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Abstract

We give a very short and simple proof of Zykov’s generalization of Turán’s theorem, which
implies that the number of maximum independent sets of a graph of order n and independence

number α with α < n is at most
⌈

n

α

⌉

nmodα
⌊

n

α

⌋

α−(nmodα)
. Generalizing a result of Zito, we show

that the number of maximum independent sets of a tree of order n and independence number α
is at most 2n−α−1 + 1, if 2α = n, and, 2n−α−1, if 2α > n, and we also characterize the extremal
graphs. Finally, we show that the number of maximum independent sets of a subcubic tree of order

n and independence number α is at most
(

1+
√

5
2

)2n−3α+1

, and we provide more precise results for

extremal values of α.
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1 Introduction

We consider only finite, simple, and undirected graphs, and use standard terminology and notation.
An independent set in a graph G is a set of pairwise non-adjacent vertices of G. The independence
number α(G) of G is the maximum cardinality of an independent set in G. An independent set in G
is maximal if no proper superset is an independent set in G, and maximum if it has cardinality α(G).
For a graph G, let ♯α(G) be the number of maximum independent sets in G.

In the present paper we study the maximum number of maximum independent sets as a function
of the order and the independence number in general graphs, trees, and subcubic trees. Before we
come to our results, we mention some related research.

For a tree T of order n > 1, Zito [12] showed

♯α(T ) ≤
{

2
n−2

2 + 1 , if n is even, and

2
n−3

2 , if n is odd.
(1) {e1}

Since α(T ) ≥ n/2, it is not difficult to show that (1) implies

♯α(T ) ≤ 2α(T )−1 + 1, (2) {e2}

cf. [2] for a simple independent proof. For similar results concerning the maximum number of maximal
independent sets see [6, 11].

Jou and Chang [5] observed that Moon and Moser’s [7] result on the maximum number of maximal
independent sets implies

♯α(G) ≤











3
n

3 , if n mod 3 = 0,

4 · 3
n−4

3 , if n mod 3 = 1, and

2 · 3
n−2

3 , if n mod 3 = 2,

for every graph G of order n. This is actually an immediate consequence of Zykov’s generalization [13]
of Turán’s theorem [10]; independently shown also by Roman [9]. For positive integers n and p, let

Tp(n) be the complete p-partite graph with nmod p partite sets of order
⌈

n
p

⌉

and p− (nmod p) partite

sets of order
⌊

n
p

⌋

, that is, Tp(n) is the Turán graph. A clique in a graph G is a set of pairwise adjacent

vertices of G. For a graph G and a positive integer q, let ♯ω(p)(G) be the number of cliques of order p
in G.

{theoremzykov}
Theorem 1 (Zykov [13]). Let n, q, and p be integers with 2 ≤ q < p ≤ n. If G is a graph of order n
with no clique of order p, then ♯ω(q)(G) ≤ ♯ω(q) (Tp−1(n)) with equality if and only if G = Tp−1(n).

As our first contribution, we give a very short and simple proof of Theorem 1 inspired by the 5th
proof from The Book [1] of Turán’s theorem. Applying the special case q = p− 1 of Theorem 1 to the
complement Ḡ of a graph G immediately implies the following.

{corollary1}
Corollary 2. If G is a graph of order n and independence number α with α < n, then

♯α(G) ≤
⌈n

α

⌉nmodα ⌊n

α

⌋α−(nmodα)
. (3) {ecor}

Furthermore, equality holds in (3) if and only if G is the complement of Tα(n).

Corollary 2 also follows from a result of Nielsen [8] who showed that the right hand side of (3) is
a tight upper bound on the number of maximal independent sets of cardinality exactly α for every
graph G of order n regardless of the independence number of G.

Our further results concern trees and subcubic trees.
The next result is a common generalization of (1) and (2).
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{theorem1}
Theorem 3. If T is a tree of order n and independence number α, then

♯α(T ) ≤
{

2n−α−1 + 1 , if 2α = n, and

2n−α−1 , if 2α > n.
(4) {e4}

Furthermore, equality holds in (4) if and only if T arises by subdividing n−α− 1 edges of K1,α once.

As it turns out, the maximum number of maximum independent sets in subcubic trees is closely
related to the famous Fibonacci numbers. Let f(n) denote the n-th Fibonacci number, that is,

f(n) =











0 , if n = 0,

1 , if n = 1,

f(n− 1) + f(n− 2) , if n ≥ 2.

