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Abstract

The domination number of a graph G, denoted by γ(G), is the minimum

cardinality of a dominating set of G. A vertex of a graph is called critical if its

deletion decreases the domination number, and a graph is called critical if its all

vertices are critical. A graph G is called weak bicritical if for every non-critical

vertex x ∈ V (G), G − x is a critical graph with γ(G − x) = γ(G). In this

paper, we characterize the connected weak bicritical graphs G whose diameter

is exactly 2γ(G)− 2. This is a generalization of some known results concerning

the diameter of graphs with a domination-criticality.

Key words and phrases. weak bicritical graph, critical graph, bicritical graph, diam-

eter
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1 Introduction

All graphs considered in this paper are finite, simple, and undirected.

Let G be a graph. We let V (G) and E(G) denote the vertex set and the edge

set of G, respectively. For x ∈ V (G), we let NG(x) and NG[x] denote the open

neighborhood and the closed neighborhood of x, respectively; thus NG(x) = {y ∈

V (G) : xy ∈ E(G)} and NG[x] = NG(x) ∪ {x}. For x, y ∈ V (G), we let dG(x, y)

denote the distance between x and y in G. For x ∈ V (G) and a non-negative integer

i, let N
(i)
G (x) = {y ∈ V (G) : dG(x, y) = i}; thusN

(0)
G (x) = {x} andN

(1)
G (x) = NG(x).

The diameter of G, denoted by diam(G), is defined to be the maximum of dG(x, y)
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as x, y range over V (G). A vertex x ∈ V (G) is diametrical if max{dG(x, y) : y ∈

V (G)} = diam(G).

We let G denote the complement of G. For two graphs H1 and H2, we let H1∪H2

denote the union of H1 and H2. For a graph H and a non-negative integer s, sH

denote the disjoint union of s copies of H. We let Kn and Pn denote the complete

graph and the path of order n, respectively.

For two subsets X,Y of V (G), we say that X dominates Y if Y ⊆
⋃

x∈X NG[x]. A

subset of V (G) which dominates V (G) is called a dominating set of G. The minimum

cardinality of a dominating set of G, denoted by γ(G), is called the domination

number of G. A dominating set of G with the cardinality γ(G) is called a γ-set of

G.

For terms and symbols not defined here, we refer the reader to [7].

1.1 Motivations

For a given graph G, we can divide the set V (G) into the following three subsets;

V 0(G) = {x ∈ V (G) : γ(G− x) = γ(G)},

V +(G) = {x ∈ V (G) : γ(G− x) > γ(G)}, and

V −(G) = {x ∈ V (G) : γ(G− x) < γ(G)}.

A vertex in V −(G) is said to be critical. A graph G is critical if every vertex of

G is critical (i.e., V (G) = V −(G)), and G is k-critical if G is critical and γ(G) =

k. Many researchers have studied critical vertices or critical graphs (for example,

see [1, 2, 11, 12, 13]). Among them, we focus on the following theorem which was

conjectured by Brigham, Chinn and Dutton [4].

Theorem A (Fulman, Hanson and MacGillivray [8]) Let k ≥ 2 be an inte-

ger, and let G be a connected k-critical graph. Then diam(G) ≤ 2k − 2.

After that, Ao [3] characterized the connected k-critical graphsG with diam(G) =

2k − 2 (see Theorem E in Subsection 1.2).

Now we introduce other criticality for the domination. A graph G is bicritical

if γ(G − {x, y}) < γ(G) for any pair of distinct vertices x, y ∈ V (G), and G is k-

bicritical if G is bicritical and γ(G) = k. It is known that for k ≤ 2, the order of a

k-bicritical graph is at most 3 (see [5]), and hence we are interested in k-bicritical

graphs with k ≥ 3. Brigham, Haynes, Henning and Rall [5] gave a conjecture

concerning the diameter of bicritical graphs: For k ≥ 3, every connected k-bicritical

graph G satisfies diam(G) ≤ k − 1. However, the conjecture was disproved by the

following theorem.
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Theorem B (Furuya [9, 10]) Let k ≥ 3 be an integer. Then there exist infinitely

many connected k-bicritical graphs G with

diam(G) =



































3 (k = 3)

6 (k = 5)

3k−1
2 (k is odd and k ≥ 7)

3k−2
2 (k is even).

