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Abstract

In this paper we compare the brushing number of a graph with the

zero-forcing number of its line graph. We prove that the zero-forcing

number of the line graph is an upper bound for the brushing number by

constructing a brush configuration based on a zero-forcing set for the line

graph. Using a similar construction, we also prove the conjecture that the

zero-forcing number of a graph is no more than the zero-forcing number

of its line graph; moreover we prove that the brushing number of a graph

is no more than the brushing number of its line graph. All three bounds

are shown to be tight.
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1 Introduction

Recently there has been much research on different edge and node search al-
gorithms for graphs, typically based on different applications and modelling of
different situations. Each variation leads to new graph parameters and it is
interesting to compare these different parameters, particularly where the pa-
rameters have different motivations. For example, in [8] it is proven that the
zero-forcing number of a graph is equal to the fast-mixed search number and
in [9] a connection between the imbalance of a graph and brushing is established.
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In this paper we compare the zero-forcing number and the brushing number of
a graph. All the graphs that we consider are simple graphs, meaning no graph
has a loop or multiple edges.

To introduce the zero-forcing number of a graph G, we begin with a colouring
of the vertices of G with the colours black and white. A black vertex can force

a white vertex to change its colour to black according to a colour-changing rule:
if v is black and w is a white neighbour of v, then v can force w to become
black only if w is the only white vertex that is adjacent to v. A set of vertices
in a graph is a zero-forcing set for the graph if, when the vertices in this set are
initially set to black and the colour-changing rule is applied repeatedly, all the
vertices of the graph are eventually forced to black. The zero-forcing number of
a graph G is the size of the smallest zero-forcing set for the graph and is denoted
by Z(G). For additional background on zero forcing for graphs, see [1, 3, 4, 10].

The brushing number of a graph is motivated by a variant of graph searching.
The variation we consider here was introduced in [11] and explored in more detail
in [5] and [13]. Specifically, we start with a graph G that models a situation of
contamination, meaning that initially every edge and every vertex is deemed to
be dirty. Cleaning agents called brushes are placed at some of the vertices (this
is the initial configuration of brushes) and there is a process by which the edges
and vertices are subsequently cleaned. Drawing terminology from the realm
of chip firing, a single vertex fires at each step in this process. A vertex v is
permitted to fire only if the number of brushes at v at the time that it fires is
at least the degree of v (that is, the degree in the graph as it is at the time).
When a vertex v fires, the brushes on v clean v, and at least one unique brush
traverses each edge incident with v, thereby cleaning the dirty edges that were
incident with v. At the end of the step each brush from v is placed at the vertex
adjacent to v at the endpoint of the edge it traversed (excess brushes are allowed
to remain at v, although they then cease to have any future role). The vertex v
and all of its incident edges (which are now clean) are removed from the graph
and the process continues (instead of removing them from the graph one can
alternatively represent the clean edges by dashed lines, and the clean vertices as
hollow circles). The process is complete when there are no vertices that can fire.
Any edges or vertices that survive all remain dirty, so if the remaining graph is
empty then the initial configuration was capable of cleaning the original graph.

The brushing number of a graph is the minimum number of brushes needed
for some initial configuration to clean the graph. For a graph G, this is denoted
by B(G). There are several variants of this parameter; here and in [5] edges
are allowed to be traversed by more than one brush, and each edge is traversed
during at most one step of the cleaning process. Alternatively we could require
that each edge is traversed by only one brush; the number of brushes required
in this scenario is denoted by b(G) and was studied in [2] and [12]. It is clear
that a brushing strategy with this restriction is also a brushing strategy in our
setting, so for any graph G it holds that B(G) 6 b(G). It was shown in [9] that
b(G) is equal to half of the minimum total imbalance of the graph G, which in
turn led to a proof that shows that b(G) is NP-hard.

