A characterization of domination weak bicritical graphs with large diameter

Michitaka Furuya*
College of Liberal Arts and Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan

Abstract

The domination number of a graph G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. A vertex of a graph is called critical if its deletion decreases the domination number, and a graph is called critical if its all vertices are critical. A graph G is called weak bicritical if for every non-critical vertex $x \in V(G), G-x$ is a critical graph with $\gamma(G-x)=\gamma(G)$. In this paper, we characterize the connected weak bicritical graphs G whose diameter is exactly $2 \gamma(G)-2$. This is a generalization of some known results concerning the diameter of graphs with a domination-criticality.

Key words and phrases. weak bicritical graph, critical graph, bicritical graph, diameter
AMS 2010 Mathematics Subject Classification. 05C69.

1 Introduction

All graphs considered in this paper are finite, simple, and undirected.
Let G be a graph. We let $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. For $x \in V(G)$, we let $N_{G}(x)$ and $N_{G}[x]$ denote the open neighborhood and the closed neighborhood of x, respectively; thus $N_{G}(x)=\{y \in$ $V(G): x y \in E(G)\}$ and $N_{G}[x]=N_{G}(x) \cup\{x\}$. For $x, y \in V(G)$, we let $d_{G}(x, y)$ denote the distance between x and y in G. For $x \in V(G)$ and a non-negative integer i, let $N_{G}^{(i)}(x)=\left\{y \in V(G): d_{G}(x, y)=i\right\} ;$ thus $N_{G}^{(0)}(x)=\{x\}$ and $N_{G}^{(1)}(x)=N_{G}(x)$. The diameter of G, denoted by $\operatorname{diam}(G)$, is defined to be the maximum of $d_{G}(x, y)$

[^0]as x, y range over $V(G)$. A vertex $x \in V(G)$ is diametrical if $\max \left\{d_{G}(x, y): y \in\right.$ $V(G)\}=\operatorname{diam}(G)$.

We let \bar{G} denote the complement of G. For two graphs H_{1} and H_{2}, we let $H_{1} \cup H_{2}$ denote the union of H_{1} and H_{2}. For a graph H and a non-negative integer $s, s H$ denote the disjoint union of s copies of H. We let K_{n} and P_{n} denote the complete graph and the path of order n, respectively.

For two subsets X, Y of $V(G)$, we say that X dominates Y if $Y \subseteq \bigcup_{x \in X} N_{G}[x]$. A subset of $V(G)$ which dominates $V(G)$ is called a dominating set of G. The minimum cardinality of a dominating set of G, denoted by $\gamma(G)$, is called the domination number of G. A dominating set of G with the cardinality $\gamma(G)$ is called a γ-set of G.

For terms and symbols not defined here, we refer the reader to [7].

1.1 Motivations

For a given graph G, we can divide the set $V(G)$ into the following three subsets;

$$
\begin{aligned}
V^{0}(G) & =\{x \in V(G): \gamma(G-x)=\gamma(G)\}, \\
V^{+}(G) & =\{x \in V(G): \gamma(G-x)>\gamma(G)\}, \text { and } \\
V^{-}(G) & =\{x \in V(G): \gamma(G-x)<\gamma(G)\} .
\end{aligned}
$$

A vertex in $V^{-}(G)$ is said to be critical. A graph G is critical if every vertex of G is critical (i.e., $V(G)=V^{-}(G)$), and G is k-critical if G is critical and $\gamma(G)=$ k. Many researchers have studied critical vertices or critical graphs (for example, see [1. 2, (11, 12, 13]). Among them, we focus on the following theorem which was conjectured by Brigham, Chinn and Dutton [4].

Theorem A (Fulman, Hanson and MacGillivray [8]) Let $k \geq 2$ be an integer, and let G be a connected k-critical graph. Then $\operatorname{diam}(G) \leq 2 k-2$.

After that, Ao [3] characterized the connected k-critical graphs G with $\operatorname{diam}(G)=$ $2 k-2$ (see Theorem ⿴囗 in Subsection (1.2).

Now we introduce other criticality for the domination. A graph G is bicritical if $\gamma(G-\{x, y\})<\gamma(G)$ for any pair of distinct vertices $x, y \in V(G)$, and G is k bicritical if G is bicritical and $\gamma(G)=k$. It is known that for $k \leq 2$, the order of a k-bicritical graph is at most 3 (see [5]), and hence we are interested in k-bicritical graphs with $k \geq 3$. Brigham, Haynes, Henning and Rall [5 gave a conjecture concerning the diameter of bicritical graphs: For $k \geq 3$, every connected k-bicritical graph G satisfies $\operatorname{diam}(G) \leq k-1$. However, the conjecture was disproved by the following theorem.

Theorem B (Furuya [9, 10]) Let $k \geq 3$ be an integer. Then there exist infinitely many connected k-bicritical graphs G with

$$
\operatorname{diam}(G)= \begin{cases}3 & (k=3) \\ 6 & (k=5) \\ \frac{3 k-1}{2} & (k \text { is odd and } k \geq 7) \\ \frac{3 k-2}{2} & (k \text { is even }) .\end{cases}
$$

Thus one might be interested in an upper bound of the diameter of bicritical graphs. In [10, the author proved the following theorem. (However, it is open to find a sharp upper bound of the diameter of bicritical graphs.)

Theorem C (Furuya [10]) Let $k \geq 3$ be an integer, and let G be a connected k-bicritical graph. Then $\operatorname{diam}(G) \leq 2 k-3$.

