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Abstract

In this paper, we study (zero) forcing sets which induce connected subgraphs
of a graph. The minimum cardinality of such a set is called the connected forcing
number of the graph. We provide sharp upper and lower bounds on the connected
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of the graph.
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1 Introduction

Graph coloring is one of the most widely applied and studied concepts in graph theory,
but for the duration of the 20th century almost all graph colorings were static. That
is, a given graph coloring would not change over the course of time. However, in recent
years, new variations of graph colorings have emerged that allow a coloring of a graph to
adapt over time in discrete intervals. A graph may then acquire many different colorings
based on a single initial coloring. One of the most prominent dynamic coloring processes
is called the forcing process (zero forcing process) with its associated graph parameter,
the forcing number (zero forcing number). These concepts were originally introduced at
a workshop on linear algebra and graph theory in 2006 [1] and quickly found a variety
of applications in physics, logic circuits, coding theory, and power network monitoring
[6, 7, 17, 24].

Let G = (V,E) be a connected simple graph with vertex set V = V (G) and edge
set E = E(G). The forcing process is defined as follows: Let S ⊆ V be an initial set
of “colored” vertices; all remaining vertices being “non-colored”. A vertex in a set S,
we call S-colored, while a vertex not in S we call S-uncolored. At each time step, a
colored vertex with exactly one non-colored neighbor will change, or force, the non-
colored neighbor to be colored. We call such a vertex a forcing colored vertex, or simply
a forcing vertex. A set S ⊆ V of initially colored vertices is called a forcing set if, by
iteratively applying the forcing process, all of V becomes colored. We call such a set S
an S-forcing set. The forcing number of a graph G, denoted by F (G), is the cardinality
of a smallest forcing set. If S is a forcing set in G and v is an S-colored vertex that
forces a new vertex to be colored, then we call v an S-forcing vertex.

In general, the problem of determining F (G) is in the class of NP -hard problems
[13, 23]. If S is a forcing set that induces a connected subgraph, we say that S is a
connected forcing set. The cardinality of a smallest connected forcing set in G is its
connected forcing number, denoted Fc(G), and provides a new graph invariant that we
introduce 1 and study in this paper.

We denote the order and size of G, by n = n(G) = |V (G)| and m = m(G) = |E(G)|,
respectively. Two vertices v,w ∈ V are said to be adjacent, or neighbors, if there exists
the edge vw ∈ E. The open neighborhood of v ∈ V is the set of all vertices which are
adjacent to v, denoted N(v). The closed neighborhood of v ∈ V , is N [v] = N(v) ∪ {v}.
Similarly, we define the open and closed neighborhoods of S ⊆ V , to be N(S) := {w :
w ∈ N(v)andv ∈ S}\S and N [S] = {w : w ∈ N [v] andv ∈ S}, respectively. The degree
of v ∈ V is defined as d(v) = |N(v)|. The minimum degree and maximum degree of G
will be denoted as δ = δ(G) and ∆ = ∆(G), respectively.

Let A and B be vertex disjoint subsets of vertices in a graph G. The set of edges
between A and B in G is denoted by [A,B]. If S is a subset of vertices in G and if
v ∈ V (G), then the degree of v in S, denoted by dS(v), is the number of vertices in S

1This invariant is concurrently introduced in [5].

2



adjacent to v. In particular, if S = V (G), then dS(v) is the degree, dG(v), of v in G.

For two vertices u and v in a connected graph G, the distance dG(u, v) between u
and v is the length of a shortest (u, v)-path in G. The maximum distance among the
vertices of G is its diameter, which is denoted by diam(G). For a set S ⊆ V , we let
G[S] denote the subgraph induced by S. The length of a shortest cycle in G is the
girth of G, denoted g = g(G). We denote a path and cycle on n vertices by Pn and Cn,
respectively.

Domination in graphs. A set S ⊆ V of vertices in a graph G is a dominating set

if every vertex not in S is adjacent to some vertex in S. If a dominating set induces a
connected subgraph, then we say that it is a connected dominating set. The domination

number is the cardinality of a minimum dominating set, denoted γ(G). The connected

domination number is the cardinality of a minimum connected dominating set, denoted
γc(G). As another variant of domination, the power domination process is defined as
follows. For a given set S ⊆ V , the sets

(

Pi
G(S)

)

i≥0
of vertices monitored by S at the

i-th step are defined recursively by,

1. P0
G = N [S], and

2. Pi+1
G =

⋃

{N [v] : v ∈ Pi
G(S) such that |N [v] \ Pi

G(S)| ≤ 1}.

If Pi0
G = Pi0+1

G , for some i0, then Pj
G = Pi0

G , for all j ≥ i0. We define P∞
G = Pi0

G . If
P∞
G (S) = V , we say that S is a power dominating set of G. The cardinality of a smallest

power dominating set is the power domination number of G, and is denoted γP (G).

Known Results on Forcing Domination. It should be highlighted that F (G) is, in
general, very difficult to compute, even for well structured graphs like bipartite graphs.
The difficulty in computing F (G) has motivated mathematicians to seek computation-
ally efficient upper and lower bounds on F (G).