To demonstrate these definitions, we will give the value of both Z(G) and
B(G) for some well-known graphs. As is usual, Kn denotes the complete graph
on n vertices, Cn is the cycle on n vertices, Pn is the path with n vertices and
Km,n is the complete bipartite graph; in particular, K1,n is the star with n
edges.
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Proposition 1.1. For n > 3

(i) B(Kn) =
⌊

n2

4

⌋

(see [5]),

(ii) Z(Kn) = n− 1,

(iii) B(K1,n) = ⌈n/2⌉ (see [11]),

(iv) Z(K1,n) = n− 1,

(v) B(Pn) = Z(Pn) = 1,

(vi) B(Cn) = Z(Cn) = 2.

The first two statements show that B(Kn) > Z(Kn) for n > 4. Moreover,
by taking n sufficiently large, B(Kn) − Z(Kn) can be made arbitrarily large.
Conversely, the next two statements show that B(K1,n) < Z(K1,n) for n > 4;
and by taking n sufficiently large Z(K1,n) − B(K1,n) can be made arbitrarily
large. This confirms that when considering the brushing number and the zero-
forcing number of the same graph we should not be trying to bound one by the
other. In the brushing process the brushes traverse each edge, so rather than
comparing the brushing number of a graph to the zero-forcing number of the
graph, we compare the brushing number to the zero-forcing number of the line
graph. For a graph G define the line graph of G, denoted by L(G), to be the
graph with a vertex for each edge of G where two of these vertices in L(G) are
adjacent if and only if the corresponding edges are incident in G. If we label
the vertices of G by vi, then the vertices of L(G) can be labelled by the edges
{vi, vj} of G. If two distinct vertices of L(G), say v = {vi, vj} and w = {wi, wj},
are adjacent in L(G), then v∩w is non-empty (it is exactly the vertex in G that
is on both edges).

The cycle Cn is unusual in terms of its line graph, since it is the only con-
nected graph that is isomorphic to its own line graph. So Proposition 1.1 implies
that for n > 3

B(Cn) = B(L(Cn)) = 2 = Z(Cn) = Z(L(Cn)).

In this paper we explore how the parameters B(G), B(L(G)), Z(G) and
Z(L(G)) are related to one another more generally. In Theorem 3.1 we prove
that B(G) 6 Z(L(G)), and in Corollary 3.3 it is further established that B(G) 6
b(G) 6 Z(L(G)). The example of the cycle shows that these bounds cannot be
improved (these bounds are also tight for the path Pn on n > 2 vertices).

The line graph of the complete graph Kn is the Johnson graph J(n, 2). In [7],
it is shown that the zero-forcing number of J(n, 2) is

(

n

2

)

, and thus for n > 3

B(Kn) =

⌊

n2

4

⌋

<

(

n

2

)

= Z(L(Kn)). (1)

So not only can the inequality B(G) 6 Z(L(G)) be strict, but the difference
can be arbitrarily large. Further, for n > 4

B(K1,n) = ⌈n/2⌉ < n− 1 = Z(Kn) = Z(L(K1,n)) (2)

which shows that even for trees the difference between the brushing number and
the zero-forcing number can be arbitrarily large.
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In [6] it is proved that Z(G) 6 2Z(L(G)) for any non-trivial graph G. More-
over, it is proved that Z(G) 6 Z(L(G)) when G is a tree or when G contains
a Hamiltonian path and has a certain number of edges, and it is conjectured
that Z(G) 6 Z(L(G)) for any non-trivial graph G. Using a refinement of our
proof that B(G) 6 Z(L(G)), in Theorem 4.1 we prove this conjecture. With
Theorem 5.1 we also prove that B(G) 6 B(L(G)) for any non-trivial graph.
The example of the cycle shows that these bounds are tight.

2 Some Preliminaries

Before proving our main results we make some observations and set some no-
tation that will be used throughout this paper. It is not hard to see that the
zero-forcing number (resp. the brushing number) of a graph is the sum of the
number on the components of the graph. Throughout this paper we primarily
consider connected graphs, but the results may be extended to disconnected
graphs. Also we do not consider the connected graph that is only a single ver-
tex, since the line graph of this graph is the empty graph. Note that if G is
connected, then L(G) is also connected.