For convenience, let \mathcal{C} and \mathcal{C}_{B} denote the family of connected critical graphs and the family of connected bicritical graphs, respectively. Here we compare Theorem A with Theorem [C] Although the inequalities in the theorems are similar, the two theorems are essentially different because \mathcal{C} is different from \mathfrak{C}_{B} :

- We can easily check that the graphs in \mathcal{F}_{k} defined in Subsection 1.2 are critical and not bicritical.
- It is known that there exist infinitely many connected critical and bicritical graphs (see [5, 9), and Brigham et al. [5 proved that a graph obtained from a critical and bicritical graph by expanding one vertex is bicritical and not critical. On the other hand, there exist infinitely many connected 4 -bicritical graphs which is not critical and not obtained by the above operation (see the graph L_{s} in [10]).

In particular, \mathcal{C} and \mathcal{C}_{B} seems to be remotely related.
To treat the criticality and the bicriticality simultaneously, a new critical concept was defined in [10]. A graph G is weak bicritical if $V^{+}(G)=\emptyset$ and $G-x$ is critical for every $x \in V^{0}(G)$, and G is weak k-bicritical if G is weak bicritical and $\gamma(G)=$ k. Since all critical graphs and all bicritical graphs are weak bicritical, the weak bicriticality is a unification of the criticality and the bicriticality. In [10], the author showed the following theorem which is a generalization of Theorem A

Theorem D (Furuya [10]) Let $k \geq 2$ be an integer, and let G be a connected weak k-bicritical graph. Then $\operatorname{diam}(G) \leq 2 k-2$.

However, Theorem Ccannot directly follow from Theorem D. In this paper, our main aim is to give a common generalization of Theorems and by characterizing the connected weak k-bicritical graphs G with $\operatorname{diam}(G)=2 k-2$.

1.2 Main result

Before we state our main result, we introduce Ao's characterization.
Let $k \geq 2$ be an integer. We define the family \mathcal{F}_{k} of graphs as follows: Let $m_{i} \geq 2(1 \leq i \leq k-1)$ be integers. For each $1 \leq i \leq k-1$, let G_{i} be a graph isomorphic to $\overline{m_{i} K_{2}}$ (i.e., G_{i} is a graph obtained from the complete graph of order $2 m_{i}$ by deleting a perfect matching), and take two vertices $u_{i}, v_{i} \in V\left(G_{i}\right)$ with $u_{i} v_{i} \notin E\left(G_{i}\right)$. Let $G\left(m_{1}, \ldots, m_{k-1}\right)$ be the graph obtained from G_{1}, \ldots, G_{k-1} by identifying v_{i} and u_{i+1} for each $1 \leq i \leq k-2$, and set

$$
\mathcal{F}_{k}=\left\{G\left(m_{1}, \ldots, m_{k-1}\right): m_{i} \geq 2,1 \leq i \leq k-1\right\} .
$$

By the definition of \mathcal{F}_{k}, we see the following observation.
Observation 1.1 Let $k \geq 3, k_{1} \geq 2$ and $k_{2} \geq 2$ be integers with $k_{1}+k_{2}-1=k$. Then a graph G belongs to \mathcal{F}_{k} if and only if G is obtained from two graphs $H_{1} \in \mathcal{F}_{k_{1}}$ and $H_{2} \in \mathcal{F}_{k_{2}}$ by identifying diametrical vertices u_{i} of $H_{i}(i \in\{1,2\})$.

Ao [3] proved the following theorem. (By using lemmas for our main result, the following theorem can be easily proved. Hence we will give its proof in Section (4).

Theorem \mathbf{E} (Ao [3]) Let $k \geq 2$ be an integer, and let G be a connected k-critical graph. Then $\operatorname{diam}(G) \leq 2 k-2$, with the equality if and only if $G \in \mathcal{F}_{k}$.

Now we recursively define the family $\mathcal{F}_{k}^{*}(k \geq 2)$ of graphs and the identifiable vertices of graphs in \mathcal{F}_{k}^{*}. Let

$$
\mathcal{F}_{2}^{*}=\left\{\overline{(m+1) K_{2}}, \overline{m K_{2} \cup K_{3}}, \overline{m K_{2} \cup P_{3}}: m \geq 1\right\} .
$$

Note that \mathcal{F}_{2}^{*} is equal to the family of connected weak 2-bicritical graphs (see Lemma 1.5) in Subsection (1.3). For each $G \in \mathcal{F}_{2}^{*}$, a vertex $x \in V(G)$ is identifiable if $x \in V^{-}(G)$. Note that if $G=\overline{(m+1) K_{2}}$, then all vertices of G are identifiable; if $G=\overline{m K_{2} \cup K_{3}}$, then G has exactly three non-identifiable vertices; if $G=\overline{m K_{2} \cup P_{3}}$, then G has exactly two non-identifiable vertices. We assume that $k \geq 3$, and for $2 \leq k^{\prime} \leq k-1$, the family $\mathcal{F}_{k^{\prime}}^{*}$ and the identifiable vertices of graphs in $\mathcal{F}_{k^{\prime}}^{*}$ has been defined. Let \mathcal{F}_{k}^{\prime} be the family of graphs obtained from two graphs $H_{1} \in \mathcal{F}_{k_{1}}$ and $H_{2} \in \mathcal{F}_{k_{2}}^{*}$ with $k_{1} \geq 2, k_{2} \geq 2$ and $k_{1}+k_{2}-1=k$ by identifying a diametrical vertex of H_{1} and an identifiable vertex of H_{2}. Let $m_{i} \geq 2(i \in\{1,2\})$, and let u be the unique cut vertex of the graph $G\left(m_{1}, m_{2}\right)\left(\in \mathcal{F}_{3}\right)$. Let $G^{1}\left(m_{1}, m_{2}\right)$ be the graph obtained from $G\left(m_{1}, m_{2}\right)$ by adding a new vertex u^{\prime} and joining u^{\prime} to all vertices in $N_{G\left(m_{1}, m_{2}\right)}(u)$, and let $G^{2}\left(m_{1}, m_{2}\right)=G^{1}\left(m_{1}, m_{2}\right)+u u^{\prime}$. Let