Thus one might be interested in an upper bound of the diameter of bicritical

graphs. In [10], the author proved the following theorem. (However, it is open to

find a sharp upper bound of the diameter of bicritical graphs.)

Theorem C (Furuya [10]) Let k ≥ 3 be an integer, and let G be a connected

k-bicritical graph. Then diam(G) ≤ 2k − 3.

For convenience, let C and CB denote the family of connected critical graphs and

the family of connected bicritical graphs, respectively. Here we compare Theorem A

with Theorem C. Although the inequalities in the theorems are similar, the two

theorems are essentially different because C is different from CB:

• We can easily check that the graphs in Fk defined in Subsection 1.2 are critical

and not bicritical.

• It is known that there exist infinitely many connected critical and bicritical graphs

(see [5, 9]), and Brigham et al. [5] proved that a graph obtained from a critical

and bicritical graph by expanding one vertex is bicritical and not critical. On the

other hand, there exist infinitely many connected 4-bicritical graphs which is not

critical and not obtained by the above operation (see the graph Ls in [10]).

In particular, C and CB seems to be remotely related.

To treat the criticality and the bicriticality simultaneously, a new critical concept

was defined in [10]. A graph G is weak bicritical if V +(G) = ∅ and G− x is critical

for every x ∈ V 0(G), and G is weak k-bicritical if G is weak bicritical and γ(G) =

k. Since all critical graphs and all bicritical graphs are weak bicritical, the weak

bicriticality is a unification of the criticality and the bicriticality. In [10], the author

showed the following theorem which is a generalization of Theorem A.

Theorem D (Furuya [10]) Let k ≥ 2 be an integer, and let G be a connected

weak k-bicritical graph. Then diam(G) ≤ 2k − 2.

However, Theorem C cannot directly follow from Theorem D. In this paper, our

main aim is to give a common generalization of Theorems A and C by characterizing

the connected weak k-bicritical graphs G with diam(G) = 2k − 2.
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1.2 Main result

Before we state our main result, we introduce Ao’s characterization.

Let k ≥ 2 be an integer. We define the family Fk of graphs as follows: Let

mi ≥ 2 (1 ≤ i ≤ k − 1) be integers. For each 1 ≤ i ≤ k − 1, let Gi be a graph

isomorphic to miK2 (i.e., Gi is a graph obtained from the complete graph of order

2mi by deleting a perfect matching), and take two vertices ui, vi ∈ V (Gi) with

uivi /∈ E(Gi). Let G(m1, . . . ,mk−1) be the graph obtained from G1, . . . , Gk−1 by

identifying vi and ui+1 for each 1 ≤ i ≤ k − 2, and set

Fk = {G(m1, . . . ,mk−1) : mi ≥ 2, 1 ≤ i ≤ k − 1}.

By the definition of Fk, we see the following observation.

Observation 1.1 Let k ≥ 3, k1 ≥ 2 and k2 ≥ 2 be integers with k1 + k2 − 1 = k.

Then a graph G belongs to Fk if and only if G is obtained from two graphs H1 ∈ Fk1

and H2 ∈ Fk2 by identifying diametrical vertices ui of Hi (i ∈ {1, 2}).

Ao [3] proved the following theorem. (By using lemmas for our main result, the

following theorem can be easily proved. Hence we will give its proof in Section 4).

Theorem E (Ao [3]) Let k ≥ 2 be an integer, and let G be a connected k-critical

graph. Then diam(G) ≤ 2k − 2, with the equality if and only if G ∈ Fk.

