1, zzσ + 1 = 0, zσ = z4 + z, which is

impossible.
If (β, α+ β, αzσ + β) = (z, 0, 1): then α = β = z, zzσ + z = 1, zσ = z−1 + 1 = z4 + z + 1, which

is impossible.
If (β, α+β, αzσ+β) = (z, 1, 0): then β = z, α = z+1, (z+1)zσ+z = 0, which is impossible. �

Proposition 4.4. Given k ≥ 2, n ≥ k+2, define λ = (n−k, k−1, 1). If there exists a permutation
group H ≤ Sn that is sharply λ-transitive, then Sn,k is Cayley.

As a consequence, S9,4, S9,6, S33,4, S33,30 are Cayley.

Proof. Define G = H ×Sk−1 ≤ Sn ×Sk−1. Since |G| = |H| · (k− 1)! = (n)!/(n− k)! = V (Sn,k), it
suffices to show that Gē is trivial. Then Sn,k is Cayley by Corollary 1.2.

Assume (µ, ν) ∈ Gē, that is, µν−1 = ē. Then (µ(2), . . . , µ(k)) = (ν(2), . . . , ν(k)) is a permutation
of {2, . . . , k}, and µ(1) = ν(1) = 1, so µ fixes the ordered tuple ({2, . . . , k}, {1}, {k + 1, . . . , n}),
which has type (n− k, k − 1, 1). Then µ = id (thus ν = id), since H is sharply λ-transitive.

The consequence follows from Lemma 4.3. Indeed, for S9,4, we have λ = (5, 3, 1) and Lemma
4.3 asserts that H = PSL(2, 8) is sharply (5, 3, 1)-transitive, thus S9,4 is Cayley. For S9,6, we have
λ = (3, 5, 1); since λ-transitivity does not depend on the order of numbers listed in λ, H = PSL(2, 8)
is also sharply (3, 5, 1)-transitive, therefore S9,6 is also Cayley. The Cayleyness of S33,4 and S33,30

can be proved similarly. �

5. The case H = AGL(d, 2)

In this section, we deal with the case H = AGL(d, 2). In this case, n = 2d and k = 2d − 3
(because H is not 4-transitive), where d ≥ 3, and

P (2d, 2d − 3)

t
= |H| = 2d(2d − 1)(2d − 21) · · · (2d − 2d−1)

Assume a subgroup T ≤ S2d−4 has order

(2) |T | = t =
P (2d, 2d − 3)

2d(2d − 1)(2d − 21) · · · (2d − 2d−1)
,

thus

(3) t|(2d − 4)!

We want to get some contradiction to conclude that this case is impossible. Below we give a short
“proof” that relies on a conjecture, and a complete but longer proof.

5.1. A conjectural proof. Here we present a simple “proof” that relies on a conjecture in number
theory. Indeed, if H exists, then from the above we have

2d(2d − 1) · · · (2d − (2d − 4))

t
= |H| = 2d(2d − 1)(2d − 21) · · · (2d − 2d−1)

so

2d! = 6t · 2d(2d − 1) · · · (2d − 2d−1)
∣

∣

∣
6(2d − 4)! · 2d(2d − 1)(2d − 2) · · · (2d − 2d−1)
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or,

2d − 3
∣

∣

∣
6(2d − 22) · · · (2d − 2d−1) = 6 · 22+3+···+d−1(2d−2 − 1)(2d−3 − 1) · · · (22 − 1).

Since gcd(2d−3, 3) = gcd(2d−3, 2) = gcd(2d−3, 2d−2−1) = 1, the nonexistence of H is equivalent
to

(4) 2d − 3 ∤ (2d−3 − 1)(2d−4 − 1) · · · (23 − 1).

Moreover, the nonexistence of such H also follows from a conjecture in number theory. To give the
motivation, let us recall Bang’s Theorem (a corollary of Zsigmondy’s Theorem) which asserts:

“For any positive integer d 6= 1, 6, there is a prime factor of 2d − 1 which is not a factor of 2i − 1
for any i < d.”

For a sequence of nonzero integers (an)n≥1, the Zsigmondy set of the sequence is the set {n ≥
1| every prime factor of an divides am for some some m < n}. For many interesting sequences, the
Zsigmondy sets are finite (and very small). For example, the Zsigmondy set of (2d−1)d≥1 is {1, 6}.

Conjecture 5.1. For any d ≥ 8, there is a prime divisor of 2d − 3 that does not divide 2i − 3 for
any i < d. (After checking the simple cases d < 8, this conjecture is equivalent to the statement
that the Zsigmondy set of the sequence (2i − 3) is {1, 2, 7}.)