$$
\mathcal{F}_{3}^{\prime \prime}=\left\{G^{1}\left(m_{1}, m_{2}\right), G^{2}\left(m_{1}, m_{2}\right): m_{i} \geq 2, i \in\{1,2\}\right\},
$$

and let $\mathcal{F}_{k}^{\prime \prime}=\emptyset$ for $k \geq 4$. Then by tedious argument, we see that every graph in $\mathcal{F}_{3}^{\prime \prime}$ is weak 3-bicritical (but we omit detail). Let $\mathcal{F}_{k}^{*}=\mathcal{F}_{k}^{\prime} \cup \mathcal{F}_{k}^{\prime \prime}$ for $k \geq 3$. For each $G \in \mathcal{F}_{k}^{*}$, a vertex $x \in V(G)$ is identifiable if $x \in V^{-}(G)$ and x is a diametrical vertex of G. By induction and Lemma 1.6(ii) in Subsection 1.3, we see that every graph $G \in \mathcal{F}_{k}^{*}$ has at least one identifiable vertex, and hence \mathcal{F}_{k}^{*} is well-defined. Furthermore, by the definition of \mathcal{F}_{k} and \mathcal{F}_{k}^{*} and Observation 1.1, we also see that $\mathcal{F}_{k} \subseteq \mathcal{F}_{k}^{*}$ and the diameter of graphs in \mathcal{F}_{k}^{*} is exactly $2 k-2$.

Our main result is the following.

Theorem 1.2 Let $k \geq 2$ be an integer, and let G be a connected weak k-bicritical graph. Then $\operatorname{diam}(G) \leq 2 k-2$, with the equality if and only if $G \in \mathcal{F}_{k}^{*}$.

Theorem 1.2 clearly leads to Theorems A and D. Furthermore, it is not hard to check that no graph in \mathcal{F}_{k}^{*} is bicritical and no graph in $\mathcal{F}_{k}^{*}-\mathcal{F}_{k}$ is critical, and so Theorem 1.2 leads to Theorems C and E. Therefore, Theorem 1.2 is a common generalization of some known results.

1.3 Preliminaries

In this subsection, we enumerate some fundamental or preliminary results.
The following has been known property which will be used in our argument.

Lemma 1.3 Let G be a graph, and let $u, v \in V(G)$. If $N_{G}[u] \subseteq N_{G}[v]$, then v is not critical.

In [10], the author showed that the minimum degree of a connected weak bicritical graph of order at least 3 is at least 2 . Now we let G be a disconnected weak bicritical graph. Then we can verify that each component of G is weak bicritical. (Indeed, all components of G are critical with at most one exception.) Thus the following lemma holds.

Lemma 1.4 Let G be a weak bicritical graph, and let G_{1} be a component of G with $\left|V\left(G_{1}\right)\right| \geq 3$. Then the minimum degree of G_{1} is at least 2 .

Since the weak 1-bicritical graphs are only K_{1} and K_{2}, we are interested in weak k-bicritical graphs for $k \geq 2$. The following lemma gives a characterization of weak 2-bicritical graphs (or 2-critical graphs).

Lemma 1.5 (Furuya [10]) A graph G is weak 2-bicritical if and only if

$$
G \in\left\{\overline{m K_{2}}, \overline{m K_{2} \cup K_{3}}, \overline{(m-1) K_{2} \cup P_{3}}: m \geq 1\right\}
$$

In particular, a graph G is 2-critical if and only if $G \in\left\{\overline{m K_{2}}: m \geq 1\right\}$.

We next focus on the coalescence of graphs. Let H_{1} and H_{2} be two vertexdisjoint graphs, and let $x_{1} \in V\left(H_{1}\right)$ and $x_{2} \in V\left(H_{2}\right)$. Under this notation, we let $\left(H_{1} \bullet H_{2}\right)\left(x_{1}, x_{2} ; x\right)$ denote the graph obtained from H_{1} and H_{2} by identifying vertices x_{1} and x_{2} into a vertex labeled x. We call $\left(H_{1} \bullet H_{2}\right)\left(x_{1}, x_{2} ; x\right)$ the coalescence of H_{1} and H_{2} via x_{1} and x_{2}.

Lemma 1.6 ([4, [5, 6, 9]) Let H_{1} and H_{2} be graphs, and for each $i \in\{1,2\}$, let x_{i} be a non-isolated vertex of H_{i}. Let $G=\left(H_{1} \bullet H_{2}\right)\left(x_{1}, x_{2} ; x\right)$. Then the following hold.
(i) We have $\gamma\left(H_{1}\right)+\gamma\left(H_{2}\right)-1 \leq \gamma(G) \leq \gamma\left(H_{1}\right)+\gamma\left(H_{2}\right)$. If x_{i} is a critical vertex of H_{i} for some $i \in\{1,2\}$, then $\gamma(G)=\gamma\left(H_{1}\right)+\gamma\left(H_{2}\right)-1$.
(ii) If x_{i} is a critical vertex of H_{i} for each $i \in\{1,2\}$, then

$$
V^{-}(G)=\left(V^{-}\left(H_{1}\right)-\left\{x_{1}\right\}\right) \cup\left(V^{-}\left(H_{2}\right)-\left\{x_{2}\right\}\right) \cup\{x\} .
$$

In particular, the graph G is critical if and only if both H_{1} and H_{2} are critical.

2 Coalescences

In this section, we prove the following theorem.