Now we recursively define the family F
∗
k (k ≥ 2) of graphs and the identifiable

vertices of graphs in F
∗
k. Let

F
∗
2 = {(m+ 1)K2, mK2 ∪K3, mK2 ∪ P3 : m ≥ 1}.

Note that F
∗
2 is equal to the family of connected weak 2-bicritical graphs (see

Lemma 1.5 in Subsection 1.3). For each G ∈ F
∗
2, a vertex x ∈ V (G) is identifiable if

x ∈ V −(G). Note that if G = (m+ 1)K2, then all vertices of G are identifiable; if

G = mK2 ∪K3, then G has exactly three non-identifiable vertices; if G = mK2 ∪ P3,

then G has exactly two non-identifiable vertices. We assume that k ≥ 3, and for

2 ≤ k′ ≤ k− 1, the family F
∗
k′ and the identifiable vertices of graphs in F

∗
k′ has been

defined. Let F
′
k be the family of graphs obtained from two graphs H1 ∈ Fk1 and

H2 ∈ F
∗
k2

with k1 ≥ 2, k2 ≥ 2 and k1 + k2 − 1 = k by identifying a diametrical

vertex of H1 and an identifiable vertex of H2. Let mi ≥ 2 (i ∈ {1, 2}), and let u be

the unique cut vertex of the graph G(m1,m2) (∈ F3). Let G
1(m1,m2) be the graph

obtained from G(m1,m2) by adding a new vertex u′ and joining u′ to all vertices in

NG(m1,m2)(u), and let G2(m1,m2) = G1(m1,m2) + uu′. Let

F
′′
3 = {G1(m1,m2), G2(m1,m2) : mi ≥ 2, i ∈ {1, 2}},
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and let F′′
k = ∅ for k ≥ 4. Then by tedious argument, we see that every graph in F

′′
3 is

weak 3-bicritical (but we omit detail). Let F∗
k = F

′
k ∪F

′′
k for k ≥ 3. For each G ∈ F

∗
k,

a vertex x ∈ V (G) is identifiable if x ∈ V −(G) and x is a diametrical vertex of G.

By induction and Lemma 1.6(ii) in Subsection 1.3, we see that every graph G ∈ F
∗
k

has at least one identifiable vertex, and hence F
∗
k is well-defined. Furthermore, by

the definition of Fk and F
∗
k and Observation 1.1, we also see that Fk ⊆ F

∗
k and the

diameter of graphs in F
∗
k is exactly 2k − 2.

Our main result is the following.

Theorem 1.2 Let k ≥ 2 be an integer, and let G be a connected weak k-bicritical

graph. Then diam(G) ≤ 2k − 2, with the equality if and only if G ∈ F
∗
k.

Theorem 1.2 clearly leads to Theorems A and D. Furthermore, it is not hard

to check that no graph in F
∗
k is bicritical and no graph in F

∗
k − Fk is critical, and

so Theorem 1.2 leads to Theorems C and E. Therefore, Theorem 1.2 is a common

generalization of some known results.

1.3 Preliminaries

In this subsection, we enumerate some fundamental or preliminary results.

The following has been known property which will be used in our argument.

Lemma 1.3 Let G be a graph, and let u, v ∈ V (G). If NG[u] ⊆ NG[v], then v is

not critical.

In [10], the author showed that the minimum degree of a connected weak bicritical

graph of order at least 3 is at least 2. Now we let G be a disconnected weak bicritical

graph. Then we can verify that each component of G is weak bicritical. (Indeed, all

components of G are critical with at most one exception.) Thus the following lemma

holds.

Lemma 1.4 Let G be a weak bicritical graph, and let G1 be a component of G with

|V (G1)| ≥ 3. Then the minimum degree of G1 is at least 2.

Since the weak 1-bicritical graphs are only K1 and K2, we are interested in weak

k-bicritical graphs for k ≥ 2. The following lemma gives a characterization of weak

2-bicritical graphs (or 2-critical graphs).

Lemma 1.5 (Furuya [10]) A graph G is weak 2-bicritical if and only if

G ∈ {mK2, mK2 ∪K3, (m− 1)K2 ∪ P3 : m ≥ 1}.