In a paper on generalized forcing, Amos, Caro, Davila, and Pepper [2] established
an upper bound on the forcing number of a graph in terms of the order n and the
maximum degree ∆. In particular, they proved F (G) ≤ ( ∆

∆+1)n for isolate-free graphs

G, and F (G) ≤ (∆−2)n+2
∆−1 for connected graphs G with ∆(G) ≥ 2. These results resolved

a question posed by Meyer [19] which asked if the forcing number could be bounded
from above by a function of order and degree for bipartite circulant graphs. Moreover,
Amos et al. [2] also related the forcing number to the connected domination number
with the inequality F (G) ≤ n − γc(G). A slight improvement on the work of Amos et
al., Caro and Pepper [8] used a greedy algorithm on connected graphs with maximum

degree ∆ ≥ 2 to show F (G) ≤ (∆−2)n−(∆−δ)+2
∆−1 .

The first lower bound in terms of the minimum degree came from the original paper on
forcing due to the AIM-Group [1], which showed F (G) ≥ δ for all graphs G. Improving
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upon this minimum degree lower bound, Davila and Kenter [12] proved F (G) ≥ 2δ−2 for
graphs G with girth g ≥ 5, and F (G) ≥ δ + 1 for triangle-free graphs G with minimum
degree δ ≥ 3. Further, Davila and Kenter conjectured F (G) ≥ δ + (δ − 2)(g − 3) which
remains open.

We have two immediate aims in this paper. Our first aim is to introduce the connected
forcing number of a graph and establish fundamental properties of this parameter. Our
second aim is to provide lower and upper bounds on the connected forcing number,
similar to those shown for the forcing number.

2 Preliminary Observations and Results

Since every isolated vertex in a graph must belong to every forcing set in the graph, we
assume throughout this paper that there are no isolates. Since every connected forcing
set is also a forcing set, we have the following observation.

Observation 1 For every connected graph G, it holds that F (G) ≤ Fc(G).

We first determine the connected forcing number of simple classes of graphs. In a
complete graph on n ≥ 2 vertices, no set of n− 2 vertices is a forcing set, implying that
F (Kn) = Fc(Kn) = n−1. Since the leaf of every non-trivial path is a connected forcing
set, we note that F (Pn) = Fc(Pn) = 1. No vertex of a cycle is a forcing set, while any
two adjacent vertices in a cycle form a forcing set in the cycle, implying that for n ≥ 3,
F (Cn) = Fc(Cn) = 2. We state these results formally as follows.

Observation 2 For n ≥ 3, the following hold.

(a) Fc(Pn) = 1.
(b) Fc(Cn) = 2.
(c) Fc(Kn) = n− 1.

If G is a connected graph of order n ≥ 2, and if v is a vertex of minimum degree in
G, then S \ {v} is a connected forcing set in G, implying that Fc(G) ≤ |S| − 1 = n− 1.

Observation 3 If G is a connected graph of order n ≥ 2, then Fc(G) ≤ n− 1.

Suppose that G is a connected graph of order n ≥ 2 satisfying F (G) = 1. Let S be
a minimum forcing set of G, and let S = {v1}. Since v1 is a forcing vertex, we note
that v1 is a leaf in G and forces its neighbor, say v2, to be colored. If n > 2, then
the vertex v2 has exactly one non-colored neighbor, implying that v2 has degree 2 and
forces its neighbor, say v3, different from v1 to be colored. If n > 3, then the vertex
v3 has exactly one non-colored neighbor, implying that v3 has degree 2 and forces its
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neighbor, different from v2, to be colored. Continuing in this way, the resulting graph
G is a path. We state this formally as follows.

Observation 4 Let G be a connected graph of order n ≥ 2. Then, F (G) = 1 if and

only if G = Pn.

By Observation 1, 2 and 4, we note that if G be a connected graph of order n ≥ 2
and Fc(G) = 1, then G = Pn.

3 A Relation with Power Domination

In this section, we relate the connected forcing number of a graph with its power domi-
nation number. The following proposition relates the power domination process to the
forcing process. In particular, we show that every power dominating set is a dominating
set of a forcing set. This relation appeared in the thesis of Davila [11].

Proposition 5 Let G be a graph. A subset of vertices S ⊆ V is a power dominating

set of G if and only if P1
G(S) is a forcing set of G.

Proof. Let S ⊆ V be a power dominating set of G. Then color P1
G(S), i.e., color

N [S]. Then, either all of V is colored, or there is some colored vertex v such that
|N [v]\N [S]| = 1, i.e., v has at exactly one non-colored neighbor and is a forcing vertex.
This process will continue until we have reached a set equivalent to P∞

G = V , since S
was power dominating. Hence, N [S] is a forcing set.