Our first result for subcubic trees concerns the smallest possible value of the independence number in
(subcubic) trees. For a positive integer k, let T (k) arise by attaching a new endvertex to every vertex
of a path of order k. Since

♯α(T (1)) = 2,

♯α(T (2)) = 3, and

♯α(T (k)) = ♯α(T (k − 1)) + ♯α(T (k − 2)) for every k ≥ 3,

we obtain
♯α(T (k)) = f(k + 2)

for every positive integer k.
{theorem2}

Theorem 4. If T is a subcubic tree of order n and independence number α = n
2 , then

♯α(T ) ≤ f(α + 2) (5) {e9}

Furthermore, equality holds in (5) if and only if T = T (α).

Our second result for subcubic trees concerns the largest possible value of the independence number
in subcubic trees. If T is a tree, then T ′ arises from T by attaching a P3 if V (T ) is the disjoint union
of V (T ) and {x, y, z}, and E(T ) = E(T ′) ∪ {uy, xy, yz}, where u is some vertex of T .

{theorem3}
Theorem 5. If T is a subcubic tree of order n and independence number α, then

α(T ) ≤ 2n + 1

3
. (6) {e11}

Furthermore, equality holds in (6) if and only if T arises from K1 by iteratively attaching P3s, in
which case ♯α(T ) = 1.

For given positive integers n and α with α ≤ 2n+1
3 , suitably combining the extremal trees from

Theorem 4 and Theorem 5 allows to construct subcubic trees with order n and independence number
α that satisfy

♯α(T ) = Ω
(

f(2n− 3α + 1)
)

.

This implies that our last result for subcubic trees is best possible up to small constant factors and
additive terms. {theorem4}
Theorem 6. If T is a subcubic tree of order n and independence number α, then

♯α(T ) ≤
(

1 +
√

5

2

)2n−3α+1

.

All proofs are give in the next section.
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2 Proofs

Proof of Theorem 1. Let G be a graph of order n with no clique of order p that maximizes ♯ω(q)(G).
Let G0 arise from G by removing all edges that do not belong to a clique of order q in G. Clearly, G0

has no clique of order p, and ♯ω(q)(G0) = ♯ω(q)(G).
{claim1}

Claim 1. G0 is a complete multipartite graph.

Proof of Claim 1. Suppose, for a contradiction, that the claim fails. This implies the existence of
three vertices u, v, and w such that u is not adjacent to v or w, but v and w are adjacent. Let d(q)(u)
be the number of cliques of order q in G0 that contain u, that is, d(q)(u) = ♯ω(q−1)(G0[NG0

(u)]).
Let d(q)(v) and d(q)(w) be defined analogously. If d(q)(u) < d(q)(v), then the graph that arises from
G0 by removing u and duplicating v has no clique of order p but ♯ω(q)(G0) − d(q)(u) + d(q)(v) >
♯ω(q)(G) cliques of order q, contradicting the choice of G. Hence, by symmetry, we may assume
that d(q)(u) ≥ d(q)(v), d(q)(w). Now, since the edge vw belongs to some clique of order q in G0, the
graph that arises from G0 by removing v and w, and triplicating u has no clique of order p but
♯ω(q)(G0) + 2d(q)(u) − d(q)(v) − d(q)(w) + 1 > ♯ω(q)(G) cliques of order q, contradicting the choice of
G.

Since G0 has no clique of order p, the multipartite graph G0 has p − 1 (possibly empty) partite
sets V1, . . . , Vp−1, of orders n1 ≥ . . . ≥ np−1, respectively. Since ♯ω(q)(G0) > 0, the graph G′

0 =
G0 − (V1 ∪ Vp−1) has a clique of order q − 2, that is, ♯ω(q−2)(G′

0) > 0. If n1 ≥ np−1 + 2, then G0 has

n1np−1♯ω
(q−2)(G′

0) + (n1 + np−1)♯ω
(q−1)(G′

0) + ♯ω(q)(G′
0)

cliques of order q, while the graph that arises from G0 by moving one vertex from Vi to Vj has

(n1 − 1)(np−1 + 1)♯ω(q−2)(G′
0) + (n1 − 1 + np−1 + 1)♯ω(q−1)(G′

0) + ♯ω(q)(G′
0)

cliques of order q. Since ♯ω(q−2)(G′
0) > 0 and (n1 − 1)(np−1 + 1) > n1np−1, this contradicts the choice

of G. Hence, we obtain |ni − nj| ≤ 1 for every 1 ≤ i ≤ j ≤ p− 1, which implies G0 = Tp−1(n). Since
n ≥ p, all p− 1 partite sets of G0 are non-empty. Therefore, adding any non-edge of G0 to G0 results
in a graph that has a clique of order p, which implies G = G0, and completes the proof.

