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Abstract

We give a very short and simple proof of Zykov’s generalization of Turan’s theorem, which

implies that the number of maximum independent sets of a graph of order n and independence

number a with a < n is at most ( anOda LEJ o~ (nmoda) . Generalizing a result of Zito, we show

that the number of maximum independent sets of a tree of order n and independence number «

is at most 277~ + 1, if 2a = n, and, 27721 if 2a > n, and we also characterize the extremal

graphs. Finally, we show that the number of maximum independent sets of a subcubic tree of order

(M>2n—3a+l
2

n and independence number « is at most , and we provide more precise results for

extremal values of .
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1 Introduction

We consider only finite, simple, and undirected graphs, and use standard terminology and notation.
An independent set in a graph G is a set of pairwise non-adjacent vertices of G. The independence
number a(G) of G is the maximum cardinality of an independent set in G. An independent set in G
is maximal if no proper superset is an independent set in G, and mazimum if it has cardinality o(G).
For a graph G, let fo(G) be the number of maximum independent sets in G.

In the present paper we study the maximum number of maximum independent sets as a function
of the order and the independence number in general graphs, trees, and subcubic trees. Before we
come to our results, we mention some related research.

For a tree T of order n > 1, Zito [12] showed

ba(T) < {QnT_Q +1 ,if nis even, and

973" , if n is odd.
Since o(T) > n/2, it is not difficult to show that (1) implies
ta(T) < 2007141, (2)

cf. [2] for a simple independent proof. For similar results concerning the maximum number of maximal
independent sets see [0,[11].

Jou and Chang [5] observed that Moon and Moser’s [7] result on the maximum number of maximal
independent sets implies

33 ,ifn mod 3=0,
fa(G) < 4.3"5" ,if n mod 3 =1, and
2.3 ifn mod 3 =2,

for every graph G of order n. This is actually an immediate consequence of Zykov’s generalization [13]
of Turan’s theorem [I0]; independently shown also by Roman [9]. For positive integers n and p, let

T,(n) be the complete p-partite graph with n mod p partite sets of order {%1 and p — (nmod p) partite

sets of order L%J , that is, Tp(n) is the Turdn graph. A clique in a graph G is a set of pairwise adjacent

vertices of G. For a graph G and a positive integer g, let ﬂw(p)(G) be the number of cliques of order p
in G.

Theorem 1 (Zykov [13]). Let n, q, and p be integers with 2 < q < p < n. If G is a graph of order n
with no clique of order p, then fw'?(G) < fw'@ (T,_1(n)) with equality if and only if G = Tp,_1(n).

As our first contribution, we give a very short and simple proof of Theorem [l inspired by the 5th
proof from The Book [1] of Turdn’s theorem. Applying the special case ¢ = p — 1 of Theorem [] to the
complement G of a graph G immediately implies the following.

Corollary 2. If G is a graph of order n and independence number o with o < n, then

3)

nrmoda LnJa*(nmoda) .

(@) < |-

[0 o

Furthermore, equality holds in (3) if and only if G is the complement of T, (n).

Corollary 2] also follows from a result of Nielsen [§] who showed that the right hand side of (3] is
a tight upper bound on the number of maximal independent sets of cardinality exactly « for every
graph G of order n regardless of the independence number of G.

Our further results concern trees and subcubic trees.

The next result is a common generalization of ([Il) and (2]).
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{theoremz
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{theorem!
Theorem 3. If T is a tree of order n and independence number «, then

al(T) < {ZnMH F (1) fea}

gn—a-l , if 200 > n.
Furthermore, equality holds in (4) if and only if T arises by subdividing n — o — 1 edges of K1 o once.

As it turns out, the maximum number of maximum independent sets in subcubic trees is closely
related to the famous Fibonacci numbers. Let f(n) denote the n-th Fibonacci number, that is,

0 yifn =0,
f(n) =41 yifn =1,
fn=1)+ f(n—=2) ,ifn>2.
Our first result for subcubic trees concerns the smallest possible value of the independence number in

(subcubic) trees. For a positive integer k, let T'(k) arise by attaching a new endvertex to every vertex
of a path of order k. Since

ta(T(1) = 2
fa(T(2)) = 3, and
fa(T(k)) = fa(T(k—1))+ (T (k —2)) for every k > 3,

we obtain
(T (k) = f(k+2)

for every positive integer k.
{theorem:
Theorem 4. If T is a subcubic tree of order n and independence number a = 5, then

f(T) < fla+2) (5) {e9}
Furthermore, equality holds in (3) if and only if T = T(«).

