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Korpelainen, Lozin, and Razgon conjectured that a hereditary property

of graphs which is well-quasi-ordered by the induced subgraph order and

defined by only finitely many minimal forbidden induced subgraphs is

labelled well-quasi-ordered, a notion stronger than that of n-well-quasi-

order introduced by Pouzet in the 1970s. We present a counterexample

to this conjecture. In fact, we exhibit a hereditary property of graphs

which is well-quasi-ordered by the induced subgraph order and defined

by finitely many minimal forbidden induced subgraphs yet is not 2-well-

quasi-ordered. This counterexample is based on the widdershins spiral,

which has received some study in the area of permutation patterns.

1. Well-Quasi-Order and Strengthenings

A hereditary property, or (throughout this paper) class of graphs is a set of finite graphs that is
closed under isomorphism and closed downward under the induced subgraph ordering. Thus if C

is a class, G P C, and H is an induced subgraph of G, then H P C. Many natural sets of graphs
form classes, such as the perfect graphs or permutation graphs. For an extensive survey we refer
to the encyclopedic text of Brandstädt, Le, and Spinrad [7]. A common way to describe a graph
class is via its set of minimal forbidden induced subgraphs, that is, the minimal (under the induced
subgraph order) graphs which do not lie in the class. The set of minimal forbidden induced subgraphs
necessarily forms an antichain, meaning that none of them is contained in another.

We are interested here in well-quasi-ordering. A quasi-order (a reflexive and transitive but not-
necessarily-irreflexive binary relation) is a well-quasi-order (wqo), or is well-quasi-ordered (also wqo),
if it does not contain an infinite antichain or an infinite strictly decreasing chain. As the set of finite
graphs under the induced subgraph relation cannot contain an infinite strictly decreasing chain, in
this case well-quasi-order is synonymous with the absence of infinite antichains.
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Figure 1: The double-ended forks form an infinite antichain in the induced subgraph order;
two members of this family are shown on the top row. The bottom row demonstrates that
the set of paths labelled by a two-element antichain form an infinite antichain in the labelled
induced subgraph order (instead of labelling the vertices, in this figure we have colored them
black and white).

Well-quasi-ordering has been studied for a wide variety of combinatorial objects, under many different
orders; see Huczynska and Ruškuc [17] for a recent survey. Thus while the celebrated Minor Theorem
of Robertson and Seymour [23] shows that the family of all graphs is wqo under the minor order,
one might instead ask about the induced subgraph order, and in this context the set of graphs is
clearly not wqo. For example, the set of chordless cycles forms an infinite antichain. Another infinite
antichain is the set of double-ended forks, examples of which are shown in Figure 1.

However, many important graph classes are nonetheless known to be wqo. For example, the class
of co-graphs (those which do not contain an induced copy of P4) is wqo [10]. In fact, this class
satisfies an even stronger property. Let pX, ďq be any quasi-order. A labelling of the graph G is a
function ℓ from the vertices of G to X , and the pair pG, ℓq is called a labelled graph. A labelled graph
pH, kq is a labelled induced subgraph of pG, ℓq if H is isomorphic to an induced subgraph of G and
the isomorphism maps each vertex v P H to a vertex w P G such that kpvq ď ℓpwq in pX, ďq. The
class C of (unlabelled) graphs is labelled well-quasi-ordered (lwqo) if for every wqo pX, ďq the set of
all graphs in C labelled by pX, ďq is wqo by the labelled induced subgraph order. This is equivalent
to saying that the set of graphs in C labelled by pX, ďq does not contain an infinite antichain. It
follows from the work of Atminas and Lozin [3] that the class of co-graphs is lwqo.

The lwqo property is much stronger than wqo. For one example, the set of all chordless paths, which
is trivially wqo, is not lwqo, as indicated in Figure 1. This shows that the class of linear forests, that
is, the class of all graphs whose connected components are paths, is not lwqo, despite being wqo.
As further evidence of the strength of lwqo, we present the following result and its short proof.