Theorem 2.1 Let H_{1} and H_{2} be graphs, and for each $i \in\{1,2\}$, let x_{i} be a nonisolated vertex of H_{i}. Let $G=\left(H_{1} \bullet H_{2}\right)\left(x_{1}, x_{2} ; x\right)$. Then G is weak bicritical if and only if for some $i \in\{1,2\}$,
(1) H_{i} is critical,
(2) H_{3-i} is weak bicritical, and
(3) x_{3-i} is a critical vertex of H_{3-i}.

Furthermore, if G is weak bicritical, then $\gamma(G)=\gamma\left(H_{1}\right)+\gamma\left(H_{2}\right)-1$.
Proof. We first assume that G is weak bicritical, and show that $\gamma(G)=\gamma\left(H_{1}\right)+$ $\gamma\left(H_{2}\right)-1$ and (1)-(3) hold.

Claim 2.1 The vertex x belongs to $V^{-}(G)$.
Proof. Suppose that $x \notin V^{-}(G)$. Then $x \in V^{0}(G)$ and $G-x$ is critical. Since $G-x$ is the union of $H_{1}-x_{1}$ and $H_{2}-x_{2}, \gamma(G)=\gamma\left(H_{1}-x_{1}\right)+\gamma\left(H_{2}-x_{2}\right)$ and $H_{i}-x_{i}$ is critical for each $i \in\{1,2\}$. For $i \in\{1,2\}$, let $y_{i} \in N_{H_{i}}\left(x_{i}\right)$, and let S_{i} be a γ-set of $H_{i}-\left\{x_{i}, y_{i}\right\}$. Then $\gamma\left(H_{i}-\left\{x_{i}, y_{i}\right\}\right) \leq \gamma\left(H_{i}-x_{i}\right)-1$. Since $S_{1} \cup S_{2} \cup\{x\}$ is a dominating
set of G, we have $\gamma\left(H_{1}-\left\{x_{1}, y_{1}\right\}\right)+\gamma\left(H_{2}-\left\{x_{2}, y_{2}\right\}\right)+1=\left|S_{1}\right|+\left|S_{2}\right|+|\{x\}| \geq \gamma(G)$. Consequently,

$$
\begin{aligned}
\gamma(G) & =\gamma(G-x) \\
& =\gamma\left(H_{1}-x_{1}\right)+\gamma\left(H_{2}-x_{2}\right) \\
& \geq \gamma\left(H_{1}-\left\{x_{1}, y_{1}\right\}\right)+\gamma\left(H_{2}-\left\{x_{2}, y_{2}\right\}\right)+2 \\
& \geq \gamma(G)+1,
\end{aligned}
$$

which is a contradiction.

Claim 2.2 For $i \in\{1,2\}, x_{i}$ is a critical vertex of H_{i}.
Proof. Let S be a γ-set of $G-x$. Then by Claim 2.1 and Lemma 1.6(i), $|S| \leq$ $\gamma(G)-1 \leq \gamma\left(H_{1}\right)+\gamma\left(H_{2}\right)-1$. Since $\left\{S \cap V\left(H_{1}\right), S \cap V\left(H_{2}\right)\right\}$ is a partition of S, we have $\left|S \cap V\left(H_{i}\right)\right| \leq \gamma\left(H_{i}\right)-1$ for some $i \in\{1,2\}$. Without loss of generality, we may assume that $\left|S \cap V\left(H_{1}\right)\right| \leq \gamma\left(H_{1}\right)-1$. Since removing a vertex can decrease the domination number at most by one and $S \cap V\left(H_{1}\right)$ is a dominating set of $H_{1}-x_{1}$, this implies that $\gamma\left(H_{1}-x_{1}\right)=\left|S \cap V\left(H_{1}\right)\right|=\gamma\left(H_{1}\right)-1$ and x_{1} is a critical vertex of H_{1}. Again by Lemma 1.6(i), $\gamma(G)=\gamma\left(H_{1}\right)+\gamma\left(H_{2}\right)-1$, and hence $|S| \leq \gamma(G)-1=$ $\gamma\left(H_{1}\right)+\gamma\left(H_{2}\right)-2$. Consequently

$$
\begin{aligned}
\left|S \cap V\left(H_{2}\right)\right| & =|S|-\left|S \cap V\left(H_{1}\right)\right| \\
& \leq\left(\gamma\left(H_{1}\right)+\gamma\left(H_{2}\right)-2\right)-\left(\gamma\left(H_{1}\right)-1\right) \\
& =\gamma\left(H_{2}\right)-1 .
\end{aligned}
$$

Since $S \cap V\left(H_{2}\right)$ is a dominating set of $H_{2}-x_{2}, \gamma\left(H_{2}-x_{2}\right) \leq\left|S \cap V\left(H_{2}\right)\right| \leq \gamma\left(H_{2}\right)-1$ and x_{2} is a critical vertex of H_{2}.

By Lemma 1.6 and Claim 2.2

$$
\begin{equation*}
\gamma(G)=\gamma\left(H_{1}\right)+\gamma\left(H_{2}\right)-1 \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
V^{-}(G)=\left(V^{-}\left(H_{1}\right)-\left\{x_{1}\right\}\right) \cup\left(V^{-}\left(H_{2}\right)-\left\{x_{2}\right\}\right) \cup\{x\} . \tag{2.2}
\end{equation*}
$$

If H_{1} and H_{2} are critical, then (1)-(3) hold. Thus, without loss of generality, we may assume that H_{1} is not critical (i.e., $V\left(H_{1}\right)-V^{-}\left(H_{1}\right) \neq \emptyset$). Let $y \in V\left(H_{1}\right)-V^{-}\left(H_{1}\right)$. By (2.2), $y \notin V^{-}(G)$, and hence $G-y$ is critical.

Claim 2.3 We have $y \in V^{0}\left(H_{1}\right)$.