Computing the zero-forcing number for graphs is an NP-hard problem (see
Theorem 3.1 in [8] and Theorems 6.3, 6.5, Corollary 6.6 in [15]). The zero-forcing
number and the brushing number are not minor monotone [4]: the operations of
edge-deletion and edge-contraction may either increase, decrease or not change
either of the zero-forcing number and the brushing number of a graph.

At each step in a zero-forcing process, one vertex v forces exactly one other
vertex, say w, to become black; moreover, w is the only vertex that v is capable
of forcing. So the vertices of a graph G can be arranged into Z(G) oriented
paths Pi – these paths are called zero-forcing chains. The first vertex in Pi is a
vertex in the zero-forcing set (so it is initially coloured black) and a vertex v is
immediately followed by w in Pi if and only if v forces w. Observe that these
paths are disjoint induced paths in G; if a vertex never forces another vertex
and is never forced, then it is the single vertex in a path of length 1.

If the vertex v forces w, we write v → w. If Z is a zero-forcing set for L(G),
then the zero-forcing chains for Z comprise a set of |Z| induced paths in L(G).
We denote these paths by

P1 =w1,1 → w1,2 → · · · → w1,f(1),

P2 =w2,1 → w2,2 → · · · → w2,f(2),

...

P|Z| =w|Z|,1 → w|Z|,2 → · · · → w|Z|,f(|Z|),

(3)

where f is a function from {1, . . . , |Z|} to Z
+. In the zero-forcing process, wi,j

forces wi,j+1 (and this is the only vertex that wi,j forces). Further, we will
assume that the first time a vertex forces another vertex in the process is when
w1,1 forces w1,2.

At the step in the zero-forcing process when wi,j forces wi,j+1, we say that
wi,j is the active vertex. Each vertex may perform at most one force, after
which we say it is used. If wi,j is an active vertex at some step, then wi,j+1 is
its only white neighbour. Thus if wi,j is adjacent to a vertex in another path,
then the vertex in the other path must be black at the time that wi,j is active.
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The brushing process or strategy for a graph describes how the brushes move
through the graph, which can also be described by listing the vertices in the
order in which they fire (along with details of how vertices with more brushes
than incident dirty edges distribute their excess brushes upon firing). Following
the route of a brush through this process would give a directed path in G, but
unlike zero-forcing chains these paths are neither induced nor disjoint.

3 Brushing number of a graph vs. the zero-forcing

number of its line graph

In this section we show that the seemingly unrelated concepts of zero-forcing
and brushing are in fact linked to one another. Specifically we prove that the
brushing number of a graph is bounded by the zero-forcing number of its line
graph.

Theorem 3.1. For any graph G with no isolated vertices, B(G) 6 Z(L(G)).

Proof. We may assume that G is connected. Let Z be a zero-forcing set for
L(G) and let P1, . . . ,P|Z| be the zero-forcing chains for Z. Note that for each
chain Pi, the first vertex in the chain, namely wi,1, is in Z.

To prove the theorem, we will describe a brush configuration and a strategy
for brushing G with at most |Z| brushes. For each path Pi, we will assign a
brush to a vertex in G. These brushes will be assigned to one of the endpoints
of the first edge in the path, carefully determining which endpoint to use at
each stage.

Initially, we can assume without loss of generality that at the first step in
the zero-forcing process w1,1 = {a, b} forces w1,2 = {b, c}. We assign the brush
for P1 to the vertex in G that is on the edge w1,1 but not on w1,2, namely the
vertex w1,1 \w1,2 = a. Next, for i > 2, we add a brush to the vertex w1,1 ∩wi,1

in G for each path Pi for which the initial vertex wi,1 is adjacent to w1,1. Once
this brush has been added, we say that Pi has been used.

At this point the vertex a in G can fire; the brush from P1 is sent to b, while
for every other vertex adjacent to a there has been a brush placed at a.