Conversely suppose P1
G(S) is a forcing set. Then either all of V is colored, and S is a

dominating set, and hence also power dominating, or there is a vertex v ∈ P1
G(S), such

that v has exactly one non-colored neighbor, i.e., |N [v] \N [S]| = 1. This is assured at
each forcing step until all of V is colored. Hence, S must be power dominating. ✷

As an immediate consequence of Proposition 5, we have the following relation.

Observation 6 If G is a connected graph, then γP (G) ≤ F (G) ≤ Fc(G).

A fundamental result in domination theory, is Ore’s Theorem [20] which states that
the domination number of a graph without isolated vertices is at most one-half the
order of the graph. Combining Ore’s Theorem with Proposition 5, yields the following
relation between the power domination and connected forcing numbers of a graph.

Proposition 7 If G is a connected graph of order at least 3 that is not a path, then

γP (G) ≤ 1
2Fc(G), and this bound is sharp.
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Proof. Let S ⊂ V be a minimum connected forcing set, and so Fc(G) = |S|. Since
G is not a path, Observation 4 implies that Fc(G) ≥ 2. Thus, the connected forcing
set S has size at least 2 and therefore induces a (connected) subgraph without isolated
vertices. Let D be a minimum dominating set in the graph G[S] induced by S. By Ore’s
Theorem, |D| ≤ |S|/2. Since S is a forcing set of G and S ⊆ P1

G(D), the set P1
G(D)

is a forcing set of G, implying by Proposition 5 that the set D is a power dominating
set of G. Hence, γP (G) ≤ |D| ≤ 1

2 |S| =
1
2Fc(G). By Observation 2(b), every cycle has

connected forcing number 2. Thus, since every cycle has power domination number 1,
the bound is trivially sharp for cycles. ✷

4 Upper Bounds

In this section we investigate upper bounds on the connected forcing number on a graph.
We first determine the graphs that achieve equality in the upper bound of Observation 3.

Theorem 8 Let G be a connected graph of order n ≥ 2. Then, Fc(G) = n − 1 if and

only if G is a complete graph, Kn, with n ≥ 2 or a star, K1,n−1, with n ≥ 4.

Proof. If G ∼= Kn where n ≥ 2 or G ∼= K1,n−1 where n ≥ 4, then it is immediate that
Fc(G) = n − 1. This establishes the sufficiency. To prove the necessity, suppose that
Fc(G) = n − 1. We proceed by induction on n ≥ 2. The base case when n ∈ {2, 3}
is immediate. For the inductive hypothesis, let n ≥ 4 and assume that if G′ is a
connected graph of order n′, where 2 ≤ n′ < n, satisfying Fc(G

′) = n′−1, then G ∼= Kn′

or G ∼= K1,n′−1 where n′ ≥ 4. Let G be a connected graph of order n satisfying
Fc(G) = n − 1. If ∆(G) = 2, then G is a path or a cycle, and so, by Observation 2,
Fc(G) ≤ 2 < n − 1, a contradiction. Hence, ∆(G) ≥ 3. If G is a complete graph or a
star, then the desired result follows. Hence, we may assume that G is neither a complete
graph nor a star.

Suppose that G is a tree. By assumption, G is not a star, and so diam(G) ≥ 3. Let
u and v be two vertices at maximum distance apart in G, and so dG(u, v) = diam(G).
Since diam(G) ≥ 3 and G is a tree, the set V (G) \ {u, v} is a connected forcing set in
G, implying that Fc(G) ≤ n− 2, a contradiction. Hence, G is not a tree, and therefore
contains at least one vertex, v say, of degree at least 2 that is not a cut vertex. Let
G′ = G − v have order n′. By choice of the vertex v, the graph G′ is connected. By
Observation 3, Fc(G

′) ≤ n′ − 1.

We show firstly that Fc(G
′) ≤ n′ − 2. Suppose, to the contrary, that Fc(G

′) = n′ − 1.
By the inductive hypothesis, either G ∼= Kn′ or G ∼= K1,n′−1 where n′ ≥ 4. Suppose
that G ∼= Kn′ . By assumption, G ≇ Kn. Let u be a neighbor of v in G, and let w be
a vertex that is not a neighbor of v in G. We now consider the set S = V (G) \ {u, v}.
Since every neighbor of w, except for u, is colored, the vertex w is a forcing vertex in
the set S that forces the vertex u to be colored. Once u is colored, then u becomes a
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forcing vertex in the resulting set S ∪ {u} and forces the vertex v to be colored. Thus,
S is a forcing set of G, implying that Fc(G) ≤ n− 2, a contradiction.

Suppose next that G ∼= K1,n′−1 where n′ ≥ 4. Let z be the center of the star G′.
Since v has degree at least 2 in G, the vertex v is adjacent to at least one leaf of G′, say
x. Let y be a leaf in G′ different from x, and consider the set S = V (G) \ {v, y}. Since
x has precisely two neighbors in G, namely v and z, the colored vertex x is a forcing
vertex in the set S that forces the vertex v to be colored. Once v is colored, the vertex
z (possibly, v and z are neighbor) becomes a forcing vertex in the resulting set S ∪ {v}
and forces the vertex y to be colored. Thus, S is a forcing set of G, implying that
Fc(G) ≤ n − 2, a contradiction. Since both cases produce a contradiction, we deduce
that Fc(G

′) ≤ n′ − 2.