Proof. Note that $\gamma(G-\{x, y\})<\gamma(G)$, and $\gamma\left(H_{2}-x_{2}\right)=\gamma\left(H_{2}\right)-1$ because x_{2} is a critical vertex of H_{2} and removing a vertex can decrease the domination number at most by one. Since $G-\{x, y\}$ is the union of $H_{1}-\left\{x_{1}, y\right\}$ and $H_{2}-x_{2}$, this together with (2.1) leads to

$$
\begin{aligned}
\gamma\left(H_{1}\right)+\gamma\left(H_{2}\right)-2 & =\gamma(G)-1 \\
& \geq \gamma(G-\{x, y\}) \\
& =\gamma\left(H_{1}-\left\{x_{1}, y\right\}\right)+\gamma\left(H_{2}-x_{2}\right) \\
& =\gamma\left(H_{1}-\left\{x_{1}, y\right\}\right)+\gamma\left(H_{2}\right)-1,
\end{aligned}
$$

and so $\gamma\left(H_{1}-\left\{x_{1}, y\right\}\right) \leq \gamma\left(H_{1}\right)-1$. Since $S_{1} \cup\left\{x_{1}\right\}$ is a dominating set of $H_{1}-y$ for a γ-set S_{1} of $H_{1}-\left\{x_{1}, y\right\}$, we have

$$
\gamma\left(H_{1}-y\right) \leq \gamma\left(H_{1}-\left\{x_{1}, y\right\}\right)+1 \leq \gamma\left(H_{1}\right)
$$

Since $y \notin V^{-}\left(H_{1}\right)$, the desired conclusion holds.
Since y is an arbitrary vertex in $V\left(H_{1}\right)-V^{-}\left(H_{1}\right)$, it suffices to show that both $H_{1}-y$ and H_{2} are critical. Note that $y \neq x_{1}$. Now we show that

$$
\begin{equation*}
x_{1} \text { is a non-isolated vertex of } H_{1}-y \tag{2.3}
\end{equation*}
$$

By way of contradiction, we suppose that x_{1} is an isolated vertex of $H_{1}-y$. Since x_{1} is a non-isolated vertex of $H_{1}, N_{H_{1}}\left(x_{1}\right)=\{y\}$. Since G is weak bicritical and x_{2} is a non-isolated vertex of H_{2}, the component of G containing y has at least three vertices. This together with Lemma 1.4 implies $N_{H_{1}}(y)-\left\{x_{1}\right\} \neq \emptyset$. Let $y^{\prime} \in N_{H_{1}}(y)-\left\{x_{1}\right\}$. Since $G-y$ is critical, $\gamma\left(G-\left\{y, y^{\prime}\right\}\right) \leq \gamma(G)-1=\gamma\left(H_{1}\right)+\gamma\left(H_{2}\right)-2$. Let S be a γ-set of $G-\left\{y, y^{\prime}\right\}$. If $x \in S$, let $S^{\prime}=\left((S-\{x\}) \cap V\left(H_{2}\right)\right) \cup\left\{x_{2}\right\}$; if $x \notin S$, let $S^{\prime}=S \cap V\left(H_{2}\right)$. In either case, S^{\prime} is a dominating set of H_{2}, and hence $\left|(S-\{x\}) \cap V\left(H_{1}\right)\right|=|S|-\left|S^{\prime}\right| \leq\left(\gamma\left(H_{1}\right)+\gamma\left(H_{2}\right)-2\right)-\gamma\left(H_{2}\right)=\gamma\left(H_{1}\right)-2$. Since $(S-\{x\}) \cap V\left(H_{1}\right)$ is a dominating set of $H_{1}-\left\{x, y, y^{\prime}\right\}, S^{\prime \prime}=\left((S-\{x\}) \cap V\left(H_{1}\right)\right) \cup\{y\}$ is a dominating set of H_{1} with $\left|S^{\prime \prime}\right| \leq \gamma\left(H_{1}\right)-1$, which is a contradiction. Thus (2.3) holds.

Recall that $G-y$ is critical. Since $G-y=\left(\left(H_{1}-y\right) \bullet H_{2}\right)\left(x_{1}, x_{2} ; x\right)$, it follows from Lemma 1.6(ii) and (2.3) that $H_{1}-y$ and H_{2} are critical.

We next assume that (1)-(3) hold, and show that G is weak bicritical. We may assume that $i=1$ (i.e., H_{1} is critical, H_{2} is weak bicritical, and x_{2} is a critical vertex of H_{2}). By Lemma 1.6(i), $\gamma(G)=\gamma\left(H_{1}\right)+\gamma\left(H_{2}\right)-1$. If G is critical, then the desired conclusion holds. Thus $V(G)-V^{-}(G) \neq \emptyset$. Let $y \in V(G)-V^{-}(G)$. By Lemma 1.6(ii), $y \in V^{0}\left(H_{2}\right)$, and hence $H_{2}-y$ is critical.

Claim 2.4 We have $y \in V^{0}(G)$.
Proof. Let S_{1} be a γ-set of H_{1}, and let S_{2} be a γ-set of $H_{2}-\left\{x_{2}, y\right\}$. If $x_{1} \in S_{1}$, let $S=\left(S_{1}-\left\{x_{1}\right\}\right) \cup S_{2} \cup\{x\}$; if $x_{1} \notin S_{1}$, let $S=S_{1} \cup S_{2}$. In either case, S is a dominating set of $G-y$. Since $|S|=\gamma\left(H_{1}\right)+\gamma\left(H_{2}-\left\{x_{2}, y\right\}\right) \leq \gamma\left(H_{1}\right)+\left(\gamma\left(H_{2}\right)-1\right)=\gamma(G)$, we have $\gamma(G-y) \leq \gamma(G)$. Since $y \notin V^{-}(G)$, the desired conclusion holds.