Now we move to the first step in the zero-forcing process: the vertex w1,1 =
{a, b} forces w1,2 = {b, c}. There is one brush on b (the one from P1 initially
placed on a) – this brush will be sent down edge w1,2. At this point vertex b in G
can fire because before a fires there has been a brush placed at b corresponding
to each unclean edge at b, except for the edges w1,1 and w1,2; and the firing of a
decreases the number of unclean edges at b by one while the number of brushes
at b increases by one.

We now move to the next step of the zero-forcing process, at which the active
vertex wi,j = {d, e} forces wi,j+1 = {e, f} (and at this stage wi,j+1 is the only
white neighbour of wi,j). If wi,j is adjacent to a vertex that is the head of a path
Pk that has not been used, say vertex wk,1, then a brush is added to the vertex
wi,j ∩wk,1, and we mark Pk as used. Then in G the vertex d = wi,j \wi,j+1 (the
vertex on wi,j that is not on wi,j+1) can fire, if it has not fired before, and send
a brush along edge wi,j . This is because for any black vertex wℓ,m = {d, g} in
L(G) adjacent to wi,j = {d, e} that is not the head of a path that has not been
used it must be true that g has already fired and cleaned the edge wℓ,m = {d, g}
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Figure 1: Zero-forcing chains for L(G)

in G while sending a brush to d. In the case that wi,j+1 = {e, f} is the final
vertex in the forcing chain Pi, then a similar argument shows that e can fire in
G and then f can fire.

Continue like this for every step of the zero-forcing process. If there are any
unused paths left then these paths must contain only a single vertex, which is
initially black. If w = {v1, v2} is such a vertex of L(G) (where v1 and v2 are
vertices of G) then add a brush to v1. For any other vertex wk,1 that is adjacent
to w such that Pk = wk,1 is an unused path, add a brush to w ∩wk,1. Now the
vertex v1 in G can fire, followed by v2. Continue like this until all the paths of
length 1 are used.

Since G is connected, this process will clean all edges of G, and any vertex
v of G that is left unclean can fire because there is necessarily a clean edge
at v (therefore at least one brush), but no unclean edges. Clearly with this
assignment the number of brushes used is equal to the number of paths |Z|.

To illustrate the brushing strategy, we give a detailed example. Consider
the graph G and its line graph L(G) (see Figure 1). The set {b, g, h, i, j, k} is a
zero-forcing set in L(G) (so b, g, h, i, j, k are all initially black vertices in L(G))
and the zero-forcing chains are below (and are drawn in Figure 1).

P1 = g → f → c, P2 = i → d, P3 = h → e → a, P4 = b, P5 = k, P6 = j

For this example, there are 11 steps in the brushing strategy. These are given
below and there is a diagram of the graph for each step in Figure 2. In the
diagram the brushes are represented with a ∗ at the vertex, and at each step
where a new brush is introduced, we put a circle around the new brush.

(1) In the first step of the zero-forcing process on L(G) g zero forces f . Following
our brushing strategy in G we put two brushes at 7 (corresponding to the
initially black vertices g and h in L(G)).

(2) Vertex 7 fires.

(3) Add a new brush to vertex 3 (corresponding to the initially black vertex b).

(4) Vertex 3 fires. One brush is moved to 2 along b, cleaning b; one brush is
moved to 4 along f , cleaning f .

6



(5) In the next step in the zero-forcing process on L(G) edge f forces c. Fol-
lowing our brushing strategy in G we put two brushes at 4 (corresponding
to the initially black vertices i and j in L(G)).

(6) Vertex 4 fires; one brush is moved to 2 along c, cleaning c; one brush is
moved to 5 along i, cleaning i; one brush is moved to 6 along j, cleaning j.

(7) In the next step in the zero-forcing process i forces d. In G, edge i is already
clean. In order to clean d in G following our brushing strategy, we put one
brush at 5 (corresponding to the initially black vertex k in L(G)).