Our second result for subcubic trees concerns the largest possible value of the independence number
in subcubic trees. If T is a tree, then T” arises from T by attaching a Ps if V(T') is the disjoint union
of V(T) and {z,y, 2z}, and E(T) = E(T") U {uy, zy,yz}, where u is some vertex of 7T'. (
theorems
Theorem 5. If T is a subcubic tree of order n and independence number «, then

2 1
oT) < ”3* . (6) {et1}
Furthermore, equality holds in (@) if and only if T arises from K by iteratively attaching Pss, in
which case fa(T) = 1.

For given positive integers n and o with a < 2";‘ L suitably combining the extremal trees from

Theorem (] and Theorem [Bl allows to construct subcubic trees with order n and independence number
« that satisfy

ba(T) = Q(f(2n —3a+ 1)).

This implies that our last result for subcubic trees is best possible up to small constant factors and

additive terms.
{theorem

Theorem 6. If T is a subcubic tree of order n and independence number «, then

- 2n—3a-+1
ﬁa(T)g( 5 ) .

All proofs are give in the next section.




2 Proofs

Proof of Theorem[1. Let G be a graph of order n with no clique of order p that maximizes ﬂw(q)(G).
Let Gy arise from G by removing all edges that do not belong to a clique of order ¢ in GG. Clearly, Gy
has no clique of order p, and $w(? (Gy) = D (Q).

Claim 1. Gq is a complete multipartite graph.

Proof of Claim . Suppose, for a contradiction, that the claim fails. This implies the existence of
three vertices u, v, and w such that u is not adjacent to v or w, but v and w are adjacent. Let d@ (u)
be the number of cliques of order ¢ in Gy that contain u, that is, d9(u) = $w9=D(Go[Ng, (u)]).
Let d9(v) and d@(w) be defined analogously. If d@(u) < d@(v), then the graph that arises from
Go by removing u and duplicating v has no clique of order p but #w(?(Gy) — d9(u) + d9(v) >
409 (G) cliques of order ¢, contradicting the choice of G. Hence, by symmetry, we may assume
that d9(u) > d9(v),d@ (w). Now, since the edge vw belongs to some clique of order ¢ in Gy, the
graph that arises from Gy by removing v and w, and triplicating u has no clique of order p but
10D (Go) + 2dD (u) — dD(v) — dD(w) +1 > §w@(G) cliques of order ¢, contradicting the choice of
G. O

Since G has no clique of order p, the multipartite graph Gy has p — 1 (possibly empty) partite
sets Vi,...,V,_1, of orders ny > ... > n, j, respectively. Since fw(®(Gy) > 0, the graph G} =
Go — (V1 UV,_1) has a clique of order ¢ — 2, that is, ﬁw(q”)(G{)) > 0. If ny > nyp_1 + 2, then Gy has

niny 180" (Gh) + (1 + np-1)fw @V (Gh) + 1w (GY)
cliques of order ¢, while the graph that arises from Gy by moving one vertex from V; to V; has
(n1 = D) (np1 + D (Go) + (1 — 1 np1 + DT D(Gh) + 09 (G)
cliques of order ¢. Since fw@=2)(G4) > 0 and (ny —1)(n,_1 + 1) > nin,_1, this contradicts the choice
of G. Hence, we obtain |n; —n;| <1 for every 1 <i < j < p — 1, which implies Gy = T),_1(n). Since

n > p, all p — 1 partite sets of Gy are non-empty. Therefore, adding any non-edge of Gy to G results
in a graph that has a clique of order p, which implies G = Gy, and completes the proof. O

A vertex of degree at most 1 is an endvertex, and a neighbor of an endvertex is a support vertex.

Proof of Theorem [3. Within this proof, we call a tree special if it arises by subdividing n —a —1 edges
of K1 once. Suppose, for a contradiction, that the theorem is false, and let n be the smallest order
for which it fails. Let T be a tree of order n and independence number « such that

e cither fa(7") does not satisfy (@),
e or fa(T) satisfies (@) with equality but 7" is not special.

It is easy to see that T' is not special and has diameter at least 3, which implies § < a <n —2. We
root 1" at an endvertex of a longest path in T'. Let y be the parent of an endvertex of maximum depth
in T, let x1,...,z; be the children of y, and let z be the parent of y.
The tree T =T — {1, ..., 2k, y} has order n’ =n — k — 1 and independence number o/ = o — k.
First, we assume that & > 2. In this case, every maximum independent set in 7' contains
{z1,...,2}, and the choice of n implies

fa(T) = fa(T)
@ 2n’fa’71+1 (7)
— 2n7a72+1
aln—2
_S 2n—o¢—1‘ (8)

Now, if fa(T) = 2"~ then

{claiml}

{e5}

{e6}



e equality holds in ([7), which implies 2(a — k) =20/ =n' =n—k — 1, and
e equality holds in (8)), which implies & = n — 2.

