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Snarks with special spanning trees

Arthur Hoffmann-Ostenhof, Thomas Jatschka

Abstract

Let G be a cubic graph which has a decomposition into a spanning tree T and a

2-regular subgraph C, i.e. E(T ) ∪E(C) = E(G) and E(T ) ∩E(C) = ∅. We provide

an answer to the following question: which lengths can the cycles of C have if G is

a snark? Note that T is a hist (i.e. a spanning tree without a vertex of degree two)

and that every cubic graph with a hist has the above decomposition.

Keywords: cubic graph, snark, spanning tree, hist, 3-edge coloring.

1 Introduction

For terminology not defined here, we refer to [4]. All considered graphs are finite and

without loops. A cycle is a 2-regular connected graph. A snark is a cyclically 4-edge

connected cubic graph of girth at least 5 admitting no 3-edge coloring. Snarks play a

central role for several well known conjectures related to flows and cycle covers in graph

theory, see [16].

A hist in a graph is a spanning tree without a vertex of degree two (hist is an abbreviation

for homeomorphically irreducible spanning tree, see [2]). A decomposition of a graph H is

a set of edge disjoint subgraphs covering E(H). Note that a cubic graph G has a hist if

and only if G has a decomposition into a spanning tree and a 2-regular subgraph. For an

example of a cubic graph with a hist, respectively, with the above decomposition, see for

instance Figure 7 or Figure 10 where the dashed edges illustrate the 2-regular subgraph.

In general connected cubic graphs need not have a hist. Even cubic graphs with arbitrarily

high cyclic edge-connectivity do not necessarily have a hist, see [12]. We call a snark G

a hist-snark if G has a hist. At first glance hist-snarks may seem very special. However,

using a computer and [6] (see also [5]), we recognize the following,

Theorem 1.1 Every snark with less than 38 vertices is a hist-snark.

Observe that not every snark has a hist. There are at least two snarks with 38 vertices

which do not have a hist, see X1 and X2 in Appendix A3.

The following definition is essential for the entire paper.

Definition 1.2 Let G be a cubic graph with a hist T .

(i) An outer cycle of G is a cycle of G −E(T ).
(ii) Let {C1,C2, ...,Ck} be the set of all outer cycles of G with respect to T , then we denote

by oc(G,T ) = {∣V (C1)∣, ∣V (C2)∣, ..., ∣V (Ck)∣}.
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Note that all vertices of the outer cycles in Definition 1.2 are leaves of the hist. Observe

also that oc(G,T ) is a multiset since several elements of oc(G,T ) are possibly the same

number, see for instance the hist-snark in Figure 10. If we refer to the outer cycles of a

hist-snark, then we assume that the hist of the snark is given and thus the outer cycles are

well defined (a hist-snark may have several hists). This paper answers the following type

of problem. For any m ∈ N, is there a hist-snark with precisely one outer cycle such that

additionally the outer cycle has length m? Corollary 2.10 answers this question and the

more general problem is solved by the main result of the paper:

Theorem 1.3 Let S = {c1, c2, ..., ck} be a multiset of k natural numbers. Then there is a

snark G with a hist T such that oc(G,T ) = S if and only if the following holds:

(i) c1 = 6 or c1 ≥ 10, if k = 1.
(ii) cj ≥ 5 for j = 1,2, ..., k if k > 1.

One of our motivations to study hist-snarks is a conjecture on cycle double covers, see

Conjecture 3.1. Note that this conjecture has recently be shown to hold for certain classes

of hist-snarks, see [13]. Special hist-snarks with symmetric properties can be found in

[10]. For examples of hist-snarks within this paper, see Figures 6, 7, 8, 10 (dashed edges

illustrate outer cycles). For a conjecture which is similar to the claim that every connected

cubic graph G has a decomposition into a spanning tree and a 2-regular subgraph, see the

3-Decomposition Conjecture in [11].

2 On the lengths of outer cycles of hist-snarks

To prove Theorem 1.3, we develop methods to construct hist-snarks. Thereby we use in

particular modifications of the dot product and a handful of computer generated snarks.

In all drawings of this section, dotted thin edges symbolize removed edges whereas dashed

edges illustrate edges of outer cycles. The graphs which we consider may contain multiple

edges.