(8) Vertex 5 fires since there are two brushes at 5 and two unclean edges incident
with it, namely d and k. One brush is moved to 2 along d, cleaning d; one
brush is moved to 6 along k, cleaning k.

(9) In the zero-forcing process in L(G) vertex h forces e. In G, edge h has
already been cleaned at some earlier step, and so at 6 no new brushes are
added. Vertex 6 fires and cleans e.

(10) Finally, in L(G), vertex e forces a. In G, e has been cleaned in the previous
step, and so no brushes are added. Vertex 2 fires and cleans a.

(11) Finally, vertex 1 fires.

Theorem 3.1 is stated for graphs without isolated vertices. Adding an iso-
lated vertex to a graph increases the brushing number by one, since one brush
must be placed on the isolated vertex to clean it. However adding an isolated
vertex to a graph does not change the line graph. So it is easy to see that the
following corollary holds.

Corollary 3.2. For any graph G with k isolated vertices, B(G) 6 Z(L(G))+k.

Recall that b(G) is defined to be the minimum number of brushes needed to
clean all edges and vertices of G where each time a vertex fires only one brush is
allowed to be moved along each incident edge. It is not difficult to observe that
the brushing strategy given in the proof of Theorem 3.1 never requires more
than one brush to be moved along an edge in G. This observation results in the
following corollary to Theorem 3.1.

Corollary 3.3. For any graph G with no isolated vertices, B(G) 6 b(G) 6

Z(L(G)).

Similar to Corollary 3.2, we also get the following result.

Corollary 3.4. For any graph G with k isolated vertices, B(G) 6 b(G) 6

Z(L(G)) + k.

We note that often the strategy described in Theorem 3.1 provides a brushing
of G that could sometimes use strictly less than Z(L(G)) brushes (by adding a
brush to a vertex at some step in the brushing procedure only if it is necessary to
do so to make the vertex fire). However, the brushing strategy in Theorem 3.1
does not give a clear insight on how small B(G) can be compared to Z(L(G)),
nor on the problem of characterizing the graphs G for which B(G) = Z(L(G)).
We note that equality holds for cycles and paths. Furthermore by Equation 1,
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Figure 2: Example to illustrate the brushing strategy
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Z(L(Kn)) 6 2B(Kn) (for n > 3) and by Equation 2, Z(L(K1,n))+1 6 2B(K1,n)
for all n. From these examples, one might also wonder if it is possible to bound
Z(L(G)) from above by some multiple of B(G). In what follows we construct a
family of graphs to show that this is not the case.

Theorem 3.5. There exists no real number c for which Z(L(G)) 6 cB(G) for
all graphs G.

Proof. Consider the Cartesian product graph Pr�Cs where Pr is the path with
r vertices and Cs is the cycle with s vertices. For what follows we represent
Pr�Cs as the graph made up of r concentric s-cycles and s(r − 1) additional
edges joining the corresponding vertices of the cycles. For an example with
r = 3 and s = 4, see the first graph in Figure 3.

First we prove that B(Pr�Cs) 6 s+ 2. This is easy to establish by starting
with s + 2 brushes at some vertex on the outermost concentric cycle of Pr�Cs.
Each time that a brush fires, if it has more brushes than incident dirty edges,
then we send all excess brushes together to the nearest perimeter vertex in the
clockwise direction. In Figure 3 we present the strategy on P3�C4, and note
that this strategy easily generalizes for any r > 1, s > 3.

Next we prove that Z(L(Pr�Cs)) > r− 1. L(Pr�Cs) can be represented as
a graph that consists of r−1 layers each having 2s vertices and 6s edges, except
for the innermost layer which has 3s vertices and 6s edges. (For an example,
see Figure 4). Now suppose that initially there is a layer k that has no black
vertices. We may suppose that initially all other vertices are black. Unless layer
k is the innermost layer, half of the vertices of layer k are adjacent to some
vertex from a more central layer, and they can indeed be forced to black by
those vertices. We note that these s vertices of layer k which are just forced to
black are each adjacent to two of the remaining s (white) vertices of layer k,
and hence they cannot force any of these white vertices to black. Similarly no
vertex from any outside layer can force any of these s white vertices to black
because any vertex from an outer layer is adjacent to either zero or two such
white vertices. Therefore each layer of L(Pr�Cs) has to have at least one black
vertex initially, and Z(L(Pr�Cs)) > r − 1 follows.