A vertex of degree at most 1 is an endvertex, and a neighbor of an endvertex is a support vertex.

Proof of Theorem 3. Within this proof, we call a tree special if it arises by subdividing n−α−1 edges
of K1,α once. Suppose, for a contradiction, that the theorem is false, and let n be the smallest order
for which it fails. Let T be a tree of order n and independence number α such that

• either ♯α(T ) does not satisfy (4),

• or ♯α(T ) satisfies (4) with equality but T is not special.

It is easy to see that T is not special and has diameter at least 3, which implies n
2 ≤ α ≤ n − 2. We

root T at an endvertex of a longest path in T . Let y be the parent of an endvertex of maximum depth
in T , let x1, . . . , xk be the children of y, and let z be the parent of y.

The tree T ′ = T − {x1, . . . , xk, y} has order n′ = n− k − 1 and independence number α′ = α− k.
First, we assume that k ≥ 2. In this case, every maximum independent set in T contains

{x1, . . . , xk}, and the choice of n implies

♯α(T ) = ♯α(T ′)
(4)
≤ 2n

′−α′−1 + 1 (7) {e5}
= 2n−α−2 + 1

α≤n−2
≤ 2n−α−1. (8) {e6}

Now, if ♯α(T ) = 2n−α−1, then

4



• equality holds in (7), which implies 2(α − k) = 2α′ = n′ = n− k − 1, and

• equality holds in (8), which implies α = n− 2.

These equations imply k = n− 3, α′ = 1, and n′ = 2, that is, T ′ is K2. We obtain the contradiction,
that T arises by sudvidiving one edge of K1,α, that is, T is special. Hence, we may assume that k = 1.

Since the number of maximum independent sets in T that contain y is less or equal than the number
of maximum independent sets in T that contain x, we obtain ♯α(T ) ≤ 2♯α(T ′), and ♯α(T ) < 2♯α(T ′)
if some maximum independent set in T ′ that contain z.

First, we assume that 2α = n and that T ′ is not special. Since 2α′ = 2α − 2 = n − 2 = n′, the
tree T ′ is a bipartite graph whose partite sets both have order exactly α′. This implies that some
maximum independent set in T ′ contains z, and the choice of n implies the contradiction

♯α(T ) < 2♯α(T ′)
(4)
≤ 2 · 2n

′−α′−1 = 2n−α−1.

Next, we assume that 2α = n and that T ′ is special. There are only three possibilities for the structure
of T illustrated in Figure 1 together with the resulting values of ♯α.

♯α(T ) = 2n−α−2 + 2 ♯α(T ) = 2n−α−2 + 2n−α−3 + 2 ♯α(T ) = 2n−α−2 + 2n−α−3 + 1

Figure 1: Three possibilities for the structure of T . {fig:3cases}

In all three cases, we have n − α − 2 ≥ 1, because otherwise either T would be special or the
configuration would not be possible. In the first and third case, this already implies a contradiction,
because 2n−α−2+2 ≤ 2n−α−2+2n−α−3+1 ≤ 2n−α−1. In the second case, we obtain n−α−2 ≥ 2, because
T is not special. Thus, also in this case, we obtain a contradiction, because 2n−α−2 + 2n−α−3 + 2 ≤
2n−α−1.

Finally, we assume that 2α > n. Since 2α′ > n′, the choice of n implies

♯α(T ) ≤ 2♯α(T ′) (9) {e7}
(4)
≤ 2 · 2n

′−α′−1 (10) {e8}
= 2n−α−1.

Now, if ♯α(T ) = 2n−α−1, then

• equality holds in (9), which implies that no maximum independent set in T ′ contains z, and

• equality holds in (10), which implies that T ′ is special.

Since the only vertex of T ′ that does not belong to some maximum independent set in T ′ is the unique
vertex of degree more than 2 in T ′, we obtain the contradiction that T is special, which completes the
proof.

Proof of Theorem 4. Suppose, for a contradiction, that the theorem is false, and let n be the smallest
order for which it fails. Let T be a subcubic tree of order n and independence number α = n

2 such
that ♯α(T ) is as large as possible. Note that n is necessarily even.