These equations imply k =n — 3, o/ =1, and n’ = 2, that is, T is K5. We obtain the contradiction,
that T arises by sudvidiving one edge of K7 ,, that is, T" is special. Hence, we may assume that k£ = 1.

Since the number of maximum independent sets in T that contain y is less or equal than the number
of maximum independent sets in 7" that contain z, we obtain fa(T) < 2fa(7”), and fa(T) < 2fa(T”)
if some maximum independent set in 7" that contain z.

First, we assume that 2 = n and that 7" is not special. Since 20/ = 2o — 2 = n — 2 = n/, the
tree T" is a bipartite graph whose partite sets both have order exactly /. This implies that some
maximum independent set in 7" contains z, and the choice of n implies the contradiction

fa(T) < 28a(T") @ 9. oM —e'~1 — gn—a-1

Next, we assume that 2o = n and that T” is special. There are only three possibilities for the structure
of T illustrated in Figure [ together with the resulting values of fa.

[~ =L

ﬁOé(T) — 2n—a—2 +92 ﬁOé(T) — 2n—a—2 4 2n—oz—3 +92 jja(T) — 2n—oz—2 + 2n—oz—3 +1

Figure 1: Three possibilities for the structure of 7.

In all three cases, we have n — a — 2 > 1, because otherwise either T would be special or the
configuration would not be possible. In the first and third case, this already implies a contradiction,
because 277242 < gn—a—2gn—a=3 1 < 9n—a—l Ty the second case, we obtain n—a—2 > 2, because
T is not special. Thus, also in this case, we obtain a contradiction, because 2"~%2 4 2n—2=3 L 2 <
2n7a71.

Finally, we assume that 2a > n. Since 2o/ > n/, the choice of n implies

ta(T) < 24a(T") 9)
@ 2. on a1 (10)
_ anafl‘

Now, if fa(T) = 2"~  then
e cquality holds in (@), which implies that no maximum independent set in 7" contains z, and
e equality holds in (I0)), which implies that 7" is special.

Since the only vertex of 7" that does not belong to some maximum independent set in 7" is the unique
vertex of degree more than 2 in 77, we obtain the contradiction that 7' is special, which completes the
proof. O

Proof of Theorem [§]. Suppose, for a contradiction, that the theorem is false, and let n be the smallest

order for which it fails. Let T" be a subcubic tree of order n and independence number o = 7 such
that #a(T) is as large as possible. Note that n is necessarily even.
If A and B are the two partite sets of the bipartite graph T', then a = § implies |A| = |B| =

n
E.
Furthermore, since A and B are both maximum independent sets in T, the neighborhood Np(S) o

f

{fig:3cas

{e7}
{e8}



every subset S of A is at least as large as .S, which, by Hall’s theorem [4], implies that 7" has a perfect
matching M. If n € {2,4}, then T = T'(«) follows immediately. Hence, we may assume that n > 6.

Let the tree T arise from T by contracting all edges in M. Let e; ... ep be a longest path in T.
Since n > 6, we have p > 3. Let e; = w;v; for i € [3]. By symmetry, we may assume that ugus is the
(unique) edge between es and es. By the choice of P, all neighbors of e in T that are distinct from
e are endvertices of 7. Since T has maximum degree at most 3, the set Nz(e2) \ {e3} contains

e d; <1 edges e of T such that us has a neighbor in e, and
e dy < 2 edges e of T such that vy has a neighbor in e.

Since e is one of the edges counted by di + ds, we obtain

(d17d2) € {(07 1)7 (07 2)7 (17 1)7 (17 2)7 (17 O)}

T T

T T

fo(T) = 2fac + 6ay < Ha(T") = o + 8oy,

Figure 2: (dy,d2) ¢ {(0,1),(0,2),(1,1),(1,2)}.

Our next goal is to exclude the first four of these possible values of (di,ds). In each case, we

construct a subcubic tree T of order n and independence number o = % such that fo(7") > fo(T),

contradicting the choice of T. Let T— =T — UEENf(EQ)\{e;g} e. By construction, the tree T~ still has
a perfect matching, which implies a(T) = @
Let

e fac be the number of maximum independent sets in 7'~ that contain u3, and let

{figexcl]



° ﬁa; be the number of maximum independent sets in T~ that do not contain us.
Since o(T7) = @, arguing as above implies that both partite sets of the bipartite graph T~ are
maximum independent sets in 7~ , which implies foc, fa, > 0. Figure 2] illustrates the construction
of T' in each case, together with the values of fa(7T) and (7).