Let S′ be a connected forcing set of the (connected) graph G′. By assumption, |S| ≤
n′ − 2. Since each forcing vertex adds one new vertex to the set, and the connectivity
of the resulting new set if preserved, there exists a set T of vertices of G′ such that T
is a connected forcing set in G′, S′ ⊆ T and |T | = n′ − 2. Let a1 and a2 be the two
T -uncolored vertices in G′. Renaming a1 and a2, if necessary, we may assume that there
is a vertex t1 in the set T that forces a1 to be colored in G′, and that there is a vertex
t2 in the resulting set T ∪ {a1} that forces a2 to be colored in G′.

If v is adjacent in G to a vertex of T , then T ∪ {v} is a connected forcing set of G of
cardinality n − 2, implying that Fc(G) ≤ n − 2, a contradiction. Hence, v has degree
exactly 2 in G, and is adjacent in G only to a1 and a2. We now consider the set T in
the graph G.

Since the vertex a1 is the only T -uncolored neighbor of t1 in G′, and since t1 and v
are not neighbors in G, we note that the vertex a1 is the only T -uncolored neighbor
of t1 in G, implying that t1 is a T -forcing vertex in G that forces the vertex a1 to be
colored.

If t2 6= a1, then a2 is the only (T ∪ {a1})-uncolored neighbor of t2 in G′, implying
that since t2 and v are not neighbors, t2 is a forcing vertex in G that forces the vertex
a2 to be colored. In the resulting set, T ∪ {q1, a2}, both a1 and a2 are forcing vertices
that force the vertex v to be colored. Thus, in this case when t2 6= a1, the set T is
a connected forcing set in G, implying that Fc(G) ≤ n − 3, a contradiction. Thus,
t2 = a1. If a2 is adjacent to a vertex in G′ different from a1, then we can choose t2 6= a1,
a contradiction. Hence, a1 is the only neighbor of a2 in G′. Thus, both a2 and v have
degree 2 in G. Further, NG(a2) = {a1, v} and NG(a1) = {a2, v}.

Let v′ be a vertex in G′ at maximum distance from a1. Since G ≇ Kn, we note that v
′

is not a neighbor of a1 in G′. We now consider the set D = V (G)\{v, v′}. By our choice
of the vertex v′, the graph G[D] is connected. The vertex a2 is a D-forcing vertex and
forces the vertex v to be colored. Further, any neighbor of v′ in G is also a D-forcing
vertex and forces the vertex ′ to be colored. Thus, the set D is a connected forcing set
of G, implying that Fc(G) ≤ n − 2, a contradiction. This completes the proof of the
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theorem. ✷

We establish next an upper bound on the connected forcing number of a 2-connected
graph in terms of its order and girth. For this purpose, we shall need the following
definition. A k-rail of a graph G is a subgraph of G consisting of two vertices with
k internally vertex disjoint paths between them such that the internal vertices of the
paths have degree 2 not only in the k-rail but also in the graph G itself. See Figure 1.

u v

Figure 1: A 3-rail with shaded vertices colored

We shall need the following result due to Thomassen and Toft [22].

Theorem 9 ([22]) If G is a 2-connected graph such that the removal of any induced

cycle separates the graph into at least two components, then G contains a 3-rail.

We are now in a position to prove the following result.

Theorem 10 If G is a 2-connected graph of order n with girth g, then Fc(G) ≤ n−g+2.

Proof. Among all induced cycles in G, let C be chosen so that G − V (C) contains
as few components as possible. We note that C has length at least g. If G − V (C)
is connected, then color all of V (G) \ V (C) along with two consecutive vertices of
C chosen to be adjacent to at least one vertex of V (G) \ V (C). Let S denote the
resulting set of colored vertices. This colored set S is a forcing set of G. Further,
since G − V (C) is connected, the set S is a connected forcing set of G, implying that
Fc(G) ≤ |S| = n − |V (C)| + 2 ≤ n − g + 2, as desired. Hence, we may assume that
G−V (C) is disconnected. Thus, by our choice of the cycle C, there is no induced cycle
C∗ in G such that G− V (C∗) is connected.

By Theorem 9, there is a pair of vertices in G, say {u, v}, with a 3-rail, say R, between
them. Let Q1, Q2 and Q3 be the three (u, v)-paths in R, where Qi has qi internal vertices
for i ∈ [3] and where q1 ≤ q2 ≤ q3. We note that q1 ≥ 0, since a shortest (u, v)-path in
R may possibly be the path uv of length 1 with no internal vertex. The girth condition
implies that q1 + q2 ≥ g − 2 and q2 + q3 ≥ g − 2. We color u and the neighbor of u on
each of the paths Q2 and Q3, along with all of V (G)\V (R). Let Q denote the resulting
colored set of vertices. Necessarily, Q is a connected forcing set of G.