In particular, a graph G is 2-critical if and only if G ∈ {mK2 : m ≥ 1}.
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We next focus on the coalescence of graphs. Let H1 and H2 be two vertex-

disjoint graphs, and let x1 ∈ V (H1) and x2 ∈ V (H2). Under this notation, we let

(H1•H2)(x1, x2;x) denote the graph obtained fromH1 andH2 by identifying vertices

x1 and x2 into a vertex labeled x. We call (H1 •H2)(x1, x2;x) the coalescence of H1

and H2 via x1 and x2.

Lemma 1.6 ([4, 5, 6, 9]) Let H1 and H2 be graphs, and for each i ∈ {1, 2}, let

xi be a non-isolated vertex of Hi. Let G = (H1 •H2)(x1, x2;x). Then the following

hold.

(i) We have γ(H1) + γ(H2)− 1 ≤ γ(G) ≤ γ(H1) + γ(H2). If xi is a critical vertex

of Hi for some i ∈ {1, 2}, then γ(G) = γ(H1) + γ(H2)− 1.

(ii) If xi is a critical vertex of Hi for each i ∈ {1, 2}, then

V −(G) = (V −(H1)− {x1}) ∪ (V −(H2)− {x2}) ∪ {x}.

In particular, the graph G is critical if and only if both H1 and H2 are critical.

2 Coalescences

In this section, we prove the following theorem.

Theorem 2.1 Let H1 and H2 be graphs, and for each i ∈ {1, 2}, let xi be a non-

isolated vertex of Hi. Let G = (H1 •H2)(x1, x2;x). Then G is weak bicritical if and

only if for some i ∈ {1, 2},

(1) Hi is critical,

(2) H3−i is weak bicritical, and

(3) x3−i is a critical vertex of H3−i.

Furthermore, if G is weak bicritical, then γ(G) = γ(H1) + γ(H2)− 1.

Proof. We first assume that G is weak bicritical, and show that γ(G) = γ(H1) +

γ(H2)− 1 and (1)–(3) hold.

Claim 2.1 The vertex x belongs to V −(G).

Proof. Suppose that x /∈ V −(G). Then x ∈ V 0(G) and G−x is critical. Since G−x

is the union of H1−x1 and H2−x2, γ(G) = γ(H1 −x1)+ γ(H2 −x2) and Hi−xi is

critical for each i ∈ {1, 2}. For i ∈ {1, 2}, let yi ∈ NHi
(xi), and let Si be a γ-set of

Hi−{xi, yi}. Then γ(Hi−{xi, yi}) ≤ γ(Hi−xi)−1. Since S1∪S2∪{x} is a dominating
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set of G, we have γ(H1−{x1, y1})+γ(H2−{x2, y2})+1 = |S1|+ |S2|+ |{x}| ≥ γ(G).

Consequently,

γ(G) = γ(G− x)

= γ(H1 − x1) + γ(H2 − x2)

≥ γ(H1 − {x1, y1}) + γ(H2 − {x2, y2}) + 2

≥ γ(G) + 1,

which is a contradiction. �

Claim 2.2 For i ∈ {1, 2}, xi is a critical vertex of Hi.

Proof. Let S be a γ-set of G − x. Then by Claim 2.1 and Lemma 1.6(i), |S| ≤

γ(G) − 1 ≤ γ(H1) + γ(H2) − 1. Since {S ∩ V (H1), S ∩ V (H2)} is a partition of S,

we have |S ∩ V (Hi)| ≤ γ(Hi)− 1 for some i ∈ {1, 2}. Without loss of generality, we

may assume that |S∩V (H1)| ≤ γ(H1)−1. Since removing a vertex can decrease the

domination number at most by one and S ∩ V (H1) is a dominating set of H1 − x1,

this implies that γ(H1−x1) = |S ∩V (H1)| = γ(H1)− 1 and x1 is a critical vertex of

H1. Again by Lemma 1.6(i), γ(G) = γ(H1)+γ(H2)−1, and hence |S| ≤ γ(G)−1 =

γ(H1) + γ(H2)− 2. Consequently

|S ∩ V (H2)| = |S| − |S ∩ V (H1)|

≤ (γ(H1) + γ(H2)− 2)− (γ(H1)− 1)

= γ(H2)− 1.