So for any real number c and each c′ > c such that c′(s + 2) + 2 is a
positive integer, G = Pc′(s+2)+2�Cs (s > 3 an integer) yields an example with
cB(G) < Z(L(G)).

A similar result involving the more restricted brushing number b(G) also
holds:

Theorem 3.6. There exists no real number c for which Z(L(G)) 6 cb(G) for
all graphs G.

Proof. Consider the graph Gk,6 that is obtained by taking k disjoint 6-cycles
C1, C2, . . . , Ck, each with vertices labelled 1 to 6 in cyclic order, and then, for
each i ∈ {1, 2, . . . , k − 1}, identifying vertex 4 of cycle Ci with vertex 1 of cycle
Ci+1. The result is a connected graph with k − 1 cut vertices, and b(Gk,6) = 2

but Z(L(Gk,6)) = k + 1. Clearly the ratio
Z(L(Gk,6))
b(Gk,6)

grows without bound as k

is allowed to increase.

We previously noted that the difference B(G)−Z(G) can be arbitrarily large
(and either positive or negative), depending on the choice of graph G. We note

9



6

1

1 4

1

1

1

3

1

1

1

3
3 1

1

1

1 1

2

2

1

1

2

2

1 1

1

3

1 1

3

1

3 2

1

2

4 6
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Figure 4: The three layers of L(P4�C4)

that this behaviour also occurs for line graphs. When considering the class of
line graphs for G = K1,n we find that B(L(G)) − Z(L(G)) can be arbitrarily
large and positive. For examples of line graphs for which B(L(G)) − Z(L(G))
can be arbitrarily large but negative, consider the graph Gk,6 introduced in the
proof of Theorem 3.6 and observe that B(L(Gk,6)) = 4 but Z(L(Gk,6)) = k + 1.

4 Zero-forcing number of a graph vs. the zero-

forcing number of its line graph

It is known from [6] that Z(G) 6 2Z(L(G)); each vertex in L(G) that is in a
zero-forcing set corresponds to an edge of G, where the set of endpoints for all of
these edges is a zero-forcing set for G of size at most 2Z(L(G)). In this section
we use a zero-forcing set for L(G) to construct a zero-forcing set for G of the
same size, thus proving a conjecture in [6].

Theorem 4.1. If G is a graph with no isolated vertices, then Z(G) 6 Z(L(G)).

Proof. We will assume that G is connected, as this implies the stated result.
Let Z be a zero-forcing set for L(G). Let P1, . . . ,P|Z| be the zero-forcing

chains for a zero-forcing process starting with Z in L(G) (using the notation
in (3)). We order this collection so that any paths with just one vertex are at
the end of this collection.

We will describe a strategy for choosing a zero-forcing set in G of size at
most |Z|. At each step in the zero-forcing process on L(G) we describe which
vertices are added to a set S that will be a zero-forcing set for G. For each path
in the zero-forcing chains at most one vertex in G will be added to S.

Suppose that at some point in the zero-forcing process on L(G) wi,j is the
active vertex; so wi,j forces wi,j+1. At this step wi,j in L(G) is black, as are all
neighbours of wi,j , except for wi,j+1 (some of these neighbours might be initially
black vertices of L(G), while others may have been forced at some earlier step).
In G consider the edges wi,j = {a, b} and wi,j+1 = {b, c}.
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If wi,j is an initially black vertex in L(G), then include a in S and mark the
chain Pi as used. At this step, add all the white vertices in (NG(a) ∪NG(b)) \
{a, b, c} to S: each such white vertex is an endpoint of some edge in G with the
property that the vertex in L(G) corresponding to this edge is from an unused
path. Mark each such path as used.