Since y is an arbitrary vertex in $V(G)-V^{-}(G)$, it suffices to show that $G-y$ is critical. Note that $y \neq x$. Now we show that
x_{2} is a non-isolated vertex of $H_{2}-y$.
Recall that x_{2} is a non-isolated vertex of H_{2}. Furthermore, since x_{2} is a critical vertex of H_{2}, the component of H_{2} containing x_{2} is not isomorphic to K_{2}, and hence the component of H_{2} containing x_{2} has at least three vertices. This together with Lemma 1.4 implies that the degree of x_{2} in H_{2} is at least 2, and so the degree of x_{2} in $H_{2}-y$ is at least 2. Thus (2.4) holds.

Recall that both H_{1} and $H_{2}-y$ are critical. Since $G-y=\left(H_{1} \bullet\left(H_{2}-y\right)\right)\left(x_{1}, x_{2} ; x\right)$, it follows from Lemma 1.6(ii) and (2.4) that $G-y$ is critical.

This completes the proof of Theorem 2.1.

3 Sufficient pairs

Let $l \geq 3$ be an integer, and let G be a connected graph. A pair (x, j) of a vertex $x \in V(G)$ and an integer $j \geq 2$ is l-sufficient if x is a diametrical vertex of G and there exists a γ-set S of G with $\left|S \cap\left(\bigcup_{0 \leq i \leq j} N_{G}^{(i)}(x)\right)\right| \geq(j+l) / 2$.

Lemma 3.1 (Furuya [10]) Let $k \geq 3$ and $l \geq 3$ be integers, and let G be a connected weak k-bicritical graph having an l-sufficient pair. Then $\operatorname{diam}(G) \leq 2 k-l+1$.

Theorem 3.2 Let $k \geq 3$ be an integer, and let G be a connected weak k-bicritical graph. If G has a diametrical vertex x such that $\bigcup_{1 \leq i \leq 3} N_{G}^{(i)}(x) \subseteq V^{-}(G)$ and $\left|N_{G}^{(2)}(x)\right| \geq 2$, then $\operatorname{diam}(G) \leq 2 k-3$.

Proof. We show that $\operatorname{diam}(G) \leq 3$ or G has a 4 -sufficient pair. By way of contradiction, we suppose that $\operatorname{diam}(G) \geq 4$ and G has no 4 -sufficient pair. For each $i \geq 0$, let $X_{i}=N_{G}^{(i)}(x)$ and $U_{i}=X_{0} \cup X_{1} \cup \cdots \cup X_{i}$.

Claim 3.1 If a set $S \subseteq V(G)$ dominates $N_{G}[x]$ and $\left|S \cap U_{2}\right| \leq 1$, then x is the unique vertex of $S \cap U_{2}$.

Proof. By the assumption of the claim, there exists a vertex $z \in N_{G}[x]$ dominating $N_{G}[x]$ in G. Since $N_{G}[x] \subseteq N_{G}[z]$, if $z \neq x$, then $z \in N_{G}^{(1)}(x)$ and z is not a critical vertex of G by Lemma 1.3, which contradicts the assumption of the theorem.

Let $w_{2}, w_{2}^{\prime} \in X_{2}$ be distinct vertices, and let S_{1} be a γ-set of $G-w_{2}$. Note that $S_{1} \cup\left\{w_{2}\right\}$ is a γ-set of G. Since G has no 4 -sufficient pair, $\left|\left(S_{1} \cup\left\{w_{2}\right\}\right) \cap U_{2}\right|<$ $(2+4) / 2=3$, and so $\left|S_{1} \cap U_{2}\right| \leq 1$. Since S_{1} dominates $N_{G}[x]$ in G, it follows from Claim 3.1 that x is the unique vertex in $S_{1} \cap U_{2}$. Since G has no 4 -sufficient pair, $\left|\left(S_{1} \cup\left\{w_{2}\right\}\right) \cap U_{4}\right|<(4+4) / 2=4$, and so $\left|S_{1} \cap U_{4}\right| \leq 2$. Since $\left|X_{2}\right| \geq 2$ and S_{2} dominates $\left(X_{2} \cup X_{3}\right)-\left\{w_{2}\right\}$, there exists a vertex $w_{3} \in X_{3}$ dominating $\left(X_{2} \cup X_{3}\right)-\left\{w_{2}\right\}$ in $G-w_{2}$.

Let S_{2} be a γ-set of $G-w_{3}$. Note that $S_{2} \cup\left\{w_{2}^{\prime}\right\}$ is a γ-set of G because $w_{3} w_{2}^{\prime} \in E(G)$. Since G has no 4 -sufficient pair, $\left|\left(S_{2} \cup\left\{w_{2}^{\prime}\right\}\right) \cap U_{2}\right|<(2+4) / 2=3$, and so $\left|S_{2} \cap U_{2}\right| \leq 1$. Since S_{2} dominates $N_{G}[x]$ in G, it follows from Claim 3.1] that x is the unique vertex in $S_{2} \cap U_{2}$. Since G has no 4 -sufficient pair, $\left|\left(S_{2} \cup\left\{w_{2}^{\prime}\right\}\right) \cap U_{4}\right|<$ $(4+4) / 2=4$, and so $\left|S_{2} \cap U_{4}\right| \leq 2$. Since S_{2} dominates $\left(X_{2} \cup X_{3}\right)-\left\{w_{3}\right\}$, there exists a vertex $w_{3}^{\prime} \in X_{3}$ dominating $\left(X_{2} \cup X_{3}\right)-\left\{w_{3}\right\}$ in $G-w_{3}$. Recall that w_{3} dominates X_{3} in $G-w_{2}$. Thus $w_{3} w_{3}^{\prime} \in E(G)$, and hence S_{2} is a dominating set of G, which is a contradiction.