Since every internal vertex of Q1 is uncolored, and only one internal vertex from each
of the paths Q2 and Q3 is colored, q1 + (q2 − 1) + (q3 − 1) + 1 ≥ q1 + q2 + q3 − 1
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vertices (including v) remain uncolored. If q1 = 0, then q3 ≥ q2 ≥ g − 2 − q1 = g − 2,
implying that the number of uncolored vertices is q1 + q2 + q3 − 1 ≥ 2(g − 2) − 1 =
2g − 5 = (g − 2) + (g − 3) ≥ g − 2. If q1 ≥ 1, then the number of uncolored vertices
is q1+(q2+ q3)− 1 ≥ 1+ (g− 2)− 1 = g− 2. In both cases, Fc(G) ≤ |Q| ≤ n− g+2. ✷

We establish next the existence of a class of graphs with large connected forcing
number.

Proposition 11 For every ∆ ≥ 3, there exists a connected graph G∆ of order n and

maximum degree ∆ such that Fc(G∆) = ( ∆
∆+1)n+ 1.

Proof. Given ∆ ≥ 3, let G∆ be obtained from K1,∆ by subdividing every edge ex-
actly twice, and then attaching ∆ − 1 pendant edges to each leaf in the resulting
subdivided graph. For example, the graph G4 is illustrated in Figure 2, where the
darkened vertices form a minimum connected forcing set in G4. The graph G∆ so con-
structed has order n = ∆2 + 2∆ + 1 = (∆ + 1)2 and maximum degree ∆. Further,
Fc(G) = n−∆ = ∆2 +∆+ 1 = ( ∆

∆+1)n+ 1. ✷

Figure 2: The graph G4

Recall that Amos et al. [2] proved that if G is a general isolate-free graph of order n
with maximum degree ∆, then F (G) ≤ ( ∆

∆+1)n. By Proposition 11, this upper bound
fails for Fc(G) when ∆ ≥ 3.

We establish next the existence of a class of graphs with large connected forcing
number in terms of their connected domination number.

Proposition 12 For all integers k ≥ 1 and ∆ ≥ 3, there exists a connected graph Gk,∆

satisfying Fc(Gk,∆) = γc(G)(∆ − 2) + 2 and γc(Gk,∆) = k.

Proof. Let k ≥ 1 and ∆ ≥ 3 be arbitrary given integers. Let T be a tree of order k
satisfying ∆(T ) < ∆. Since ∆ ≥ 3, we note that such a tree T always exists (as may
be seen by taking, for example, T = Pk). To each vertex v of T , we add ∆ − dT (v)
pendant edges. Let G denote the resulting graph. We note that every vertex in V (T )
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has degree ∆ in G, while every vertex in V (G) \ V (T ) is a leaf in G. Let Gk,∆ have
order n, and note that

n = |V (T )|+
∑

v∈V (T )

(∆− dT (v))

= k + k∆−
∑

v∈V (T )

dT (v)

= k(∆ + 1)− 2|E(T )|

= k(∆ + 1)− 2(k − 1)

= k(∆− 1) + 2

= γc(Gk,∆)(∆− 1) + 2.

By construction, if v ∈ V (T ), then v has at least one leaf-neighbor in G. Thus, the
set V (T ) is a minimum connected dominating set of G, and so γc(G) = |V (T )| = k.

If ∆ = 1, then G ∼= K2, and Fc(G) = γc(G) = 1, implying that Fc(G) = γc(G)(∆ −
2) + 2. If ∆ = 2, then let G ∼= Cn, where n ≥ 3. In this case, Fc(G) = 2 and
γc(G) = n− 2, implying that Fc(G) = γc(G)(∆ − 2) + 2.

Let D be an arbitrary connected forcing set of Gk,∆. Necessarily, every vertex in
V (T ) must be D-colored. Further, if some vertex in V (T ) has two or more D-uncolored
leaf-neighbors in G, then such a vertex is not a D-forcing vertex, implying that D is not
a connected forcing set of G, a contradiction. Hence, every vertex in V (T ) has at most
one D-uncolored neighbor, implying that at most k vertices are D-uncolored. Therefore,
|D| ≥ n− k = (k(∆− 1) + 2) = k = k(∆− 2) + 2 = γc(Gk,∆)(∆− 2) + 2. Since D is an
arbitrary connected forcing set of Gk,∆, this implies that Fc(Gk,∆) ≥ γc(Gk,∆)(∆−2)+2.
As shown earlier, Fc(G) ≤ γc(G)(∆− 2) + 2 for all connected graphs G with maximum
degree ∆ ≥ 1. Consequently, Fc(G) = γc(G)(∆ − 2) + 2. ✷

We establish next an upper bound on the connected forcing number of a graph in
terms of its connected domination number and its maximum degree.

Theorem 13 If G is a connected graph of order n with maximum degree ∆, then

Fc(G) ≤

{

γc(G)(∆ − 2) + 2 if ∆ ∈ {1, 2, n − 1}

γc(G)(∆ − 1) if 3 ≤ ∆ ≤ n− 2.