Proposition 1.1 (Pouzet [22]; see also Daligault, Rao, Thomassé [9]). Every lwqo class of graphs
is defined by finitely many minimal forbidden induced subgraphs.

Proof. Suppose that the graph class C is lwqo but is defined by an infinite set, say B, of minimal
forbidden induced subgraphs. We take our wqo set of labels to be the 2-element antichain consisting
of the colors black and white. For each graph G P B choose an arbitrary vertex v of G, so G ´ v P C.
We now label/color the vertices of G ´ v white if they are adjacent to v in G and black otherwise to
obtain a labelled graph G1. Let B1 denote the set of all labelled graphs formed in this manner. As
B is an infinite antichain, it follows that B1 is an infinite antichain of labelled graphs from C, but
this contradicts our hypothesis that C is lwqo.

Thus an lwqo graph class is necessarily wqo and defined by finitely many minimal forbidden in-
duced subgraphs. Korpelainen, Lozin, and Razgon [20] conjectured that the converse also holds, a
conjecture that was later repeated by Atminas and Lozin [3] in their work on lwqo.
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Conjecture 1.2 (Korpelainen, Lozin, and Razgon [20]). A class of graphs which is wqo by the
induced subgraph relation is lwqo if and only if it is defined by finitely many minimal forbidden
induced subgraphs.

We disprove Conjecture 1.2. In particular, we construct a class of (permutation) graphs which is
wqo and defined by finitely many minimal forbidden induced subgraphs, but is not lwqo. Note that
the class of linear forests does not present a counterexample to Conjecture 1.2, as the set of minimal
forbidden subgraphs of this family consists of K1,3 and the chordless cycles, tCn : n ě 3u.

Notions of order between wqo and lwqo have been studied as far back as 1972, by Pouzet [22]. He
defined the class C to be n-well-quasi-ordered (n-wqo) if the set of all graphs in C labelled by an
n-element antichain does not contain an infinite antichain in the labelled induced subgraph order.
Pouzet stated the following tantalizing conjecture, which remains open.

Conjecture 1.3 (Pouzet [22]). A class of graphs is 2-wqo if and only if it is n-wqo for every n ě 2.

Obviously an lwqo class is also n-wqo for all n ě 2 and is in particular 2-wqo. Moreover, our
proof of Proposition 1.1 only used a 2-element antichain1, and the counterexample we present to
Conjecture 1.2 also fails to be 2-wqo. Perhaps something far stronger is true: is a class of graphs
lwqo if and only if it is 2-wqo?

2. Permutations and Permutation Graphs

Our counterexample to Conjecture 1.2 consists of a class of permutation graphs, and its construction
makes use of several tools which have been introduced in the study of permutation patterns. For a
broad overview of permutation patterns, we refer the reader to the third author’s survey [25], and
review only what is necessary for our construction here.

Throughout this work, we view permutations in several slightly different ways, one of them being
one-line notation. In this viewpoint, given permutations σ “ σp1q ¨ ¨ ¨ σpkq and π “ πp1q ¨ ¨ ¨ πpnq,
we say that σ is contained in π if there are indices 1 ď i1 ă ¨ ¨ ¨ ă ik ď n such that the sequence
πpi1q ¨ ¨ ¨ πpikq is in the same relative order as σ. If π does not contain σ, then we say that it avoids
it. For us, a class of permutations is a set of permutation closed downward under this containment
order.

The permutation graph of the permutation π “ πp1q ¨ ¨ ¨ πpnq is the graph Gπ on the vertices t1, . . . , nu
in which i is adjacent to j if and only if both i ă j and πpiq ą πpjq. This mapping is many-to-
one, as witnessed by the fact that G2413 – G3142 – P4, for example. If X is a set (or class) of
permutations, then we denote by GX the set (or class) of permutation graphs corresponding to the
members of X . A classic result of Dushnik and Miller [11] states that a graph is (isomorphic to)
a permutation graph if and only if it is both a comparability graph and a co-comparability graph.
As shown by Gallai [14], the class of all permutation graphs is defined by infinitely many minimal
forbidden induced subgraphs.