Since S∩V (H2) is a dominating set of H2−x2, γ(H2−x2) ≤ |S∩V (H2)| ≤ γ(H2)−1

and x2 is a critical vertex of H2. �

By Lemma 1.6 and Claim 2.2,

γ(G) = γ(H1) + γ(H2)− 1 (2.1)

and

V −(G) = (V −(H1)− {x1}) ∪ (V −(H2)− {x2}) ∪ {x}. (2.2)

If H1 and H2 are critical, then (1)–(3) hold. Thus, without loss of generality, we may

assume that H1 is not critical (i.e., V (H1)−V −(H1) 6= ∅). Let y ∈ V (H1)−V −(H1).

By (2.2), y /∈ V −(G), and hence G− y is critical.

Claim 2.3 We have y ∈ V 0(H1).

7



Proof. Note that γ(G− {x, y}) < γ(G), and γ(H2 − x2) = γ(H2)− 1 because x2 is

a critical vertex of H2 and removing a vertex can decrease the domination number

at most by one. Since G − {x, y} is the union of H1 − {x1, y} and H2 − x2, this

together with (2.1) leads to

γ(H1) + γ(H2)− 2 = γ(G) − 1

≥ γ(G− {x, y})

= γ(H1 − {x1, y}) + γ(H2 − x2)

= γ(H1 − {x1, y}) + γ(H2)− 1,

and so γ(H1 − {x1, y}) ≤ γ(H1)− 1. Since S1 ∪ {x1} is a dominating set of H1 − y

for a γ-set S1 of H1 − {x1, y}, we have

γ(H1 − y) ≤ γ(H1 − {x1, y}) + 1 ≤ γ(H1).

Since y /∈ V −(H1), the desired conclusion holds. �

Since y is an arbitrary vertex in V (H1) − V −(H1), it suffices to show that both

H1 − y and H2 are critical. Note that y 6= x1. Now we show that

x1 is a non-isolated vertex of H1 − y. (2.3)

By way of contradiction, we suppose that x1 is an isolated vertex of H1−y. Since x1

is a non-isolated vertex of H1, NH1
(x1) = {y}. Since G is weak bicritical and x2 is a

non-isolated vertex ofH2, the component of G containing y has at least three vertices.

This together with Lemma 1.4 implies NH1
(y)− {x1} 6= ∅. Let y′ ∈ NH1

(y)− {x1}.

Since G − y is critical, γ(G − {y, y′}) ≤ γ(G) − 1 = γ(H1) + γ(H2) − 2. Let

S be a γ-set of G − {y, y′}. If x ∈ S, let S′ = ((S − {x}) ∩ V (H2)) ∪ {x2}; if

x /∈ S, let S′ = S ∩ V (H2). In either case, S′ is a dominating set of H2, and hence

|(S − {x}) ∩ V (H1)| = |S| − |S′| ≤ (γ(H1) + γ(H2)− 2)− γ(H2) = γ(H1)− 2. Since

(S−{x})∩V (H1) is a dominating set of H1−{x, y, y′}, S′′ = ((S−{x})∩V (H1))∪{y}

is a dominating set of H1 with |S′′| ≤ γ(H1) − 1, which is a contradiction. Thus

(2.3) holds.

Recall that G− y is critical. Since G− y = ((H1 − y) •H2)(x1, x2;x), it follows

from Lemma 1.6(ii) and (2.3) that H1 − y and H2 are critical.