Consequently $\operatorname{diam}(G) \leq 3$ or G has a 4 -sufficient pair. In either case, it follows from Lemma 3.1 that the desired conclusion holds.

4 Proof of Theorems E and 1.2

In this section, we prove Theorems 国 and 1.2, As we mentioned in Subsection 1.2, $\mathcal{F}_{k} \subseteq \mathcal{F}_{k}^{*}$ and the diameter of graphs in \mathcal{F}_{k}^{*} is exactly $2 k-2$. By Lemma 1.5, \mathcal{F}_{2} is equal to the family of connected 2 -critical graphs. Thus by induction and Lemma 1.6(ii), we see that all graphs in \mathcal{F}_{k} are k-critical, and so
if a graph G belongs to \mathcal{F}_{k}, then G is k-critical and $\operatorname{diam}(G)=2 k-2$.
Recall that every graph in \mathcal{F}_{2}^{*} is weak 2-bicritical and every graph in $\mathcal{F}_{3}^{\prime \prime}$ is weak 3-bicritical. This together with induction and Theorem 2.1 implies that all graphs in \mathcal{F}_{k}^{*} are weak k-bicritical, and so
if a graph G belongs to \mathcal{F}_{k}^{*}, then G is weak k-bicritical and $\operatorname{diam}(G)=2 k-2$.

Proof of Theorem E. Let k and G be as in Theorem E. By (4.1), it suffices to show
that

$$
\begin{equation*}
\text { if } \operatorname{diam}(G) \geq 2 k-2 \text {, then } G \in \mathcal{F}_{k} \tag{4.3}
\end{equation*}
$$

We proceed by induction on k.
If $k=2$, then Lemma (1.5 leads to (4.3). Thus we may assume that $k \geq 3$. Suppose that $\operatorname{diam}(G) \geq 2 k-2$. Let w be a diametrical vertex of G. If $\left|N_{G}^{(2)}(w)\right| \geq 2$, then $\operatorname{diam}(G) \leq 2 k-3$ by Theorem 3.2, which is a contradiction. Thus $\left|N_{G}^{(2)}(w)\right|=1$. In particular, G has a cut vertex x. Hence we can write G as $G=\left(H_{1} \bullet H_{2}\right)\left(x_{1}, x_{2} ; x\right)$ for two graphs H_{1} and H_{2} and vertices $x_{i} \in V\left(H_{i}\right)(i \in\{1,2\})$. For each $i \in\{1,2\}$, set $k_{i}=\gamma\left(H_{i}\right)$. By Lemma 1.6, H_{1} and H_{2} are critical and $k_{1}+k_{2}-1=\gamma\left(H_{1}\right)+$ $\gamma\left(H_{2}\right)-1=\gamma(G)=k$. Furthermore, we have $\operatorname{diam}(G) \leq \operatorname{diam}\left(H_{1}\right)+\operatorname{diam}\left(H_{2}\right)$. By induction hypothesis, $\operatorname{diam}\left(H_{i}\right) \leq 2 k_{i}-2$, with the equality if and only if $H_{i} \in \mathcal{F}_{k_{i}}$. Consequently, we have $2 k-2 \leq \operatorname{diam}(G) \leq\left(2 k_{1}-2\right)+\left(2 k_{2}-2\right)=2 k-2$. This implies that $H_{i} \in \mathcal{F}_{k_{i}}$ and x_{i} is a diametrical vertex of H_{i}. Then by Observation 1.1, we have $G \in \mathcal{F}_{k}$.

This completes the proof of Theorem 国,

Proof of Theorem 1.2. Let k and G be as in Theorem [1.2, By (4.2), it suffices to show that

$$
\begin{equation*}
\text { if } \operatorname{diam}(G) \geq 2 k-2, \text { then } G \in \mathcal{F}_{k}^{*} \text {. } \tag{4.4}
\end{equation*}
$$

We proceed by induction on k.
If $k=2$, then Lemma (1.5 leads to (4.4). Thus we may assume that $k \geq 3$. Suppose that $\operatorname{diam}(G) \geq 2 k-2$. If G is critical, then it follows from Theorem \mathbb{Q} that $G \in \mathcal{F}_{k}\left(\subseteq \mathcal{F}_{k}^{*}\right)$, as desired. Thus we may assume that G is not critical (i.e., $\left.V^{0}(G) \neq \emptyset\right)$. Let $w, w^{\prime} \in V(G)$ be vertices with $d_{G}\left(w, w^{\prime}\right)=\operatorname{diam}(G)$.

Claim 4.1 If G has no cut vertex, then $G \in \mathcal{F}_{k}^{*}$.
Proof. Note that $\left|N^{(2)}(w)\right| \geq 2$. If $V^{0}(G) \subseteq\left\{w, w^{\prime}\right\}$ (i.e., $V(G)-\left\{w, w^{\prime}\right\} \subseteq$ $\left.V^{-}(G)\right)$, then by Theorem 3.2, we have $\operatorname{diam}(G) \leq 2 k-3$, which is a contradiction. Thus $V^{0}(G)-\left\{w, w^{\prime}\right\} \neq \emptyset$. Let $z \in V^{0}(G)-\left\{w, w^{\prime}\right\}$. Then $G-z$ is a connected critical graph and

$$
\operatorname{diam}(G-z) \geq d_{G-z}\left(w, w^{\prime}\right) \geq d_{G}\left(w, w^{\prime}\right)=\operatorname{diam}(G) \geq 2 k-2 .
$$

This together with Theorem 国forces $G-z \in \mathcal{F}_{k}$ and $\operatorname{diam}(G-z)=d_{G-z}\left(w, w^{\prime}\right)=$ $\operatorname{diam}(G)=2 k-2$. By the definition of \mathcal{F}_{k}, we have $\left|N_{G-z}^{(2)}(w)\right|=\left|N_{G-z}^{(4)}(w)\right|=1$. Write $N_{G-z}^{(2)}(w)=\left\{z^{\prime}\right\}$. Since G has no cut vertex, the following hold:

- $k=3$,
- z is adjacent to a vertex in $N_{G-z}^{(1)}(w)$ and a vertex in $N_{G}^{(3)}(w)$, and
- $N_{G}(z) \subseteq \bigcup_{1 \leq i \leq 3} N_{G-z}^{(i)}(w)$.