We conclude that (di,d2) = (1,0), which implies that the subcubic tree 7" has order n — 4 and

independence number o — 2 = 254, Let 7" = T — {uy, v }. The subcubic tree 7" has order n — 2 and
independence number oo — 1 = "T_Z Therefore, by the choice of n, we obtain
fo(T) = 2foc + oy

(taz +2ta7 ) + (taz +tap)
= fo(T") + (1)
< fla=142)+ fla—2+4+2) (11)
= fla+2),

that is, fa(T) < f(a + 2). Furthermore, if fa(T) = f(a 4 2), then equality holds in (II), which, by

the choice of n, implies 7" = T'(av — 2) and 7" = T'(a — 1), and, hence, T'= T'(«). This contradiction
completes the proof. O

Proof of Theorem [A Suppose, for a contradiction, that the theorem is false, and let n be the smallest
order for which it fails. Let T be a subcubic tree of order n and independence number «. Let u be
an endvertex of a longest path P in 7. By the choice of n, the path P has order at least 3. Let v
be the neighbor of u, and let w be the neighbor of v on P that is distinct from w. The subcubic tree
T' =T — (Nr[v] \ {w}) has order n — dy(v) and independence number a — (dy(v) — 1). By the choice
of n, we obtain

o = o)+ (dr(v) - 1)

< 2L 4 arw) - ) (12)
_ 2(77, — dj?“)(?))) + 1 I (dT(U) _ 1)

- 2n+1 3 — dT(U)

- 3 3

< 2n+1 (13)
—_— 3 )

which implies (6). Now, equality in (@) implies equality in (I2]) and (I3]). By the choice of n, the tree
T’ arises from K by iteratively attaching P3s, and that v has degree 3. Hence, also T arises from K
by iteratively attaching Pss. The uniqueness of the maximum independent set follows easily by an
inductive argument exploiting the constructive characterization of T'. This completes the proof. [J

Proof of Theorem [@. Suppose, for a contradiction, that the theorem is false, and let n be the smallest
order for which it fails. Let T be a subcubic tree of order n and independence number « such that
fa(T) is as large as possible.

Claim 1. The tree T contains a path of length at least 3.

Proof of Claim[1. Suppose, for a contradiction, that T" is a star K ,_1.

If n =1, then
2-3+1
1 5
ﬁMﬂ:1:<+“> ,
2
1+

4—-34+1
ﬁa(T):2<2.618z< 5 ) ,

7

if n =2, then

S

{e10}
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if n =3, then

bo(T) =1 < 1.618 & < 5

ﬁa(T):lz <1+\/g>89+1.

6—6+1
1+5 )

and, if n = 4, then

2

In each case, we obtain a contradiction to the choice of n and T O

Let uvwx ... r be a longest path in T', and consider T' as rooted in r. For a vertex z of T, let V,
be the set that contains z and all its descendants.
Claim 2. dp(v) =2
Proof of Claim[3. Suppose, for a contradiction, that dr(v) = 3. Note that every maximum indepen-

dent set in T' contains both children of v but not v. Hence, the subcubic tree 7" = T — V(T,) has
order n — 3 and independence number a — 2, and satisfies fa(T") = #a(7”). By the choice of n, we

obtain 2-(n—3)—3-(a—2)+1 2n—3a+1
1+\/5> - <1+\/5>
2 N 2 ’

fo(T) = fa(T") < (
which contradicts the choice of T'. O

Claim 3. w is not a support vertex.

Proof of Claim[3. Suppose, for a contradiction, that w is a support vertex. The subcubic tree T' =
T — V(T,) has order n — 2 and independence number e — 1, while the subcubic tree 77 =T — V(Ty,)
has order n — 4 and independence number o — 2. Since there are fa(7”) maximum independent sets
in T that contain u, and fa(7"”) maximum independent sets in T' that do not contain w, the choice of
n implies

t(T) = ta(T') + ta(T")
2:(n—2)—3-(a—1)+1 2:-(n—4)—3-(a—2)+1
<1+\/§> (n=2)=3-(a=1)+ <1+\/§> (n—4)=3-(a—2)+
< +
- 2 2
1

- 1+\/5 2n—3a+1 1+\/5 —1 +\/g —2
N 2 2 * 2

2n—3a+1

2

which contradicts the choice of T'. O
Claim 4. dp(w) = 2.