We next assume that (1)–(3) hold, and show that G is weak bicritical. We may

assume that i = 1 (i.e., H1 is critical, H2 is weak bicritical, and x2 is a critical vertex

of H2). By Lemma 1.6(i), γ(G) = γ(H1) + γ(H2) − 1. If G is critical, then the

desired conclusion holds. Thus V (G) − V −(G) 6= ∅. Let y ∈ V (G) − V −(G). By

Lemma 1.6(ii), y ∈ V 0(H2), and hence H2 − y is critical.
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Claim 2.4 We have y ∈ V 0(G).

Proof. Let S1 be a γ-set of H1, and let S2 be a γ-set of H2−{x2, y}. If x1 ∈ S1, let

S = (S1−{x1})∪S2∪{x}; if x1 6∈ S1, let S = S1∪S2. In either case, S is a dominating

set of G − y. Since |S| = γ(H1) + γ(H2 − {x2, y}) ≤ γ(H1) + (γ(H2) − 1) = γ(G),

we have γ(G− y) ≤ γ(G). Since y /∈ V −(G), the desired conclusion holds. �

Since y is an arbitrary vertex in V (G)− V −(G), it suffices to show that G− y is

critical. Note that y 6= x. Now we show that

x2 is a non-isolated vertex of H2 − y. (2.4)

Recall that x2 is a non-isolated vertex of H2. Furthermore, since x2 is a critical

vertex of H2, the component of H2 containing x2 is not isomorphic to K2, and hence

the component of H2 containing x2 has at least three vertices. This together with

Lemma 1.4 implies that the degree of x2 in H2 is at least 2, and so the degree of x2

in H2 − y is at least 2. Thus (2.4) holds.

Recall that bothH1 andH2−y are critical. SinceG−y = (H1•(H2−y))(x1, x2;x),

it follows from Lemma 1.6(ii) and (2.4) that G− y is critical.

This completes the proof of Theorem 2.1. �

3 Sufficient pairs

Let l ≥ 3 be an integer, and let G be a connected graph. A pair (x, j) of a vertex

x ∈ V (G) and an integer j ≥ 2 is l-sufficient if x is a diametrical vertex of G and

there exists a γ-set S of G with |S ∩ (
⋃

0≤i≤j N
(i)
G (x))| ≥ (j + l)/2.

Lemma 3.1 (Furuya [10]) Let k ≥ 3 and l ≥ 3 be integers, and let G be a con-

nected weak k-bicritical graph having an l-sufficient pair. Then diam(G) ≤ 2k−l+1.

Theorem 3.2 Let k ≥ 3 be an integer, and let G be a connected weak k-bicritical

graph. If G has a diametrical vertex x such that
⋃

1≤i≤3 N
(i)
G (x) ⊆ V −(G) and

|N
(2)
G (x)| ≥ 2, then diam(G) ≤ 2k − 3.

Proof. We show that diam(G) ≤ 3 or G has a 4-sufficient pair. By way of contra-

diction, we suppose that diam(G) ≥ 4 and G has no 4-sufficient pair. For each i ≥ 0,

let Xi = N
(i)
G (x) and Ui = X0 ∪X1 ∪ · · · ∪Xi.

Claim 3.1 If a set S ⊆ V (G) dominates NG[x] and |S ∩ U2| ≤ 1, then x is the

unique vertex of S ∩ U2.
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Proof. By the assumption of the claim, there exists a vertex z ∈ NG[x] dominating

NG[x] in G. Since NG[x] ⊆ NG[z], if z 6= x, then z ∈ N
(1)
G (x) and z is not a critical

vertex of G by Lemma 1.3, which contradicts the assumption of the theorem. �

Let w2, w
′
2 ∈ X2 be distinct vertices, and let S1 be a γ-set of G− w2. Note that

S1 ∪ {w2} is a γ-set of G. Since G has no 4-sufficient pair, |(S1 ∪ {w2}) ∩ U2| <

(2 + 4)/2 = 3, and so |S1 ∩ U2| ≤ 1. Since S1 dominates NG[x] in G, it follows

from Claim 3.1 that x is the unique vertex in S1 ∩ U2. Since G has no 4-sufficient

pair, |(S1 ∪ {w2}) ∩ U4| < (4 + 4)/2 = 4, and so |S1 ∩ U4| ≤ 2. Since |X2| ≥ 2

and S2 dominates (X2 ∪ X3) − {w2}, there exists a vertex w3 ∈ X3 dominating

(X2 ∪X3)− {w2} in G− w2.