Suppose that z^{\prime} is a critical vertex of G, and let S be a γ-set of $G-z^{\prime}$. Since $N_{G}(z) \subseteq N_{G}\left[z^{\prime}\right]$ and S is not a dominating set of G, this forces $z z^{\prime} \notin E(G)$ and $z \in S$. Since S dominates $w, S \cap N_{G}[w] \neq \emptyset$. In particular, $\left|\left(S \cup\left\{z^{\prime}\right\}\right) \cap\left(\bigcup_{0 \leq i \leq 2} N_{G}^{(i)}(w)\right)\right| \geq$ 3. Since $S \cup\left\{z^{\prime}\right\}$ is a γ-set, $(w, 2)$ is a 4 -sufficient pair. This together with Lemma 3.1 implies that $\operatorname{diam}(G) \leq 2 k-3$, which is a contradiction. Thus z^{\prime} is not a critical vertex of G (i.e., $z^{\prime} \in V^{0}(G)$).

Replacing the role of z and z^{\prime}, we have $G-z^{\prime} \in \mathcal{F}_{k}$ and $N_{G-z^{\prime}}(z)=N_{G-z^{\prime}}^{(1)}(w) \cup$ $N_{G-z^{\prime}}^{(3)}(w)$. Hence G is isomorphic to a graph in $\mathcal{F}_{3}^{\prime \prime}\left(\subseteq \mathcal{F}_{3}^{*}\right)$.

By Claim 4.1, we may assume that G has a cut vertex x. Then we can write G as $G=\left(H_{1} \bullet H_{2}\right)\left(x_{1}, x_{2} ; x\right)$ for two graphs H_{1} and H_{2} and vertices $x_{i} \in V\left(H_{i}\right)(i \in$ $\{1,2\})$. For each $i \in\{1,2\}$, set $k_{i}=\gamma\left(H_{i}\right)$. Having Theorem 2.1 in mind, we may assume that H_{1} is critical, H_{2} is weak bicritical and x_{2} is a critical vertex of H_{2}. Furthermore, $k_{1}+k_{2}-1=\gamma\left(H_{1}\right)+\gamma\left(H_{2}\right)-1=\gamma(G)=k$. By induction hypothesis, $\operatorname{diam}\left(H_{1}\right) \leq 2 k_{1}-2$, with the equality if and only if $H_{1} \in \mathcal{F}_{k_{1}}$. By Theorem \mathbb{E} $\operatorname{diam}\left(H_{2}\right) \leq 2 k_{2}-2$, with the equality if and only if $H_{2} \in \mathcal{F}_{k_{2}}^{*}$. Since $\operatorname{diam}(G) \leq$ $\operatorname{diam}\left(H_{1}\right)+\operatorname{diam}\left(H_{2}\right)$, we have $2 k-2 \leq \operatorname{diam}(G) \leq\left(2 k_{1}-2\right)+\left(2 k_{2}-2\right)=2 k-2$. This implies that $H_{1} \in \mathcal{F}_{k_{1}}, H_{2} \in \mathcal{F}_{k_{2}}^{*}$ and x_{i} is a diametrical vertex of H_{i}. Since x_{2} is a critical vertex of H_{2}, it follows from the definition of \mathcal{F}_{k}^{*}, we have $G \in \mathcal{F}_{k}^{*}$.

This completes the proof of Theorem 1.2 .

Acknowledgment

This work was supported by JSPS KAKENHI Grant number 26800086.

References

[1] N. Ananchuen and M.D. Plummer, Matchings in 3-vertex-critical graphs: the even case, Networks 45 (2005) 210-213.
[2] N. Ananchuen and M.D. Plummer, Matchings in 3-vertex-critical graphs: the odd case, Discrete Math. 307 (2007) 1651-1658.
[3] S. Ao, Independent domination critical graphs, Masters Thesis, University of Victoria, Victoria, BC, Canada, 1994.
[4] R.C. Brigham, P.Z. Chinn and R.D. Dutton, Vertex domination-critical graphs, Networks 18 (1988) 173-179.
[5] R.C. Brigham, T.W. Haynes, M.A. Henning and D.F. Rall, Bicritical domination, Discrete Math. 305 (2005) 18-32.
[6] T. Burton and D.P. Sumner, Domination dot-critical graphs, Discrete Math. 306 (2006) 11-18.
[7] R. Diestel, Graph Theory (4th edition), Graduate Texts in Mathematics 173, Springer, 2010.
[8] J. Fulman, D. Hanson and G. MacGillivray, Vertex domination-critical graphs, Networks 25 (1995) 41-43.
[9] M. Furuya, Construction of (γ, k)-critical graphs, Australas. J. Combin. 53 (2012) 53-65.
[10] M. Furuya, On the diameter of domination bicritical graphs, Australas. J. Combin. 62 (2015) 184-196.
[11] T.W. Haynes and M.A. Henning, Changing and unchanging domination: a classification, Discrete Math. 272 (2003) 65-79.
[12] V. Samodivkin, Changing and unchanging of the domination number of a graph, Discrete Math. 308 (2008) 5015-5025.
[13] T. Wang and Q. Yu, A conjecture on k-factor-critical and 3-critical graphs, Sci. China Math. 53 (2010) 1385-1391.

[^0]: *michitaka.furuya@gmail.com