Proof. Let G be a connected graph of order n with maximum degree ∆ ≥ 1. If ∆ = 1,
then G ∼= K2, and Fc(G) = γc(G) = 1, implying that Fc(G) = γc(G)(∆ − 2) + 2. If
∆ = 2, then G ∼= Pn or G ∼= Cn, where n ≥ 3, and Fc(G) ≤ 2 and γc(G) = n − 2,
implying that Fc(G) ≤ γc(G)(∆ − 2) + 2. If ∆ = n − 1, where n ≥ 4, then γc(G) = 1
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and, by Observation 2, Fc(G) = n− 1 = γc(G)(∆ − 2) + 2. This establishes the bound
when ∆ ∈ {1, 2, n − 1}. Hence in what follows, we assume that 3 ≤ ∆ ≤ n− 2.

Let D ⊂ V be a minimum connected dominating set in G, and so γc(G) = |D| and
let D = V \D. Let m = m(G[D]) denote the number of edges in G[D]. Since D is a
connected dominating set, the number of edges in G[D] is at least |D| − 1. We state
this formally as follows.

Claim A m ≥ |D| − 1.

We now color all vertices in the set D. Further, for each vertex in D, we color all
but one neighbor in D. Let S be the resulting set of colored vertices. Each vertex in
D has either all its neighbors S-colored or has exactly one S-uncolored neighbor and is
therefore an S-forcing vertex. Since D is a dominating set of G, every vertex in D has
a neighbor in D, implying that every vertex of G is S-colored or becomes S-colored in
one forcing step. Thus, the set S is an S-forcing set. Suppose that exactly k iterative
applications of the S-forcing set are required to color all vertices, where each forcing
vertex is a vertex of D.

There is therefore a subset D1 of D consisting of |D1| = k vertices and each vertex
of D1 is applied in the forcing process. Let D2 = D \ D1, and let D1 be the set of
vertices in V \D1 that have a neighbor in D1. Further, let ∂D2 be the set of vertices
in D2 that have a neighbor in D1. Let mi = m(G[Di]) for i ∈ [2], and let m12 denote
the number of edges between D1 and D2, and so m12 = |[D1,D2]| = |[D1, ∂D2]| and
m = m1 +m12 +m2.

We note that the number of S-uncolored vertices is at least |D1|, since each vertex
of D1 results in one new vertex changing color in the forcing process. Hence, Fc(G) ≤
|S| ≤ n− |D1| = |D|+ |D2|. We state this formally as follows.

Claim B Fc(G) ≤ |D|+ |D2|.

Every vertex in D is necessarily adjacent to at least one vertex in D1, since after
iteratively applying the forcing process using the vertices in D1 all vertices are colored.
We proceed further with the following series of claims.

Claim C |D| ≤ |D1| ·∆ − 2m1 − m12.

Proof. The number of vertices in D is at most the number of edges between D1 and
D. We note that D1 = D ∪ ∂D2. Thus every vertex in D1 belongs to the set D or to
the set ∂D2, implying that
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|D| ≤ |[D1,D]|

= |[D1,D1]| − |[D1, ∂D2]|

=





∑

v∈D1

dD1
(v)



 − 2m1 −m12

≤





∑

v∈D1

∆



− 2m1 −m12

= |D1| ·∆ − 2m1 − m12. (✷)

Claim D m12 + 2m2 ≤ |D2| ·∆.

Proof. We note that

|D2| ·∆ ≥
∑

v∈D2

dG[D](v) = m12 + 2m2. (✷)

Claim E Fc(G) ≤ |D|(∆ − 2) + |D2|+ 2.

Proof. As observed earlier, m = m1+m12+m2. The following now holds by Claim A,
Claim B, Claim C and Claim D.

Fc(G)
(Claim B)

≤ |D|+ |D2|

(Claim C)

≤ |D1| ·∆− 2m1 −m12 + |D2|

= (|D| − |D2|) ·∆− 2(m−m12 −m2)−m12 + |D2|

= (|D| ·∆− 2m)− |D2| ·∆+m12 + 2m2 + |D2|

(Claim D)

≤ (|D| ·∆− 2m) + |D2|

(Claim A)

≤ |D| ·∆− 2(|D| − 1) + |D2|

= |D|(∆− 2) + |D2|+ 2. (✷)

Claim E Every vertex in D2 is a cut-vertex of G[D].

Proof. Let v be an arbitrary vertex in D2. Since the set D is dominated by the set
D1, we note that D \ {v} is a dominating set of G. The minimality of the connected
dominating set D therefore implies that the vertex v is necessarily a cut-vertex of
G[D]. (✷)
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Claim F |D1| ≥ 2.