Proof that the conjecture implies (4). Let p be a prime divisor of 2d − 3 that does not divide 2i − 3
for any i < d. To show (4), it suffices to show that p ∤ 2j − 1 for 3 ≤ j ≤ d − 3. Assume the
contrary that p ∤ 2j − 1 for some 3 ≤ j ≤ d− 3. Then p divides (2d − 3)− 2d−j(2j − 1) = 2d−j − 3,
a contradiction. �

Remark 5.2. (We thank P. Ingram, J. Silverman, and T. Tucker for the following comments.)
Even though the conjecture seems similar to Bang’s Theorem stated above, there is an essential
difference. Namely, 1 is the identity in the multiplicative group, and a prime factor of 2n − 1
automatically divides 2nk − 1 for any k; in contrast, a prime number p dividing 2n − 3 only tells us
(a priori) that p divides 2nk − 3k for any k, which is not necessarily another term in the sequence.
This problem has been considered by experts, but is still open, even assuming the abc conjecture
(see [16] for an interesting connection between the abc conjecture and primitive divisor problems).

Originally we were only able to check the conjecture for d ≤ 320 using a computer. As suggested
by a referee, we replaced the prime factorization method by the gcd method, and were able to check
the conjecture for d ≤ 20000. Therefore (4) holds for d ≤ 20000.

5.2. A proof using Theorem 4.2. The idea is to find a reasonably small integer r such that
|Sk−1 : T | <

(k−1
r

)

and that |A(∆)| does not divide |T | = t, then draw the expected conclusion
using Theorem 4.2.

Let

n = 2d, k = 2d − 3, r =
d2 − d

2
− 2.

Let t be defined as in (2). It is straightforward to check that (3) does not hold for d < 8. So in the
following we assume d ≥ 8. An easy inductive argument shows that

d2 ≤ 2d−2, for all d ≥ 8.

It then follows that d2 ≤ (k + 3)/4, thus r + 1 < d2/2− 1 < k/8.

Lemma 5.3. (k − 1)!/t <
(k−1

r

)

.
13



Proof. By the definition of t as in (2),

(k − 1)!/t =
(2d − 4)!3!2d(2d − 1)(2d − 21) · · · (2d − 2d−1)

(2d)!
=

3!(2d − 22)(2d − 23) · · · (2d − 2d−1)

2d − 3

=
6(2d − 2d−1)(2d − 22)

2d − 3
· (2d − 23) · · · (2d − 2d−2) ≤ 3(2d)(2d − 23) · · · (2d − 2d−2)

< 3(2d)d−3.

On the other hand,
(k−1

r

)

≥ (k−1
r )r. So it suffices to show

3(2d)d−3 ≤ (
k − 1

r
)r.

Equivalently,

(3 · 2d
2−3d)1/r ≤

k − 1

r
.

This inequality can be shown as follows: the left hand side satisfies

(3 · 2d
2−3d)1/r ≤ (2d

2−3d+2)1/r = 22(d
2−3d+2)/(d2−d−4) < 4,

and the right hand side satisfies

k − 1

r
=

2(2d − 4)

d2 − d− 4
>= 4

2d−1 − 2

d2
> 4

2d−2

d2
≥ 4.

�

Lemma 5.4. (k − r)!/2 does not divide t.

Proof. For any integer i, denote by v2(i) the largest integer v such that 2v|i. For a nonzero rational
number i/j, define v2(i/j) = v2(i)− v2(j). Then it suffices to show that

v2
(

(k − r)!/(2t)
)

> 0.

Indeed,

v2((k − r)!/(2t)) = v2

((k − r)!2d(2d − 1)(2d − 21) · · · (2d − 2d−1)

2 · 2d(2d − 1) · · · 5 · 4

)

= v2

(

(2d − 1)(2d − 21) · · · (2d − 2d−1)/2
)

+ v2

( (2d − 3− r)!

(2d − 1) · · · 5 · 4

)

= 0 + 1 + 2 + · · ·+ (d− 1)− 1− v2

((2d − 1) · · · 5 · 4

(2d − 3− r)!

)

= d(d− 1)/2 − v2

(

(2d − 1)(2d − 2) · · · (2d − 2− r)
)

= (r + 2)− v2

(

(r + 2)!
)

(because v2(2
d − i) = v2(i) for 1 ≤ i ≤ 2d − 1)

= (r + 2)−

∞
∑

i=1

⌊r + 2

2i
⌋

> (r + 2)−

∞
∑

i=1

r + 2

2i
= (r + 2)− (r + 2) = 0.

Therefore, (k − r)!/2 does not divide t. �

Finally, we can now prove that H = AGL(d, 2) is impossible. Thanks to Lemma 5.3, we only
need to consider the three cases (i)–(iii) in Theorem 4.2. Since a = k− 1 = 2d − 3 ≥ 28 − 3 > 8, we
do not need to consider Case (iii).

14



For Case (ii): first note that r + 1 < k/8 implies r+1
k−1−r < 1/2. Then

|Sa : T | = (k − 1)!/t <

(

k − 1

r

)

=
r + 1

k − 1− r

(

k − 1

r + 1

)

< 1/2

(

k − 1

(k − 1)/2

)

so this case is also impossible.
For Case (i): there exists some ∆ ⊆ {1, . . . , k − 1} such that |∆| < r and A(∆) ≤ T . Since

A(∆)
∼= Ak−1−|∆|, and |Ak−1−|∆|| = (k − 1 − |∆|)!/2, it follows that (k − 1 − |∆|)!/2 divides t,

therefore (k − r)!/2 | t, contradicting Lemma 5.4. So this case is also impossible.
This completes the proof.
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