As done in Figure 2, we often identify a permutation π with its plot: the set of points tpi, πpiqqu in
the plane. It is easy to check that if σ is contained in π then Gσ is an induced subgraph of Gπ , but

1For this reason, Proposition 1.1 can be strengthened to state that every 2-wqo class of graphs is defined by finitely

many minimal forbidden induced subgraphs.
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25413 ď 36285714 G25413 ď G36285714

Figure 2: The containment order on permutations and their corresponding permutation
graphs.

π ‘ σ “
π

σ
π a σ “ π

σ

Figure 3: The sum and skew sum operations on permutations.

the converse does not hold (returning to our example from above, G2413 is an induced subgraph of
G3142 because the two graphs are isomorphic, but of course the permutation 2413 is not contained
in the permutation 3142). For this reason, given a permutation class C, it is stronger to show that
C is wqo than to show that GC is wqo, just as it is a stronger result that GC is not wqo than that C

is not wqo.

When identifying permutations with their plots, it is clear that the permutation containment order
respects all eight symmetries of the plane (which is isomorphic to the dihedral group on 8 elements).
Of these symmetries, three are particularly important to this work: the group-theoretic inverse,
π´1, which is obtained by reflecting the plot of π about the line y “ x; the reverse-complement, πrc,
obtained by reflecting the plot of π about the line y “ ´x (and then shifting); and the other symmetry
obtained by composing these, pπrcq´1. Note these symmetries do not affect the corresponding
permutation graphs: for all permutations π, we have

Gπ – Gπ´1 – Gπrc – Gpπrcq´1 .

Thus for all permutation classes C, we have

GC “ GCYC´1YCrcYpCrcq´1 .

Sometimes we take a more liberal view and identify permutations with finite generic sets of points
in the plane, that is, with finite sets of points in the plane in which no two share the same x- or
y-coordinate. If one labels a finite generic set of points in the plane from 1 to n by height (i.e., from
bottom-to-top) and then records these labels reading left-to-right, a unique permutation is obtained.

We reference two specific permutation classes in this work. To define the first one we need the
notions of the sum and skew sum of two permutations, which are pictorially defined in Figure 3.
More formally, if π has length k and σ has length ℓ, the sum of π and σ is the permutation defined
as

pπ ‘ σqpiq “

"

πpiq for i P r1, ks,
σpi ´ kq ` k for i P rk ` 1, k ` ℓs.

Similarly, the skew sum of these two permutations is defined is defined as

pπ a σqpiq “

"

πpiq ` ℓ for i P r1, ks,
σpi ´ kq for i P rk ` 1, k ` ℓs.
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A permutation that can be expressed as the sum (resp., skew sum) of two shorter permutations is
said to be sum (resp., skew) decomposable, and otherwise sum (resp., skew) indecomposable. It is
easy to see that every permutation π can be expressed as the sum (resp., skew sum) of a sequence
of sum (resp., skew) indecomposable permutations, that is, it can be written as π “ α1 ‘ ¨ ¨ ¨ ‘ αm

(resp., π “ α1 a ¨ ¨ ¨ a αm) where each αi is sum (resp., skew) indecomposable (note that both sum
and skew sum are associative operations, so there is no ambiguity in these expressions).

A permutation is separable if it can be built from the permutation 1 by repeated sums and skew
sums. The set of separable permutations forms a permutation class. While this class first appeared
in the work of Avis and Newborn [4], it was Bose, Buss, and Lubiw [6] who coined the term separable
and proved that the minimal forbidden permutations for the class of separable permutations are 2413
and 3142. A graph theorist may recognize that this class of permutations is analogous to the class of
complement-reducible graphs (or co-graphs for short), which are those graphs that can be built from
K1 via disjoint unions and stars. Indeed, a graph is a co-graph if and only if it is the permutation
graph of a separable permutation.