The neighborhood N(v) of a vertex v denotes the set of vertices adjacent to v and does not

include v itself. The cyclic edge-connectivity of a graph G is denoted by λc(G). Subdividing
an edge e means to replace e by a path of length two.

We define the dot product (see Fig.1) which is a known method to construct snarks, see

[1, 14]. Let G and H be two cubic graphs. Let e1 = a1b1 and e2 = a2b2 be two independent

edges of G and let e3 with e3 = a3b3 be an edge of H with N(a3) − b3 = {x1, y1} and

N(b3) − a3 = {x2, y2}. The dot product G ⋅H is the cubic graph

(G ∪H − a3 − b3 − {e1, e2}) ∪ {a1x1, b1y1, a2x2, b2y2} .

Both results of the next lemma are well known. For a proof of Lemma 2.1(i), see for

instance [16, p. 69]. Lemma 2.1(ii) is folklore (a published proof is available in [1]).

Lemma 2.1 Let G and H be both 2-edge connected cubic graphs, then the following holds

(i) G ⋅H is not 3-edge colorable if both G and H are not 3-edge colorable.

(ii) G ⋅H is cyclically 4-edge connected if both G and H are cyclically 4-edge connected.
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We use a modification of a dot product where {h1, j1, h2, j2} is a set of four distinct

vertices which is disjoint with V (G) ∪ V (H):

Definition 2.2 Set G(e1, e2)●H(e3) ∶= (G⋅H−{a1x1, b1y1})∪{h1, j1, a1h1, h1j1, j1b1, h1x1, j1y1},
G(e1, e2) ●H(e3) ∶= (G ⋅H − {a2x2, b2y2}) ∪ {h2, j2, a2h2, h2j2, j2b2, h2x2, j2y2} and
G(e1, e2)●H(e3) ∶= (G(e1, e2)●H(e3)−{a2x2, b2y2})∪{h2, j2, a2h2, h2j2, j2b2, h2x2, j2y2}, see
Fig.1.
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Figure 1: Constructing the dot product G ⋅H and G(e1, e2) ●H(e3), see Def. 2.2.

The statement of the next proposition is well known, see [15] or [3, proof of Theorem

12] (see also [7, 8]).

Proposition 2.3 Let H be a cubic graph which is constructed from a cubic graph G by

subdividing two independent edges in G and by adding an edge joining the two 2-valent

vertices. Then λc(H) ≥ 4 if λc(G) ≥ 4.

The above result is used for the proofs of the subsequent two lemmas.

Lemma 2.4 Suppose G and H are snarks. Define the three graphs: B1 ∶= G(e1, e2)●H(e3),
B2 ∶= G(e1, e2) ●H(e3) and B3 =∶ G(e1, e2) ●H(e3). Then Bi is a snark for i = 1,2,3.

Proof. If Bi with i = 1,2,3 has a cycle of length less than five, then this cycle must

contain precisely two edges of the cyclic 4-edge cut Ci of Bi where Ci is defined by the

property that one component of Bi −Ci is H −a3 − b3. Since the endvertices of the edges of

Ci do not induce a 4-cycle, Bi has girth at least 5.

It is not difficult to see that Bi results from subdividing two (in the case i = 1,2) or four (in
the case i = 3) independent edges of G ⋅H (namely the edges of Ci) and adding one or two

new edges. Since λc(G ⋅H) ≥ 4 by Lemma 2.1(ii) and since subdividing and adding edges

as described keeps by Proposition 2.3 the cyclic 4-edge connectivity, λc(Bi) ≥ 4.
It remains to show that Bi is not 3-edge colorable. Let G1 be the cubic graph which is

constructed from G by (i) replacing e1 ∈ E(G) by a path of length three (no edge in our

graph is now labeled e1), by (ii) removing the labels a1, b1, by (iii) adding a parallel edge

(to make the graph cubic) and calling this new edge e1, and by (iv) naming the endvertices

of e1, a1 and b1 such that a1 is adjacent to the vertex whose label a1 we removed in step

(ii). Then B1 ≅ G1 ⋅H . Since G1 is by construction clearly not 3-edge colorable and since
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H is a snark, Lemma 2.1(i) implies that B1 is not 3-edge colorable. The remaining cases

B2 and B3 can be verified analogously. ◻

Let e1, e2 in G and e3 in H be defined as at the beginning of this section. Moreover,

suppose that N(b1) = {a1, c, d} and that all three neighbors of b1 are distinct. We define

another modification of the dot product, see also Fig.2.