Proof. Suppose, to the contrary, that |D1| = 1. Let u denote the vertex in D1, and
so D2 = D \ {u}. We show that in this case D2 = ∅. Suppose that D2 6= ∅. Let v
be a vertex at maximum distance from u in G[D]. By our choice of the vertex v, the
graph obtained from G[D] by deleting the vertex v is connected, contradicting Claim E.
Therefore, D2 = ∅, implying that γc(G) = |D| = 1, a contradiction. (✷)

We now return to the proof of Theorem 13. By Claim E, Fc(G) ≤ |D|(∆−2)+|D2|+2.
By Claim F, |D1| ≥ 2, implying that |D2| = |D| − |D1| ≤ |D| − 2, and therefore that
Fc(G) ≤ |D|(∆− 2) + |D| = |D|(∆− 1). ✷

5 Lower Bounds

In this section we investigate sharp lower bounds on the connected forcing number of
a graph. For our first result, recall that a block of a graph G is a maximal connected
subgraph of G containing no cut vertex of its own. A block of G may, however, contain
cut vertices of G. Any two blocks of a graph have at most one vertex in common,
namely a cut vertex. A block of a graph G containing exactly one cut vertex of G is
called an end block of G. If a connected graph contains a single block, we call the graph
itself a block. The graph K1 is called the trivial block. A nontrivial block has order at
least 2. Every nontrivial block is either 2-connected or isomorphic to K2. We call a
block isomorphic to K2 a K2-block. Let b(G) denote the number of 2-connected blocks
of G; that is, b(G) is the number of nontrivial blocks of G that are not K2-blocks.

Let X denote the set of cut vertices of a connected graph G and let Y denote the set
of its blocks. The block graph of G is a bipartite graph B with partite sets X and Y in
which a vertex x ∈ X is adjacent to a vertex y ∈ Y in B if the block in G corresponding
to y contains the vertex corresponding to x.

Theorem 14 If G is a connected graph, then Fc(G) ≥ b(G) + 1, and this bound is

sharp.

Proof. If b(G) = 0, then G is a tree and the bound follows trivially since in this
case Fc(G) ≥ 1 = b(G) + 1. If b(G) = 1, then G is not a tree, and by Observation 4,
F (G) ≥ 2 = b(G) + 1. Hence, we may assume that b(G) ≥ 2, for otherwise the desired
result follows. Thus, at least two (nontrivial) blocks of G are 2-connected. Let G′ be the
graph obtained from G′ by iteratively removing all end blocks in G that are K2-blocks.
Thus, every end block of G′ is 2-connected and contains exactly one cut vertex of G.
We note that b(G′) = b(G) and Fc(G) ≥ Fc(G

′). Hence it suffices for us to show that
Fc(G

′) ≥ b(G′) + 1.
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Let B′ be the block graph of G′, with partite sets X and Y , where X is the set of cut
vertices of G′ and Y is the set of blocks of B′. We observe that the block graph, B′, is
a tree. Let Y1 be the set of end blocks of B′ and let Y2 be the remaining blocks of B′,
if any. Thus, |Y | = |Y1|+ |Y2|. Counting edges in the tree B′, we note that

|X|+ |Y1|+ |Y2| − 1 = |V (B′)| − 1 = |E(B′)| = |Y1|+
∑

v∈Y2

dB′(v) ≥ |Y1|+ 2|Y2|,

and so, |X| ≥ |Y2|+ 1. Let S be a minimum connected forcing set of G′. We note that
every end block of G′ has minimum degree at least 2, and therefore S must contain
at least two vertices from every end block of G′ in order for S to be an S-forcing set.
Further, since every end block of G′ is 2-connected and since G′[S] is connected, the
connected forcing set S contains all cut vertices of G′. Thus, X ⊂ S and S contains at
least one vertex that does not belong to X from every end block of G′. Therefore,

|S| ≥ |Y1|+ |X| ≥ |Y1|+ |Y2|+ 1 = |Y |+ 1 = b(G′) + 1.

Thus, Fc(G) ≥ Fc(G
′) = |S| ≥ b(G′) + 1 = b(G) + 1. This establishes the desired upper

bound. That the bound is tight may be seen, for example, by taking k ≥ 2 vertex
disjoint cycles (of arbitrary lengths) and identifying one vertex from each cycle into a
common vertex v (of degree 2k that belongs to all k cycles). Let G denote the resulting
graph. The set D that contains the cut vertex v and a neighbor of v from each of the
k cycles is a connected forcing set of G, implying that Fc(G) ≤ k + 1 = b(G) + 1. As
shown earlier, Fc(G) ≥ b(G) + 1. Consequently, Fc(G) ≥ b(G) + 1. ✷

Next we recall a result due to Davila and Kenter [12], which states that F (G) ≥ δ+1,
for graphs with girth g ≥ 4 and minimum degree δ ≥ 3. Since Fc(G) is bounded from
below by F (G), as an immediate consequence of this Davila-Kenter result we have the
following lower bound on Fc(G).

Observation 15 If G is a connected graph with girth g ≥ 4 and minimum degree δ ≥ 3,
then Fc(G) ≥ δ + 1.

We next prove a result which relates the girth and minimum degree of a graph to its
connected forcing number. We remark that this result is similar to the main conjecture
presented in [12].