If A and B are the two partite sets of the bipartite graph T , then α = n
2 implies |A| = |B| = n

2 .
Furthermore, since A and B are both maximum independent sets in T , the neighborhood NT (S) of

5



every subset S of A is at least as large as S, which, by Hall’s theorem [4], implies that T has a perfect
matching M . If n ∈ {2, 4}, then T = T (α) follows immediately. Hence, we may assume that n ≥ 6.

Let the tree T̃ arise from T by contracting all edges in M . Let e1 . . . ep be a longest path in T̃ .
Since n ≥ 6, we have p ≥ 3. Let ei = uivi for i ∈ [3]. By symmetry, we may assume that u2u3 is the
(unique) edge between e2 and e3. By the choice of P , all neighbors of e2 in T̃ that are distinct from
e3 are endvertices of T̃ . Since T has maximum degree at most 3, the set NT̃ (e2) \ {e3} contains

• d1 ≤ 1 edges e of T such that u2 has a neighbor in e, and

• d2 ≤ 2 edges e of T such that v2 has a neighbor in e.

Since e1 is one of the edges counted by d1 + d2, we obtain

(d1, d2) ∈ {(0, 1), (0, 2), (1, 1), (1, 2), (1, 0)}.

s ss s
s ss ss su3 u3u2 u2

✬

✫

✬

✫T− T−

♯α(T ) = ♯α−
∈ + 3♯α−

6∈ ♯α(T ′) = 2♯α−
∈ + 3♯α−

6∈<

T T ′

s s s ss s
s s s ss ss su3 u3u2 u2

✬

✫

✬

✫T− T−

♯α(T ) = ♯α−
∈ + 5♯α−

6∈ ♯α(T ′) = 3♯α−
∈ + 5♯α−

6∈<

T T ′

s ss ss s
s ss ss ss su3 u3u2 u2

✬

✫

✬

✫T− T−

♯α(T ) = 2♯α−
∈ + 4♯α−

6∈ ♯α(T ′) = 3♯α−
∈ + 5♯α−

6∈<

T T ′

s ss ss ss s
s ss ss ss ss su3 u3u2 u2

✬

✫

✬

✫T− T−

♯α(T ) = 2♯α−
∈ + 6♯α−

6∈ ♯α(T ′) = 5♯α−
∈ + 8♯α−

6∈<

T T ′

Figure 2: (d1, d2) 6∈ {(0, 1), (0, 2), (1, 1), (1, 2)}. {figexcl}

Our next goal is to exclude the first four of these possible values of (d1, d2). In each case, we
construct a subcubic tree T ′ of order n and independence number α = n

2 such that ♯α(T ′) > ♯α(T ),
contradicting the choice of T . Let T− = T −⋃e∈N

T̃
(e2)\{e3} e. By construction, the tree T− still has

a perfect matching, which implies α(T−) = n(T−)
2 .

Let

• ♯α−
∈ be the number of maximum independent sets in T− that contain u3, and let

6



• ♯α−
6∈ be the number of maximum independent sets in T− that do not contain u3.

Since α(T−) = n(T−)
2 , arguing as above implies that both partite sets of the bipartite graph T− are

maximum independent sets in T− , which implies ♯α−
∈ , ♯α

−
6∈ > 0. Figure 2 illustrates the construction

of T ′ in each case, together with the values of ♯α(T ) and ♯α(T ′).
We conclude that (d1, d2) = (1, 0), which implies that the subcubic tree T ′ has order n − 4 and

independence number α− 2 = n−4
2 . Let T ′′ = T −{u1, v1}. The subcubic tree T ′′ has order n− 2 and

independence number α− 1 = n−2
2 . Therefore, by the choice of n, we obtain

♯α(T ) = 2♯α−
∈ + 3♯α−

6∈

=
(

♯α−
∈ + 2♯α−

6∈

)

+
(

♯α−
∈ + ♯α−

6∈

)

= ♯α(T ′′) + ♯α(T ′)

≤ f(α− 1 + 2) + f(α− 2 + 2) (11) {e10}
= f(α + 2),

that is, ♯α(T ) ≤ f(α + 2). Furthermore, if ♯α(T ) = f(α + 2), then equality holds in (11), which, by
the choice of n, implies T ′ = T (α− 2) and T ′′ = T (α− 1), and, hence, T = T (α). This contradiction
completes the proof.