Definition 2.5 Let q1,q2 be distinct vertices satisfying {q1, q2} ∩ V (G ∪H) = ∅. Set
G(e1, e2)▲H(e3) ∶= (G∪H−a3−b3−{e1, e2, b1c})∪{q1, q2, a1q1, q1b1, b1q2, q2c, q1x1, q2y1, a2x2, b2y2}.
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Figure 2: Constructing the graph G(e1, e2)▲H(e3), see Def. 2.5.

Lemma 2.6 Suppose G and H are snarks, then G(e1, e2)▲H(e3) is a snark.

Proof. By the same arguments as in the proof of Lemma 2.4, the girth of G(e1, e2)▲H(e3)
is at least five. Set X ∶= G ⋅ H . Subdivide in X the edge a1x1 and call the obtained 2-

valent vertex q1, then subdivide the edge b1d and call this now obtained 2-valent vertex

q2, then exchange the labels b1 and q2 and finally add b1q1. Thus we obtain the graph

Y ∶= G(e1, e2)▲H(e3). Since λc(X) ≥ 4 by Lemma 2.1(ii), and since Y is obtained from

X by subdividing two independent edges and by adding an edge joining these vertices,

it follows from Proposition 2.3 that λc(Y ) ≥ 4. It remains to show that Y is not 3-edge

colorable. Let G̃ be the cubic graph which is obtained from G by (i) expanding b1 to a

triangle, by (ii) removing the labels e1, a1 and b1, by (iii) calling the edge of the triangle

which has no endvertex adjacent to d, e1, and by (iv) naming the endvertices of e1, a1 and

b1 such that a1 is adjacent to the vertex whose label a1 we removed in step (ii). Then

G̃ is clearly not 3-edge colorable. By Lemma 2.1(i) and since Y ≅ G̃ ⋅H , Y is not 3-edge

colorable. ◻

The next result shows that two hist-snarks can be combined to generate new hist-snarks.

Theorem 2.7 Let G and H be snarks with hists TG and TH , then the following holds:

(i) There is a snark G′ with a hist T ′ such that oc(G′, T ′) = oc(G,TG) ∪ oc(H,TH).
(ii) Suppose k ∈ oc(G,TG) and l ∈ oc(H,TH), then there is a snark Ĝ with a hist T̂ such

that oc(Ĝ, T̂ ) = (oc(G,TG) ∪ oc(H,TH) ∪ {k + l − 1}) − {k, l}.

Proof. First we prove (i). Choose two edges e1, e2 ∈ E(TG) and choose an edge e3 ∈ E(TH)
such that all four adjacent edges are part of TH . Set G′ ∶= G(e1, e2) ●H(e3). Then G′ is
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a snark by Lemma 2.4. Let T ′ be the subgraph of G′ with E(T ′) = (E(TG) ∪ E(TH) −
{e1, e2, e3, a3x1, a3y1, b3x2, b3y2}) ∪ {a1h1, h1j1, j1b1, a2h2, h2j2, j2b2, h1x1, j1y1, h2x2, j2y2}.
Since TH − a3 − b3 consists of four components, it follows that T ′ is acyclic. It is straight-

forward to verify that T ′ is a hist of G′. Since every outer cycle of G′ is an outer cycle of

G or H , the proof of (i) is finished.

Using Lemma 2.6, we define a snark Ĝ = G(e1, e2)▲H(e3) where e1, e2, e3 are chosen

to satisfy the following properties. In G, let e1 ∈ E(TG), b1c ∈ E(TG) and let e2 ∈ E(G) −
E(TG) be part of an outer cycle of length k, see Fig.2. In H , let b3 be a leaf of an outer

cycle of length l and let e3, a3x1, a3y1 ∈ E(TH). Let T̂ be the the subgraph of Ĝ with