Proof of Claim[j] Suppose, for a contradiction, that w has a child v’ distinct from v. By Claims[2 and
B the vertex v" has exactly one child u/, which is an endvertex. The subcubic tree T/ = T —{u, v, v/, v'}
has order n — 4 and independence number o — 2. Since for every maximum independent set I’ of T”
that does not contain w, we have z € I'; and (I’ \ {z}) U {w} is a maximum independent set in 7"

that contains w, there are at most % maximum independent sets in 7” that do not contain w, and

at least ﬁa(QT) maximum independent sets in 7" that contain w. A maximum independent set in 7’
that contains w can only be extended in a unique way to a maximum independent set in 7', while a

maximum independent set in 7" that does not contain w can be extended in four different ways to a

{claim3}

{claimd}

{claim5}



maximum independent set in T'. Since all maximum independent sets in I" are of one of these types,
the choice of n implies

o (1) ﬁa(T')
T) < 4-
ta(r) < 4250
2(n 4)—3-(a—2)+1
= 2
— 2n—3a+1
5 1++5
2 2
( n >2n 3a+1
2
using % < (HT\/E) , which contradicts the choice of T O

Li5) 2A3 2
Since fa(Py) =3 < ( + > we may assume that x has a parent y.
Claim 5. z is not a support vertex.

Proof of Claim[3. Suppose, for a contradiction, that z has a child w’ that is an endvertex. The
subcubic tree T" = T — {u,v,w} has order n — 3 and independence number o — 2. Every maximum
independent set I of T' contains u, w, and w’, and I\ {u,w} is a maximum independent set in 7”. By
the choice of n, this implies

(n—3)—3-(a—2)+1 2n—3a+1
bo(T) < fa(T") < (”*f> . (”*/5) ,

2 2

which contradicts the choice of T'. O
Claim 6. = has no child that is a support vertex.

Proof of Claim[8. Suppose, for a contradiction, that z has a child w’ that is a support vertex. If w’
has two children that are endvertices, then arguing as in the proof of Claim [2] yields a contradiction.
If w' has a child that is not an endvertex, then dp(w’) = 3, which leads to a similar contradiction as
in the proof of Claim [l Hence, w’ has a unique child v/, which is an endvertex. The subcubic tree
T' =T — V(T,) has order n — 6 and independence number o — 3. A maximum independent set I’ of
T’ can be extended in at most four different ways to a maximum independent set in T: I' U {u,v’, z},
I'u{v, vz}, I'U{u,w,w'} and I' U{u,v’,w}. Since all maximum independent sets in T" are of such
a form, the choice of n implies

2

«(n—6)—3-(a—3)+1 2n—3a+1
1 1
f(T) < 4a(T") < 4 < - f) < ( s ﬁ) ,
using 4 < (H\/_) which contradicts the choice of T O
Claim 7. dp(z) = 2.

Proof of Claim[7. Suppose, for a contradiction, that = has a child w’ distinct from w. By Claims
and [6 w’ has a child v that has a child «’. By Claims 2l and [, dr(w') = dp(v') = 2. The subcubic
tree T" = T — V(T,) has order n — 7 and independence number o — 4. Note that every maximum

{claim6}

{claim7}

{claim8}



independent set in 7" can be extended in a unique way to a maximum independent set in T, and that
the maximum independent sets in T' are exactly those sets. Hence, by the choice of n, we obtain

2:(n—7)—3-(a—4)+1 2n—3a+1
1+\/5> ronmslen <<1+\/5> !
2 2 '

fa(T) < (1) < (

O

By the above claims, we know that dp(v) = dp(w) = dp(z) = 2. Let T/ =T -V (T,), Th =
T — {vu} + {zu}, and T"” = Ty — {v,w}. Clearly, all these trees are subcubic.

A maximum independent set in 7" that contains y can only be extended in a unique way to a
maximum independent set in 7', and all maximum independent set in 7" that contain y are of that
form. A maximum independent set I’ of T” that does not contain y can be extended to a maximum
independent set I of T in three ways, I' U {u,w}, I' U{u,z} and, I’ U {v,z}, and every maximum
independent set in 1" that does not contain y is of that form.

Similarly, a maximum independent set in 7" that contains y can be extended to a maximum
independent set in 77 in two different ways, and all maximum independent set in 7} that contain y
are of that form. A maximum independent set I’ of T” that does not contain y can be extended to a
maximum independent set I of 77 in three ways, I' U {u,w}, I’ U{u,v} and, I' U {v, 2}, and every
maximum independent set in 77 that does not contain y is of that form. Arguing as in the proof of
Claim [3] we obtain

1 n \/3 2n—3a+1
f0(T) < fo(Th) = fo(T") + fa(T") < (T) -
This final contradiction completes the proof. O
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