Let S2 be a γ-set of G − w3. Note that S2 ∪ {w′
2} is a γ-set of G because

w3w
′
2 ∈ E(G). Since G has no 4-sufficient pair, |(S2 ∪ {w′

2}) ∩ U2| < (2 + 4)/2 = 3,

and so |S2∩U2| ≤ 1. Since S2 dominates NG[x] in G, it follows from Claim 3.1 that x

is the unique vertex in S2∩U2. Since G has no 4-sufficient pair, |(S2∪{w′
2})∩U4| <

(4 + 4)/2 = 4, and so |S2 ∩ U4| ≤ 2. Since S2 dominates (X2 ∪ X3) − {w3}, there

exists a vertex w′
3 ∈ X3 dominating (X2 ∪ X3) − {w3} in G − w3. Recall that w3

dominates X3 in G − w2. Thus w3w
′
3 ∈ E(G), and hence S2 is a dominating set of

G, which is a contradiction.

Consequently diam(G) ≤ 3 or G has a 4-sufficient pair. In either case, it follows

from Lemma 3.1 that the desired conclusion holds. �

4 Proof of Theorems E and 1.2

In this section, we prove Theorems E and 1.2. As we mentioned in Subsection 1.2,

Fk ⊆ F
∗
k and the diameter of graphs in F

∗
k is exactly 2k−2. By Lemma 1.5, F2 is equal

to the family of connected 2-critical graphs. Thus by induction and Lemma 1.6(ii),

we see that all graphs in Fk are k-critical, and so

if a graph G belongs to Fk, then G is k-critical and diam(G) = 2k − 2. (4.1)

Recall that every graph in F
∗
2 is weak 2-bicritical and every graph in F

′′
3 is weak

3-bicritical. This together with induction and Theorem 2.1 implies that all graphs

in F
∗
k are weak k-bicritical, and so

if a graph G belongs to F
∗
k, then G is weak k-bicritical and diam(G) = 2k − 2.

(4.2)

Proof of Theorem E. Let k and G be as in Theorem E. By (4.1), it suffices to show
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that

if diam(G) ≥ 2k − 2, then G ∈ Fk. (4.3)

We proceed by induction on k.

If k = 2, then Lemma 1.5 leads to (4.3). Thus we may assume that k ≥ 3.

Suppose that diam(G) ≥ 2k−2. Let w be a diametrical vertex of G. If |N
(2)
G (w)| ≥ 2,

then diam(G) ≤ 2k−3 by Theorem 3.2, which is a contradiction. Thus |N
(2)
G (w)| = 1.

In particular, G has a cut vertex x. Hence we can write G as G = (H1•H2)(x1, x2;x)

for two graphs H1 and H2 and vertices xi ∈ V (Hi) (i ∈ {1, 2}). For each i ∈ {1, 2},

set ki = γ(Hi). By Lemma 1.6, H1 and H2 are critical and k1 + k2 − 1 = γ(H1) +

γ(H2)− 1 = γ(G) = k. Furthermore, we have diam(G) ≤ diam(H1)+diam(H2). By

induction hypothesis, diam(Hi) ≤ 2ki − 2, with the equality if and only if Hi ∈ Fki .

Consequently, we have 2k − 2 ≤ diam(G) ≤ (2k1 − 2) + (2k2 − 2) = 2k − 2. This

implies that Hi ∈ Fki and xi is a diametrical vertex of Hi. Then by Observation 1.1,

we have G ∈ Fk.