E(T̂ ) ∶= (E(TG) ∪ E(TH) − {e1, b1c, e3, a3x1, a3y1}) ∪ {a1q1, q1b1, b1q2, q2c, q1x1, q2y1}. It is

straightforward to verify that T̂ is a hist of Ĝ. Note that a2x2, b2y2 are contained in an

outer cycle of length k+l−1. Hence, oc(Ĝ, T̂ ) = (oc(G,TG)∪ oc(H,TH)−{k}−{l})∪{k+l−1}
which finishes the proof. ◻

Lemma 2.8 Let G be a snark with a hist TG and let k ∈ oc(G,TG), then each of the

following statements holds:

(i) there is a snark G′ with a hist T ′ such that oc(G′, T ′) = (oc(G,TG) − {k}) ∪ {k + 4}.
(ii) there is a snark G′ with a hist T ′ such that oc(G′, T ′) = oc(G,TG) ∪ {5}.
(iii) there is a snark G′ with a hist T ′ such that oc(G′, T ′) = oc(G,TG) ∪ {6}.
(iv) there is a snark G′ with a hist T ′ such that oc(G′, T ′) = (oc(G,TG)−{k})∪{k+2}∪{7}.

Proof. The endvertices of the edges e1, e2 and e3 and their neighbors are labeled as

defined in the beginning of this section. The Petersen graph is denoted by P10.

(i) Let Ĉ be the 5-cycle, ”the inner star” of the illustrated P10 in Fig.3. Set U ∶=
P10 − E(Ĉ) and let e3 ∈ E(U) with e3 = a3b3 where b3 ∈ V (Ĉ). In G, we choose two

independent edges e1 ∈ E(TG) and e2 /∈ E(TG) where e2 is part of an outer cycle Ck of

length k. Then G′ ∶= G ⋅ P10 is a snark and the subgraph T ′ of G′ with E(T ′) ∶= (E(TG) −
e1)∪{a1x1, b1y1}∪E(U −a3) is a hist of G′, see Fig.3. Since G and G′ have the same outer

cycles with the only exception that Ck is inG and that C ′k+4 ∶= (Ck−e2)∪{a2x2, b2y2}∪(Ĉ−b3)
is in G′, the statement follows.
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Figure 3: Constructing the graph G′ in the proof of Lemma 2.8 (i).

(ii) Let e1, e2 ∈ E(TG) with e1 = a1b1 and e2 = a2b2. Since we could exchange the vertex

labels a2 and b2, we can assume that b1, b2 are in the same component of TG−e2. Define the
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snark G′ ∶= G(e1, e2) ● P10(e3) with e3 ∈ E(P10), see Fig.4. Let C5 and Ĉ5 be two disjoint

5-cycles of P10 with e3 ∈ E(C5) and let x1, x2 ∈ V (C5), see Fig.4. Then the subgraph T ′

of G′ with E(T ′) ∶= (E(TG) − {e1, e2}) ∪ {a1h1, h1j1, j1b1, h1x1, j1y1, a2x2, b2y2} ∪ E(P10) −
(E(Ĉ5) ∪ {a3x1, a3y1, b3x2, b3y2, e3}) is a hist of G′, see Fig.4. Since the set of outer cycles

of G′ consists of Ĉ5 and all outer cycles of G, the statement follows.
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Figure 4: Constructing the graph G′ in the proof of Lemma 2.8 (ii).

(iii) P10 is a hist-snark with one outer cycle, see Fig.7. Since this cycle has length 6,

statement (iii) follows from applying Theorem 2.7(1) by setting H ∶= P10.

(iv) Let e1 = a1b1 be an edge of an outer cycle of length k in G and let e2 ∈ E(TG).
Let B18 denote the Blanusa snark, see Fig.8. Define the snark G′ ∶= G(e1, e2) ●B18(e3) as
illustrated in Fig.5. Note that two outer cycles of lengths 7 and k+2 are presented in Fig.5

by dashed lines. Let B denote the edge set which contains all edges of G′ which are shown

in bold face in Fig.5. It is straightforward to verify that the subgraph T ′ of G′ with E(T ′) ∶=
(E(TG) − {e2}) ∪B is a hist in G′ satisfying oc(G′, T ′) = (oc(G,TG) − {k}) ∪ {k + 2} ∪ {7}.
◻

Definition 2.9 Let S be a multiset of natural numbers, then S∗ denotes the set of all

hist-snarks G which have a hist TG such that oc(G,TG) = S.