Another permutation class we need is the class of skew-merged permutations, which are those per-
mutations whose entries can be partitioned into an increasing subsequence and a decreasing sub-
sequence. This class was first introduced by Stankova [24], who proved that a permutation is
skew-merged if and only if it avoids both 2143 and 3412. The analogous class of graphs is the class
of split graphs, whose vertices can be partitioned into an independent set and a clique. Földes and
Hammer [12] proved that a graph is split if and only if it does not contain 2K2, C4, or C5 as induced
subgraphs. Note that not all split graphs are permutation graphs of skew-merged permutations (for
more details on this, we refer the reader to Corollary 4.2).

Finally we need a term from the substitution decomposition of permutations (often called the mod-
ular decomposition in graph theory [14]). An interval in the permutation π is a set of contiguous
indices I “ ra, bs such that the set of values πpIq “ tπpiq : i P Iu is also contiguous. Every permuta-
tion of length n has trivial intervals of lengths 0, 1, and n; other intervals (if they exist) are called
proper.

3. Widdershins Spirals

Central to our counterexample to Conjecture 1.2 is a certain infinite family of permutations. In his
thesis [21], Murphy named these permutations widdershins spirals (widdershins being a Lower Scots
word meaning “to go anti-clockwise”). This name is explained by the drawing on the left of Figure 4.
Widdershins spirals are also a special type of pin sequence, as defined by Brignall, Huczynska, and
Vatter [8], and it is this viewpoint we utilize to give a formal definition of them.

An axis-parallel rectangle is any rectangle in the plane in which all of its sides are parallel to the
x- or y-axis. The rectangular hull of a set of points in the plane is defined as the smallest axis-
parallel rectangle containing them. Given a sequence of points pp1, . . . , piq in the plane, a proper
pin for this sequence is a point p that lies outside their rectangular hull and separates pi from
tp1, . . . , pi´1u, meaning that p lies either horizontally or vertically between pi and the rectangular
hull of tp1, . . . , pi´1u. A proper pin sequence is then constructed by starting with two points p1 and
p2, choosing p3 to be a proper pin for pp1, p2q, then choosing p4 to be a proper pin for pp1, p2, p3q,
and so on. We describe pins as either left, right, up, or down based on their position relative to
the rectangular hull of tp1, . . . , pi´1u. Note that the direction of a pin uniquely specifies its position
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Figure 4: Two depictions of the same widdershins spiral of standard orientation.

relative to the previous points in a pin sequence.

Given this terminology, we may now define widdershins spirals. The widdershins spiral of standard
orientation is formed by starting with two points p1 and p2 such that p2 lies to the northwest of p1,
and then taking any pin sequence of at least two more points where the positions of the pins p3,
p4, . . . constitute an initial segment of the repeating pattern left, down, right, up, left, down, right,
up, . . . . The drawing on the right of Figure 4 shows a widdershins spiral from this perspective. We
consider all rotations of a widdershins spiral of standard orientation by 90˝, 180˝, or 270˝ to also be
widdershins spirals. Note that all widdershins spirals are skew-merged permutations.

Denote by W the downward closure of the set of widdershins spirals, i.e., W is the class of all
permutations which are contained in some widdershins spiral. Because the widdershins spirals
are skew-merged permutations, it follows that W is a subclass of the skew-merged permutations.
Another notable property of W is that if π P W , then each of 1 ‘ π, π ‘ 1, 1 a π, and π a 1 are also
members of W . Finally, note that W is closed under rotations by 90˝, 180˝, and 270˝.

We now introduce a decomposition for members of W . First suppose that the permutation π P W

is sum decomposable, and thus can be written as π “ σ ‘ τ for nonempty permutations σ and
τ . Because π P W , it is skew-merged, and thus avoids 2143. Therefore at most one of σ and τ

may contain the permutation 21, so at least one of the σ or τ must be increasing. It follows that
every sum decomposable permutation in W can be expressed as either 1 ‘ α or α ‘ 1. Since all
permutations in W avoid 3412, a similar argument shows that all skew decomposable permutations
in this class can be expressed as either 1 a α or α a 1.