Proof of Theorem 5. Suppose, for a contradiction, that the theorem is false, and let n be the smallest
order for which it fails. Let T be a subcubic tree of order n and independence number α. Let u be
an endvertex of a longest path P in T . By the choice of n, the path P has order at least 3. Let v
be the neighbor of u, and let w be the neighbor of v on P that is distinct from u. The subcubic tree
T ′ = T − (NT [v] \ {w}) has order n− dT (v) and independence number α− (dT (v)− 1). By the choice
of n, we obtain

α = α(T ′) + (dT (v) − 1)

≤ 2n(T ′) + 1

3
+ (dT (v) − 1) (12) {e12}

=
2(n − dT (v)) + 1

3
+ (dT (v) − 1)

=
2n + 1

3
− 3 − dT (v)

3

≤ 2n + 1

3
, (13) {e13}

which implies (6). Now, equality in (6) implies equality in (12) and (13). By the choice of n, the tree
T ′ arises from K1 by iteratively attaching P3s, and that v has degree 3. Hence, also T arises from K1

by iteratively attaching P3s. The uniqueness of the maximum independent set follows easily by an
inductive argument exploiting the constructive characterization of T . This completes the proof.

Proof of Theorem 6. Suppose, for a contradiction, that the theorem is false, and let n be the smallest
order for which it fails. Let T be a subcubic tree of order n and independence number α such that
♯α(T ) is as large as possible.

{claim2}
Claim 1. The tree T contains a path of length at least 3.

Proof of Claim 1. Suppose, for a contradiction, that T is a star K1,n−1.
If n = 1, then

♯α(T ) = 1 =

(

1 +
√

5

2

)2−3+1

,

if n = 2, then

♯α(T ) = 2 < 2.618 ≈
(

1 +
√

5

2

)4−3+1

,

7



if n = 3, then

♯α(T ) = 1 < 1.618 ≈
(

1 +
√

5

2

)6−6+1

,

and, if n = 4, then

♯α(T ) = 1 =

(

1 +
√

5

2

)8−9+1

.

In each case, we obtain a contradiction to the choice of n and T .

Let uvwx . . . r be a longest path in T , and consider T as rooted in r. For a vertex z of T , let Vz

be the set that contains z and all its descendants. {claim3}
Claim 2. dT (v) = 2

Proof of Claim 2. Suppose, for a contradiction, that dT (v) = 3. Note that every maximum indepen-
dent set in T contains both children of v but not v. Hence, the subcubic tree T ′ = T − V (Tv) has
order n − 3 and independence number α − 2, and satisfies ♯α(T ) = ♯α(T ′). By the choice of n, we
obtain

♯α(T ) = ♯α(T ′) ≤
(

1 +
√

5

2

)2·(n−3)−3·(α−2)+1

=

(

1 +
√

5

2

)2n−3α+1

,

which contradicts the choice of T .
{claim4}

Claim 3. w is not a support vertex.

Proof of Claim 3. Suppose, for a contradiction, that w is a support vertex. The subcubic tree T ′ =
T − V (Tv) has order n− 2 and independence number α− 1, while the subcubic tree T ′′ = T − V (Tw)
has order n − 4 and independence number α − 2. Since there are ♯α(T ′) maximum independent sets
in T that contain u, and ♯α(T ′′) maximum independent sets in T that do not contain u, the choice of
n implies

♯α(T ) = ♯α(T ′) + ♯α(T ′′)

≤
(

1 +
√

5

2

)2·(n−2)−3·(α−1)+1

+

(

1 +
√

5

2

)2·(n−4)−3·(α−2)+1

=

(

1 +
√

5

2

)2n−3α+1




(

1 +
√

5

2

)−1

+

(

1 +
√

5

2

)−2




=

(

1 +
√

5

2

)2n−3α+1

,

which contradicts the choice of T .
{claim5}

Claim 4. dT (w) = 2.

Proof of Claim 4. Suppose, for a contradiction, that w has a child v′ distinct from v. By Claims 2 and
3, the vertex v′ has exactly one child u′, which is an endvertex. The subcubic tree T ′ = T−{u, v, u′, v′}
has order n− 4 and independence number α− 2. Since for every maximum independent set I ′ of T ′

that does not contain w, we have x ∈ I ′, and (I ′ \ {x}) ∪ {w} is a maximum independent set in T ′

that contains w, there are at most ♯α(T ′)
2 maximum independent sets in T ′ that do not contain w, and

at least ♯α(T ′)
2 maximum independent sets in T ′ that contain w. A maximum independent set in T ′

that contains w can only be extended in a unique way to a maximum independent set in T , while a
maximum independent set in T ′ that does not contain w can be extended in four different ways to a

8



maximum independent set in T . Since all maximum independent sets in T are of one of these types,
the choice of n implies

♯α(T ) ≤ 4 · ♯α(T ′)
2

+
♯α(T ′)

2

≤ 5

2
·
(

1 +
√

5

2

)2·(n−4)−3·(α−2)+1

=
5

2
·
(

1 +
√

5

2

)−2(

1 +
√

5

2

)2n−3α+1

<

(

1 +
√

5

2

)2n−3α+1

,

using 5
2 <

(

1+
√
5

2

)2
, which contradicts the choice of T .