For instance, the Blanusa snark B18 satisfies B18 ∈ {10}∗ (see Fig.8) but also satisfies

B18 ∈ {5,5}∗. We leave it to the reader to verify the latter fact. The Petersen graph P10

satisfies P10 ∈ S∗ if and only if S = {6}, see Fig.7.

Corollary 2.10 There is a snark G having a hist T with oc(G,T ) = {k} if and only if k = 6
or k ≥ 10.

Proof. As mentioned above B18 ∈ {10}∗, see Fig.8. By Theorem 2.7 (2) and since

P10 ∈ {6}∗, it follows that {11}∗ /= ∅. The second Loupekine snark denoted by L22 satisfies

L22 ∈ {12}∗, see Fig.6. The hist-snark T (13), see Appendix A1 satisfies T (13) ∈ {13}∗.
Applying Lemma 2.8 (i) to each of these four hist-snarks and proceeding inductively, we

obtain for every natural number k ≥ 10 a hist-snark G satisfying G ∈ {k}∗. Since k =

6
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Figure 5: Constructing the graph G′ in the proof of Lemma 2.8 (iv).

∣V (G)∣/2 + 1 (see Theorem 2 in [12]) and since there is no snark with 10 < k < 18 vertices,

{l}∗ = ∅ for every l ∈ {1,2,3,4,5,7,8,9}. Finally, since P10 ∈ {6}∗ the proof is finished. ◻
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Figure 6: The second Loupekine snark with an outer cycle of length 12.

Lemma 2.11 Let S = {x, y} with x, y ∈ {5,6,7,8}, then S∗ /= ∅.

Proof. By applying Lemma 2.8 (ii),(iii),(iv) by setting G ∶= P10, we obtain that {5,6}∗ /= ∅,
{6,6}∗ /= ∅, {7,8}∗ /= ∅. To avoid more constructions, we used a computer. We refer to

Appendix A1 and Fig.9, where one member of {x, y}∗ denoted by T (x, y) is presented for

the remaining pairs.

Lemma 2.12 Let S = {x, y, z} with x, y, z ∈ {5,6,7,8}, then S∗ /= ∅.

Proof. By Lemma 2.8 (ii), Lemma 2.8 (iii) and Lemma 2.11, S∗ /= ∅ if {5,6} ∩ S /= ∅.
Hence we assume that x, y, z ∈ {7,8}. Suppose 7 ∈ S and let without loss of generality x = 7.
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By Lemma 2.11, {y − 2, z}∗ /= ∅. Applying Lemma 2.8 (iv), we obtain that {7, y, z}∗ /= ∅.
Since there is a snark T (8,8,8) (see Fig.10 in Appendix A2) which is a member of {8,8,8}∗,
the lemma follows. ◻

Note that the illustrated snark in {8,8,8}∗ has a 2π/3 rotation symmetry and a hist

which has equal distance from its central root to every leaf. Such snarks are called rotation

snarks, for an exact definition see [10]. The Petersen graph and both Loupekine’s snarks

(the smallest cyclically 5-edge connected snarks apart from the Petersen graph) are rotation

snarks. All rotation snarks with at most 46 vertices are presented in [10].
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Figure 7: The Petersen graph with an outer cycle of length 6.

Proof of Theorem 1.3. Statement (i) is implied by Corollary 2.10. Statement (ii) is obvi-

ously a necessary condition, otherwise G has girth less than five. Hence it suffices to show

that there is a hist-snark in S∗ if S satisfies (ii).

Suppose S is a counterexample which is firstly minimal with respect to ∣S∣ and secondly

minimal with respect to the largest number in S. Suppose ∣S∣ ≥ 4. Then there is a partition

S = S2 ∪ S3 with ∣S2∣ = 2 and ∣S3∣ = ∣S∣ − 2 ≥ 2. Since the elements of S2, S3 satisfy (ii),

there is by minimality a hist-snark Hi ∈ S∗i , i = 2,3. By Theorem 2.7, there is a hist-snark

in (S2 ∪ S3)∗ = S∗ which is a contradiction. Hence ∣S∣ ∈ {2,3}.
Suppose m ∈ S and m > 8. Set S1 = (S − {m}) ∪ {m − 4}. Obviously the elements of S1

fulfill (ii) and thus there is by minimality a hist-snark H1 ∈ S∗1 . Applying Lemma 2.8 (i) to