To handle members of W which are neither sum nor skew decomposable we introduce an operation
we refer to as central insertion. If one thinks of a widdershins spiral of standard orientation as being
centered at the origin of the plane, with the x-axis lying vertically between p1 and p3 and the y-axis
lying horizontally between p4 and p2 (these are drawn as dashed lines on the right of Figure 4), then
this operation consists of placing another permutation α (also from W) at the origin and shifting
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Figure 5: The five possibilities in the ring decomposition of members of W.

the other points of the widdershin spiral appropriately (as shown on the right of Figure 5). In doing
so, the entries of α become an interval in the resulting permutation. We define central insertion into
widdershins spirals of other orientations symmetrically.

Suppose that the permutation π P W is neither sum nor skew decomposable and consider a shortest
widdershins spiral Ψ containing π. Label the points of Ψ as p1, p2, . . . , pk as above, and fix an
embedding of π into Ψ. If π is not equal to Ψ, then consider the outer-most point deleted from Ψ
to form π. This outer-most point cannot be pk, because that would contradict the minimality of Ψ.
If this outer-most point is pk´1, pk´2, or pk´3, then π is either sum or skew decomposable, another
contradiction. If this outer-most point is p1, then π is still a widdershins spiral, again contradicting
the minimality of Ψ. In all other cases, it follows from the construction of the widdershins spiral
that π contains a unique maximal proper interval, which lies at the center of the spiral, as shown
on the right of Figure 5.

These observations establish the following result, which we refer to as the ring decomposition of the
class W .

Proposition 3.1. Every permutation in W can be expressed either as 1 ‘ α, α ‘ 1, 1 a α, and α a 1
for α P W or as the central insertion into a widdershins spiral of length at least 4 by a (possibly
empty) member of W.

Note that there may be several different ring decompositions of a member of W ; for example,
p1‘αq‘1 “ 1‘pα‘1q. With a bit more effort, however, one can obtain a unique ring decomposition
of each member of W , which can produce the generating function for this class. We state this
generating function below, omitting its proof because the result is not relevant to the goals of this
paper.

Corollary 3.2. The generating function of the downward closure of the widdershins spirals is

1 ´ 4x ` 3x2

1 ´ 5x ` 6x2 ´ 2x3 ´ x4 ´ 3x5
.

The ring decomposition of W also allows us to show that the class is wqo, but first we must recall
Higman’s Lemma. Suppose that pΣ, ďq is any poset. Then the generalized subword order on Σ˚ is
defined by v ď w if there are indices 1 ď i1 ă i2 ă ¨ ¨ ¨ ă i|v| ď |w| such that vpjq ď wpijq for all j.

Higman’s Lemma [15]. If pΣ, ďq is well quasi-ordered then Σ˚, ordered by the generalized subword
order, is also well quasi-ordered.

Given any ring decomposition of a permutation in W , we now describe how to encode the decom-
position as a word over the alphabet

Σ “ tNEk, NWk, SWk, SEk : k “ 1 or k ě 4u.
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Our goal is to give a partial order for Σ that is a wqo, and construct an encoding wπ P Σ˚ of every
permutation π P W so that if wσ is a generalized subword of wπ then σ is a subpermutation of π.
Higman’s Lemma will then allow us to conclude that W is itself wqo.

To form this encoding, first fix one ring decomposition of every member of W . (Each member has
at least one such decomposition by Proposition 3.1, and for the purposes of this argument we do not
need to specify which is chosen.) The encoding of the chosen ring decomposition of the permutation
π P W is denoted wπ. First, if π is of the form 1 ‘ α, then wπ “ wα SW1, which denoted that π

is obtained by adding a single point in the southwest quadrant to α. Similarly, if π is of the form
α ‘ 1, 1 a α, or α a 1, respectively, then π is encoded as wα NE1, wα NW1, or wα SE1. Finally, if π is
formed by inserting a permutation α P W into the center of a widdershins spiral of length at least
4, then we encode π as either wα NEk, wα NWk, wα SWk, or wα SEk, where k denotes the length of
the widdershins spiral and the direction (NE, NW, SW, or SE) denotes the position of the first point
of the widdershins spiral relative to α.