Theorem 16 If G is a connected graph with girth g ≥ 3 and minimum degree δ ≥ 3,
then Fc(G) ≥ δ + g − 3, and this bound is sharp.

Proof. If g = 3, then Fc(G) ≥ F (G) ≥ δ = δ+g−3. If g = 4, then, by Observation 15,
Fc(G) ≥ δ + 1 = δ + g − 3. Hence we may assume that g ≥ 5, for otherwise the desired
result is immediate. Let G have order n and let S be a minimum connected forcing set
of G, and so Fc(G) = |S|. Since g ≥ 5, we know G ≇ Kn and that G ≇ K1,n−1. Hence,
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by Observation 3 and Theorem 8, Fc(G) ≤ n− 2, implying that there are at least two
S-uncolored vertices. Let v ∈ S be a vertex that forces initially in the first time step,
and w be the non-colored neighbor of v that becomes colored by v. Since δ ≥ 3, the
vertex w has at least two neighbors other than v.

Suppose that w has a neighbor z, different from v, that is S-colored. Since G[S] is
connected, there is a (v, z)-path in G[S]. Let Pvz be a shortest (v, z)-path in G[S]. We
note that Pvz together with w form a cycle C, and hence z cannot be a neighbor of v
since g ≥ 5. Since v is an S-forcing vertex, all neighbors of v different from w belong to
S. Further, the vertex v has exactly one neighbor other than w in C since we assumed
Pvz to be a shortest (v, z)-path in G[S]. Let x be the neighbor of v different from w
that belongs to C. Therefore, V (C) \ {w} ⊂ S and N(v) \ {w, x} ⊆ S, implying that

|S| ≥ |V (C) \ {w}| + |N(v) \ {w, x}|

= (|V (C)| − 1) + (dG(v) − 2)

≥ (g − 1) + (δ − 2)

= δ + g − 3.

Thus, Fc(G) = |S| ≥ δ + g − 3. Hence, we may assume that v is the only neighbor of
w that is S-colored, for otherwise the desired result follows. More generally, we may
assume that the non-colored neighbor of an arbitrary S-forcing vertex has all its other
neighbors non-colored. Since δ ≥ 3, this implies that the first two time steps of the
forcing process, the first two forcing vertices both belong to S. Let v′ be the forcing
vertex in the second time step, and let w′ be the non-colored neighbor of v′ that becomes
colored by v′. Since S is a (connected) forcing set, we may assume, renaming vertices
if necessary, that w and w′ are adjacent.

Since G[S] is connected, there is a (v, v′)-path in G[S]. Let P ′ be a shortest (v, v′)-
path in G[S]. We note that P ′ together with the path v′w′w′v form a cycle C ′ say, and
hence v and v′ cannot be neighbors since g ≥ 5. Further, the girth condition implies
that v and v′ has at most one common neighbor, and such a neighbor necessarily belongs
to the cycle C. Let Nv and N ′

v be the neighbors of v and v′, respectively, not on C. We
note that Nv ⊂ S′, N ′

v ⊂ S′, and Nv ∩N ′
v = ∅. Therefore,

|S| ≥ |V (C) \ {w,w′}|+ |Nv|+ |N ′
v|

= (|V (C)| − 2) + (dG(v)− 2) + (dG(v
′)− 2)

≥ (g − 1) + 2(δ − 2)

= (δ + g − 3) + (δ + 3)

≥ δ + g − 3.

Thus, Fc(G) = |S′| ≥ δ + g − 3. This completes the proof of the lower bound. This
bound is trivially sharp for Kn. ✷
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6 Open Problems and Conjectures

As shown in Proposition 11, the connected forcing number can be larger than known
upper bounds on the forcing number. Upper bounds on the forcing number of a graph
in terms of its order and maximum degree are known. We pose the following question.

Question 1 Given a graph G with order n and maximum degree ∆, is there a function

f(n,∆) which bounds Fc(G) from above?

The following conjecture was first given as a lower bound conjecture on F (G) in [12].
Since F (G) is at most Fc(G), and since the original conjecture remains open, we present
the following weaker conjecture.

Conjecture 1 If G is a connected graph with minimum degree δ and girth g, then

Fc(G) ≥ δ + (δ − 2)(g − 3).

For paths, cycles, complete bipartite, and complete graphs, we observe that F (G) =
Fc(G). This motivates the following question.

Question 2 What are the necessary and sufficient conditions for F (G) = Fc(G)?

We believe that the bound in Theorem 13 in the case when 3 ≤ ∆ ≤ n− 2 cannot be
achieved and pose the following question.

Question 3 Let G be a connected graph with maximum degree ∆, where 3 ≤ ∆ ≤ n−1.
Is it true that

Fc(G) ≤ γc(G)

(

∆2 − 3∆ + 3

∆− 1

)

+ 2

(

∆− 2

∆− 1

)

?

We remark that in the proof of Theorem 13, if |D| ≥ (∆− 1)|D2|+2, then the upper
bound in Question 3 follows from Claim E. Further, if the upper bound in Question 3
is correct, then it can be shown to be tight.
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