Then a forces b in G (if b is not black already), since at this step in G the
only vertex adjacent to a that could possibly be white is b. At this point b can
similarly force c (if c is not black already).

In both cases, wi,j zero forcing wi,j+1 in L(G) corresponds to some zero-
forcing steps in G in which no white vertices are left incident with the edges
wi,j and wi,j+1.

Continue like this for all steps of the zero-forcing process on L(G). If there
are any unused chains left, then each of these chains must consist of a single
vertex, which is initially black. If w = {a, b} is such a vertex of L(G), then
at this step in L(G) all neighbours of w are black; and any white vertex in
(NG(a) ∪NG(b)) \ {a, b} is an endpoint of some edge in G such that the vertex
in L(G) corresponding to this edge is from an unused path of length 1. Add all
white vertices in (NG(a) ∪ NG(b)) \ {a, b} to S (each such vertex corresponds
to an endpoint of some unused zero-forcing path of L(G)). If a is also black,
then it forces b (if b is not black already) and vice versa. If both a and b are
white then include one of them, say a, in S; so a forces b. At this point each
vertex of L(G) is black as is every vertex in G. Thus this procedure produces a
zero-forcing set for G of order at most |Z| = Z(L(G)).

We also have the following result which is parallel to Corollary 3.2.

Corollary 4.2. For any graph G with k isolated vertices, Z(G) 6 Z(L(G))+k.

5 Brushing number of a graph vs. the brushing

number of its line graph

Finally we prove that B(G) 6 B(L(G)) for any graph G with no isolated ver-
tices.

Theorem 5.1. For any graph G with no isolated vertices, B(G) 6 B(L(G)).

Proof. As in the previous theorems, we can assume that G is connected. Further,
the theorem holds if G is a single edge, so we can also assume that L(G) is not
a single vertex.

Consider a brushing configuration BL(G) of L(G) with B(L(G)) brushes.
In this brushing configuration assume that the vertices fire in order v1, v2, . . . ,
v|V (L(G))|. Using this ordering of BL(G) we will choose an initial placement of at
most B(L(G)) brushes at the vertices of G to construct a brushing configuration
BG of G.

We consider two types of vertices in L(G). The first, called type 1, is the
set of vertices that are not incident to any clean edges when they fire in BL(G).
The second set, called type 2, are the remaining vertices, so these vertices have
at least one incident clean edge when they fire in BL(G). Clearly the first vertex
to fire, v1, is a type 1 vertex.
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Assume that in the brushing process vertex v fires. If v is type 1, then there
must be at least degL(G)(v) brushes at v in L(G) in the initial configuration of
brushes in BL(G) (since no edges incident with v are clean, no new brushes have
been sent to v). Consider the edge v = {a, b} in G. Note that degL(G)(v) =
degG(a) + degG(b) − 2 and we will assume that degG(a) > degG(b).

Since G is not a single edge degG(a) > 2. Put degG(a) − s − 2 brushes at
a where s is the current number of clean edges incident with a in G. Similarly,
put degL(G)(v)−(degG(a)−s−2)− t brushes at b where t is the current number
of clean edges incident with b in G. Note that degL(G)(v)− (degG(a)−s−2)− t
is the current number of unclean edges at b in G. So b fires and cleans the edge
v (and possibly some other edges in G), and therefore a brush is sent from b to
a. This reduces the number of unclean edges incident with a by 1 and increases
the current number of brushes at a from degG(a)− s− 2 to degG(a)− s− 1. So
there are as many brushes at a as the number of unclean edges incident with a,
and hence a fires in G.

Suppose that v = {a, b} is the first vertex in v1, v2, . . . , v|V (L(G))| of type 2.
Let p be the number of clean edges incident with v in L(G) just before v fires.
Then there must be at least degL(G)(v) − 2p brushes at v in L(G) in the initial
configuration of brushes in BL(G) (the number of dirty edges incident with v is
degL(G)(v) − p and (at least) p brushes were sent to v when the incident edges
were cleaned).