Since ♯α(P4) = 3 <
(

1+
√
5

2

)2·4−3·2+1
we may assume that x has a parent y.

{claim6}
Claim 5. x is not a support vertex.

Proof of Claim 5. Suppose, for a contradiction, that x has a child w′ that is an endvertex. The
subcubic tree T ′ = T − {u, v, w} has order n − 3 and independence number α − 2. Every maximum
independent set I of T contains u, w, and w′, and I \ {u,w} is a maximum independent set in T ′. By
the choice of n, this implies

♯α(T ) ≤ ♯α(T ′) ≤
(

1 +
√

5

2

)2·(n−3)−3·(α−2)+1

=

(

1 +
√

5

2

)2n−3α+1

,

which contradicts the choice of T .
{claim7}

Claim 6. x has no child that is a support vertex.

Proof of Claim 6. Suppose, for a contradiction, that x has a child w′ that is a support vertex. If w′

has two children that are endvertices, then arguing as in the proof of Claim 2 yields a contradiction.
If w′ has a child that is not an endvertex, then dT (w′) = 3, which leads to a similar contradiction as
in the proof of Claim 4. Hence, w′ has a unique child v′, which is an endvertex. The subcubic tree
T ′ = T − V (Tx) has order n − 6 and independence number α− 3. A maximum independent set I ′ of
T ′ can be extended in at most four different ways to a maximum independent set in T : I ′ ∪ {u, v′, x},
I ′ ∪ {v, v′, x}, I ′ ∪ {u,w,w′} and I ′ ∪ {u, v′, w}. Since all maximum independent sets in T are of such
a form, the choice of n implies

♯α(T ) ≤ 4♯α(T ′) ≤ 4

(

1 +
√

5

2

)2·(n−6)−3·(α−3)+1

<

(

1 +
√

5

2

)2n−3α+1

,

using 4 <
(

1+
√
5

2

)3
, which contradicts the choice of T .

{claim8}
Claim 7. dT (x) = 2.

Proof of Claim 7. Suppose, for a contradiction, that x has a child w′ distinct from w. By Claims 5
and 6, w′ has a child v′ that has a child u′. By Claims 2 and 4, dT (w′) = dT (v′) = 2. The subcubic
tree T ′ = T − V (Tx) has order n − 7 and independence number α − 4. Note that every maximum
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independent set in T ′ can be extended in a unique way to a maximum independent set in T , and that
the maximum independent sets in T are exactly those sets. Hence, by the choice of n, we obtain

♯α(T ) ≤ ♯α(T ′) ≤
(

1 +
√

5

2

)2·(n−7)−3·(α−4)+1

<

(

1 +
√

5

2

)2n−3α+1

.

By the above claims, we know that dT (v) = dT (w) = dT (x) = 2. Let T ′ = T − V (Tx), T1 =
T − {vu} + {xu}, and T ′′ = T1 − {v,w}. Clearly, all these trees are subcubic.

A maximum independent set in T ′ that contains y can only be extended in a unique way to a
maximum independent set in T , and all maximum independent set in T that contain y are of that
form. A maximum independent set I ′ of T ′ that does not contain y can be extended to a maximum
independent set I of T in three ways, I ′ ∪ {u,w}, I ′ ∪ {u, x} and, I ′ ∪ {v, x}, and every maximum
independent set in T that does not contain y is of that form.

Similarly, a maximum independent set in T ′ that contains y can be extended to a maximum
independent set in T1 in two different ways, and all maximum independent set in T1 that contain y
are of that form. A maximum independent set I ′ of T ′ that does not contain y can be extended to a
maximum independent set I1 of T1 in three ways, I ′ ∪ {u,w}, I ′ ∪ {u, v} and, I ′ ∪ {v, x}, and every
maximum independent set in T1 that does not contain y is of that form. Arguing as in the proof of
Claim 3, we obtain

♯α(T ) ≤ ♯α(T1) = ♯α(T ′) + ♯α(T ′′) ≤
(

1 +
√

5

2

)2n−3α+1

.

This final contradiction completes the proof.
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