We now place a partial order on our alphabet Σ, which is based on the permutation containment
order. While one might note that no matter what quadrant the first point of a widdershins spiral
lies in, it is contained in all widdershins spirals of length at least 3 greater, this observation is not
necessary for our proof. Instead, we simply need to note that all widdershins spirals with their first
point in a particular quadrant form a chain, and thus we can take our partial order on Σ to be
simply a union of four chains: NEk ď NEℓ if k ď ℓ, and similarly for the other three quadrants.

Clearly Σ is wqo under this partial order, and moreover, it is clear that if wσ is a generalized subword
of wπ then σ is a subpermutation of π. Thus Higman’s Lemma implies that W is itself wqo.

Proposition 3.3. The downward closure of the widdershins spirals is wqo.

Our next goal is to determine the minimal forbidden permutations for W , which will later be essential
for determining the minimal forbidden induced subgraphs of GW .

Proposition 3.4. The downward closure of the widdershins spirals is defined by the minimal for-
bidden permutations 2143, 2413, 3412, 314562, 412563, 415632, 431562, 512364, 512643, 516432,
541263, 541632, and 543162.

Proof. Let B denote the list of forbidden permutations stated in the proposition, and let C denote
the permutation class that has B as its set of minimal forbidden permutations. We aim to show that
W “ C. It can be seen by inspection that no element of B lies in W , so we may conclude that W is
contained in C. We prove by induction on the length of π that every π P C lies in W . The claim is
clearly true for |π| ď 2, so now consider a longer permutation π P C. Note that B, and hence also C

(whose minimal forbidden permutations are precisely B), are closed under rotations by 90˝.

First suppose that π is sum or skew decomposable. As both cases are equivalent up to rotational
symmetry, we may assume that π “ σ ‘ τ for nonempty permutations σ and τ . Because π avoids
21 ‘ 21 “ 2143, at most one of these components may contain 21, and thus the other must be
increasing. By induction, we may conclude that π lies in the downward closure of the widdershins
spirals, as desired.

If π avoids 3142, then it is separable (because it also avoids 2413 P B), and thus π must be sum
or skew decomposable, and both cases are handled by the argument above. It remains to consider
the case where π contains 3142. Among all copies of 3142 in π, choose one with the 3 as far west
as possible, the 1 as far south as possible, the 4 as far north as possible, and the 2 as far east as



A Counterexample Regarding Labelled Well-Quasi-Ordering 9

‚

‚

‚

‚

. .
.

..
.

. .
.

..
.

‚

‚

‚

‚

‚

‚

‚

‚

‚
‚

‚

‚

‚

‚

‚

Figure 6: The analysis arising in the proof of Proposition 3.4.

possible. These choices ensure that no points lie in the shaded cells of the first panel of Figure 6.
Moreover, as π avoids 2143 and 3412, no points may lie in the hatched cells of the same panel of this
figure. Finally, note that by our choice of the copy of 3142 to examine, if π has any entries in the
four corners labelled by ellipses in the first panel of Figure 6 then these entries are themselves order
isomorphic a separable permutation. Thus if these cells are nonempty, we are done by induction
and our previous argument regarding sum or skew decomposable permutations.

We may now move to the second panel of Figure 6. The hatched cells of this panel may contain at
most one entry in total, as otherwise, if π contained two points in the same hatched cell then π would
contain 2143, 3412, 543162, 512364, 314562, or 516432 (all members of B), while if π contained two
points in different hatched cells then π would contain 412563, 415632, 431562, 512643, 541263, or
541632 (also members of B).

If π does not contain any points in the hatched cells of the second panel of Figure 6, then π is
obtained by central inflation of a widdershins spiral, and we are done by induction. Thus we may
assume that π contains precisely one point in these hatched cells, and by rotational symmetry, we
may suppose that this point lies in the northern-most hatched cell. This leads us to the situation
displayed in the third panel of Figure 6; note that π can contain at most one point in the hatched
cell of this diagram because otherwise it would contain 3412 or 516432. If π contains no points in
this hatched cell, then we are done by induction. If π does contain a point in this hatched cell,
we are left in the situation shown in the fourth and final panel of Figure 6. This process cannot
continue indefinitely, and when it terminates, we may conclude by induction that π P W .