This completes the proof of Theorem E. �

Proof of Theorem 1.2. Let k and G be as in Theorem 1.2. By (4.2), it suffices to

show that

if diam(G) ≥ 2k − 2, then G ∈ F
∗
k. (4.4)

We proceed by induction on k.

If k = 2, then Lemma 1.5 leads to (4.4). Thus we may assume that k ≥ 3.

Suppose that diam(G) ≥ 2k − 2. If G is critical, then it follows from Theorem E

that G ∈ Fk (⊆ F
∗
k), as desired. Thus we may assume that G is not critical (i.e.,

V 0(G) 6= ∅). Let w,w′ ∈ V (G) be vertices with dG(w,w
′) = diam(G).

Claim 4.1 If G has no cut vertex, then G ∈ F
∗
k.

Proof. Note that |N (2)(w)| ≥ 2. If V 0(G) ⊆ {w,w′} (i.e., V (G) − {w,w′} ⊆

V −(G)), then by Theorem 3.2, we have diam(G) ≤ 2k− 3, which is a contradiction.

Thus V 0(G) − {w,w′} 6= ∅. Let z ∈ V 0(G) − {w,w′}. Then G − z is a connected

critical graph and

diam(G− z) ≥ dG−z(w,w
′) ≥ dG(w,w

′) = diam(G) ≥ 2k − 2.

This together with Theorem E forces G− z ∈ Fk and diam(G− z) = dG−z(w,w
′) =

diam(G) = 2k − 2. By the definition of Fk, we have |N
(2)
G−z(w)| = |N

(4)
G−z(w)| = 1.

Write N
(2)
G−z(w) = {z′}. Since G has no cut vertex, the following hold:
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• k = 3,

• z is adjacent to a vertex in N
(1)
G−z(w) and a vertex in N

(3)
G (w), and

• NG(z) ⊆
⋃

1≤i≤3N
(i)
G−z(w).

Suppose that z′ is a critical vertex of G, and let S be a γ-set of G − z′. Since

NG(z) ⊆ NG[z
′] and S is not a dominating set of G, this forces zz′ /∈ E(G) and z ∈ S.

Since S dominates w, S∩NG[w] 6= ∅. In particular, |(S∪{z′})∩ (
⋃

0≤i≤2N
(i)
G (w))| ≥

3. Since S∪{z′} is a γ-set, (w, 2) is a 4-sufficient pair. This together with Lemma 3.1

implies that diam(G) ≤ 2k − 3, which is a contradiction. Thus z′ is not a critical

vertex of G (i.e., z′ ∈ V 0(G)).

Replacing the role of z and z′, we have G− z′ ∈ Fk and NG−z′(z) = N
(1)
G−z′(w) ∪

N
(3)
G−z′(w). Hence G is isomorphic to a graph in F

′′
3 (⊆ F

∗
3). �

By Claim 4.1, we may assume that G has a cut vertex x. Then we can write G

as G = (H1 •H2)(x1, x2;x) for two graphs H1 and H2 and vertices xi ∈ V (Hi) (i ∈

{1, 2}). For each i ∈ {1, 2}, set ki = γ(Hi). Having Theorem 2.1 in mind, we may

assume that H1 is critical, H2 is weak bicritical and x2 is a critical vertex of H2.

Furthermore, k1+k2−1 = γ(H1)+γ(H2)−1 = γ(G) = k. By induction hypothesis,

diam(H1) ≤ 2k1 − 2, with the equality if and only if H1 ∈ Fk1 . By Theorem E,

diam(H2) ≤ 2k2 − 2, with the equality if and only if H2 ∈ F
∗
k2
. Since diam(G) ≤

diam(H1) + diam(H2), we have 2k − 2 ≤ diam(G) ≤ (2k1 − 2) + (2k2 − 2) = 2k − 2.

This implies that H1 ∈ Fk1 , H2 ∈ F
∗
k2

and xi is a diametrical vertex of Hi. Since x2

is a critical vertex of H2, it follows from the definition of F∗
k, we have G ∈ F

∗
k.

This completes the proof of Theorem 1.2. �
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