Our aim is to show that both vertices a and b in G can fire (if they have
not fired yet) after distributing at most degL(G)(v) − 2p brushes among them.
Any vertex u that fires before v in BL(G) must be of type 1, and the brushing
strategy for type 1 vertices guarantees that both endpoints of the edge u in G
have already fired. So any clean edge {v, x} in L(G) has been cleaned because
of the firing of the vertex x in L(G) at some earlier step, and so both endpoints
of the edge x in G must have already fired cleaning one of the endpoints, say a,
of the edge v = {a, b} in G and the edge v itself. Put (at most) degL(G)(v)− 2p
brushes at b in G, and so b can fire.

Consider the next vertex of type 2 in BL(G). Note that each time a vertex
v in L(G) of type 2 with an incident clean edge {v, w} is considered in BL(G),
it must be that in G both endpoints of the edge w have already fired. Denote
the edge v in G as {a, b}. Since v ∩ w 6= ∅ in G, this means that either a
or b has already fired and cleaned the edge v in G. The degree arguments
in the preceding paragraph can be repeated to show that the other endpoint
of v in G also fires after putting the corresponding number of brushes there.
This procedure can be repeated until all type 2 vertices in BL(G) have been
considered.

It is now easy to see that we have established a distribution of at most
B(L(G)) brushes among the vertices of G which cleans all edges and vertices of
G.

We state the following result which has essentially the same proof as Corol-
lary 3.2.

Corollary 5.2. For any graph G with k isolated vertices, B(G) 6 B(L(G))+k.

We remark that this method also works for the variant of brushing that
considers capacity constraints, as in the setting of [2, 5, 14] and as in the proof
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of Theorem 5.1. In particular, the construction in Theorem 5.1 can be used to
prove the following corollary.

Corollary 5.3. For any graph G with no isolated vertices, b(G) 6 b(L(G)).

Similar to Corollary 5.2, we obtain the following result.

Corollary 5.4. For any graph G with k isolated vertices, b(G) 6 b(L(G)) + k.

6 Further Work

The inequalities of Theorems 3.1, 4.1 and 5.1 are all tight when G = Cn with
n > 3 and when G = Pn with n > 2. We also note that the graphs Gk,6 from
Theorem 3.6 yield a family of examples with equality for Theorem 4.1 (as does
any natural generalization with arbitrary cycle lengths). It would be interesting
to know what other classes of graphs cause these bounds to hold with equality.

An algebraic property of the zero-forcing number is that it is bounded below
by the maximum nullity of the graph (as defined in [1]). Indeed, it was this
property that initially motivated the study of zero forcing. It would be inter-
esting to try to connect the maximum nullity of L(G), or some other algebraic
property of L(G), to B(G).
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A. Erzurumluoğlu acknowledges research support from AARMS. K. Meagher
acknowledges research support from NSERC (grant number RGPIN-341214-
2013). D.A. Pike acknowledges research support from NSERC (grant number
RGPIN-04456-2016).

References

[1] AIM Minimum Rank-Special Graphs Work Group. Zero forcing sets and
the minimum rank of graphs. Linear Algebra Appl, 428(7):1628–1648, 2008.

[2] N. Alon, P. Pra lat, N. Wormald. Cleaning regular graphs with brushes.
SIAM J Discrete Math, 23(1):233–250, 2008/09.

[3] F. Barioli, W. Barrett, S.M. Fallat, H.T. Hall, L. Hogben, B. Shader,
P. van den Driessche, H. van der Holst. Zero forcing parameters and mini-
mum rank problems. Linear Algebra Appl, 433(2):401–411, 2010.

[4] F. Barioli, W. Barrett, S.M. Fallat, H.T. Hall, L. Hogben, B. Shader,
P. van den Driessche, H. van der Holst. Parameters related to tree-width,
zero forcing, and maximum nullity of a graph. J Graph Theory, 72(2):146–
177, 2013.
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