Recall from our discussion in Section 2 that the class of permutation graphs corresponding to W

also contains the permutation graphs of members of the classes W´1, Wrc, and pWrcq´1. Since W

(and thus also W´1) is closed under rotation by 90˝, and the reverse-complement operation is the
same as a rotation by 180˝, we see that Wrc “ W and pWrcq´1 “ W´1. Therefore we have

GW “ GWYW´1 .

Thus instead of the minimal forbidden permutations of W , we are more interested in the minimal
forbidden permutations of W Y W´1. It is straight-forward to compute the minimal forbidden
permutations of W´1 using Proposition 3.4. Moreover, one of the results of Atkinson’s seminal
work on permutation patterns [1] describes how to compute the minimal forbidden permutations of
a union of two permutation classes. In our context, because the minimal forbidden permutations
for both W and W´1 have length at most 6, Atkinson’s result shows that to compute the minimal
forbidden permutations of W Y W´1 we may restrict our attention to permutations of length at
most 12. A computer search then yields the following result.

Corollary 3.5. The class W Y W´1 is defined by the minimal forbidden permutations 2143, 3412,
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Figure 7: In addition to 2K2, C4, C5, the forbidden induced subgraphs for the split permuta-
tion graphs.

234615, 236145, 236514, 261345, 265134, 265413, 314562, 346215, 362145, 365214, 412563, 415632,
431562, 463215, 512364, 512643, 516432, 541263, 541632, 543162, 28536417, and 71463582.

4. The Counterexample to Conjecture 1.2

We now turn our attention to the permutation graphs in GW , seeking first to determine the (finite
list of) minimal forbidden induced subgraphs for this class, and then to show that it is not lwqo.
Throughout this section we use the graph naming conventions from the Information System on
Graph Classes and their Inclusions [18].

Földes and Hammer [13] established the following result in 1977. The more exotic graphs involved
in the statements of both Theorem 4.1 and Corollary 4.2 are depicted in Figure 7.

Theorem 4.1 (Földes and Hammer [13]). The class of split comparability graphs is defined by the
minimal forbidden induced subgraphs 2K2, C4, C5, net, co-net, and co-rising sun.

It follows that the class of split co-comparability graphs is thus defined by the minimal forbidden
subgraphs 2K2, C4, C5, net, co-net, and rising sun. As the class of permutation graphs is the
intersection of the classes of comparability and co-comparability graphs (Dushnik and Miller [11]),
we obtain the minimal forbidden induced subgraph characterization of the split permutation graphs.

Corollary 4.2. The class of split permutation graphs is defined by the minimal forbidden induced
subgraphs 2K2, C4, C5, net, co-net, rising sun and co-rising sun.

Corollary 4.2 also follows from the 1985 work of Benzaken, Hammer, and de Werra [5], as described
in Brandstädt, Le, and Spinrad [7, Theorem 7.1.2].

Split permutation graphs have themselves received some attention relating to wqo. Korpelainen,
Lozin, and Mayhill [19] established that this class contains an (unlabelled) infinite antichain, and
Atminas, Brignall, Lozin, and Stacho [2] showed that it contains a canonical labelled infinite an-
tichain. This means that a subclass of the split permutation graphs is lwqo if and only it has finite
intersection with the (unlabelled) graphs contained in this antichain.

We can now characterize the minimal forbidden subgraphs of GW .

Proposition 4.3. The class GW is defined by the minimal forbidden induced subgraphs 2K2, C4,
C5, net, co-net, rising sun, co-rising sun, H, H, cross, co-cross, X168, X168, and X160.
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Figure 8: In addition to 2K2, C4, C5, net, co-net, rising sun, and co-rising sun, the forbidden
induced subgraphs for GW .

Proof. Corollary 3.5 gives the minimal forbidden permutations of W Y W´1. Our first step is to
compute the permutation graphs corresponding to these permutations, and then to compute all
permutations corresponding to those permutation graphs. A brute-force computation yields the
following chart. Observe that the permutations on the left-hand column of this chart are precisely
the minimal forbidden permutations for W Y W´1.

β Gβ

2143 2K2

3412 C4

236145, 412563 H

365214, 541632 H

234615, 261345, 314562, 512364 cross

265413, 463215, 516432, 543162 co-cross

236514, 362145, 431562, 512643 X168

265134, 346215, 415632, 541263 X168

28536417, 71463582 X160

Suppose that the graph G does not contain any of the graphs listed in the statement of the proposition
as induced subgraphs. By Corollary 4.2, it follows that G is a split permutation graph. Therefore
G – Gπ for at least one permutation π and moreover, every permutation π such that Gπ – G is
skew-merged. Arbitrarily choose some skew-merged permutation π such that G – Gπ . We know
that if β is contained in π then Gβ is an induced subgraph of Gπ. Since G does not contain any of
the graphs in the statement of the proposition as induced subgraphs, we see that π avoids all of the
minimal forbidden permutations listed in Corollary 3.5. Therefore π P W Y W´1, so G P GW , as
desired.

For the other direction, consider an arbitrary permutation π P W Y W´1. Because π is skew-
merged, Corollary 4.2 implies that Gπ does not contain 2K2, C4, C5, net, co-net, rising sun, or
co-rising sun. Moreover, if Gπ were to contain H , H, cross, co-cross, X168, X168, or X160 as induced
subgraphs, then such an induced subgraph would be isomorphic to Gβ for some subpermutation β

of π. However, the chart above lists all permutations β such that Gβ is isomorphic to one of these
graphs, and every one of these permutations is a forbidden permutation for W Y W´1. Therefore we
may conclude that every permutation graph in the class GW “ GWYW´1 avoids all of the induced
subgraphs listed in the statement of the proposition, completing the proof.

Having established that GW is wqo under the induced subgraph relation (as a consequence of Propo-
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Figure 9: A widdershins spiral of standard orientation and its permutation graph.
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Figure 10: The three elements W4, W5, and W6 of the labelled antichain in the proof of
Proposition 4.4.

sition 3.3, which shows that the permutation class W is wqo under the permutation containment
order) and that GW is defined by finitely many minimal forbidden induced subgraphs (the 14 graphs
listed in Proposition 4.3), our counterexample to Conjecture 1.2 is completed with our final result,
below. The proof we give is adapted from a related argument of Atminas, Brignall, Lozin, and
Stacho [2].

Proposition 4.4. The class GW is not 2-wqo.

Proof. Let Wk denote the permutation graph of the widdershins spiral of length 2k ě 8 and standard
orientation. Label the vertices of Wk as tu1, . . . , uk, v1, . . . , vku as on the left of Figure 9. As shown
on the right of this figure, the vertices tu1, . . . , uku form an independent set in Wk, the vertices
tv1, . . . , vku form a clique in Wk, and we have ui „ vj if and only if i “ j or i ď j ´ 2. Next we color
the vertices u1 and vk white and the other vertices black, where white and black are a 2-element
antichain, as shown in Figure 10.

We claim that the set tWk : k ě 4u is an infinite antichain of labelled graphs. Suppose to the
contrary that some Wk were to embed as a labelled induced subgraph in Wℓ for ℓ ą k. The only
copies of P4 in any Wk occur as a set of vertices of the form tui, vi, ui`1, vi`1u. Specifically, there
is only one copy of P4 which has a white leaf, namely the graph on the vertices tu1, v1, u2, v2u.
Similarly, the only copy of P4 in Wk with a white non-leaf is on the vertices tuk´1, vk´1, uk, vku.
Between these, there is a sequence of k ´ 3 black copies of P4, each sharing exactly two vertices with
its predecessor copy of P4, and two vertices with its successor copy. Any embedding Wk into Wℓ

would have to preserve this sequence of copies of P4, but this is impossible as then we cannot also
map both of the copies of P4 with white vertices to their respective positions. This contradiction
completes the proof of the proposition.
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