S1, we obtain a hist-snark in S∗ which is a contradiction. Thus, S consists of two or three

elements and each of them is contained in {5,6,7,8}. By Lemma 2.11 and Lemma 2.12,

this is not possible. ◻
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Figure 8: The Blanusa snark B18 with an outer cycle of length 10.
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3 Open problems

The following conjecture by the first author, was presented firstly at the 9th Workshop on

the Matthews-Sumner Conjecture and Related Problems in Pilsen in 2017.

Conjecture 3.1 Every hist-snark has a cycle double cover which contains all outer cycles.

The above conjecture is motivated by the following observation on hist-snarks.

Observation 3.2 [9] Let G be a snark with a hist T . Suppose there is a matching M of

G satisfying M ⊆ E(G) −E(T ), and suppose the cubic graph homeomorphic to G −M is

3-edge colorable. Then G has a cycle double cover containing all outer cycles of G.

We omit here a proof of Observation 3.2 since Theorem 3.2 in [13] implies Observation

3.2. Note that Conjecture 3.1 is already known to hold for all hist-snarks which have at

most three outer cycles, see [13].
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4 Appendix

A1. The following hist-snarks are defined by the corresponding hists illustrated below and

the outer cycles whose vertices are presented within brackets in cyclic order.

T (5,5) ∶= [10,15,14,17,16] [2,7,3,8,9]
T (5,7) ∶= [3,15,13,17,16] [10,4,2,21,20,18,11]
T (5,8) ∶= [3,15,13,17,16] [10,4,2,23,22,18,11,21]
T (6,7) ∶= [1,6,7,19,18,22] [4,5,17,13,15,14,10]
T (6,8) ∶= [18,19,14,21,20,23] [1,5,4,2,7,6,24,16]
T (7,7) ∶= [17,13,15,14,10,25,24] [1,6,7,19,2,23,22]
T (8,8) ∶= [12,9,8,29,28,4,5,13] [14,15,18,21,24,26,19,23]
T (13) ∶= [2,19,7,3,15,13,17,5,20,21,11,9,23]

The adjacency lists of the above hist-snarks:

T (5,5) ∶ 0(4,8,12)1(5,6,14)2(4,7,9)3(5,7,8)4(5)6(7,16)8(9)9(11)10(11,15,16)11(13)

12(13,15)13(17)14(15,17)16(17)

T (5,7) ∶ 0(12,14,16)1(5,6,20)2(4,19,21)3(7,15,16)4(5,10)5(17)6(7,8)7(19)8(9,12)

9(11,21)10(11,14)11(18)12(13)13(15,17)14(15)16(17)18(19,20)20(21)
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Figure 9: See Appendix A1, proof of Corollary 2.10 and proof of Lemma 2.11.
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T (5,8) ∶ 0(12,14,16)1(6,20,22)2(4,19,23)3(7,15,16)4(5,10)5(17,20)6(7,8)7(19)

8(9,12)9(11,23)10(14,21)11(18,21)12(13)13(15,17)14(15)16(17)18(19,22)20(21)22(23)

T (6,7) ∶ 0(12,14,16)1(6,20,22)2(4,19,23)3(7,15,16)4(5,10)5(17,20)6(7,8)7(19)

8(9,12)9(11,23)10(14,21)11(18,21)12(13)13(15,17)14(15)16(17)18(19,22)20(21)22(23)

T (6,8) ∶ 0(3,10,22)1(5,13,16)2(4,7,9)3(5,7)4(5,10)6(7,8,24)8(9,12)9(15)10(11)

11(13,20)12(17,25)13(25)14(19,21,22)15(18,21)16(17,24)17(19)18(19,23)20(21,23)22(23)

24(25)

T (7,7) ∶ 0(12,14,16)1(6,20,22)2(4,19,23)3(7,15,16)4(5,10)5(20,24)6(7,8)7(19)

8(9,12)9(11,23)10(14,25)11(18,21)12(13)13(15,17)14(15)16(17)17(24)18(19,22)20(21)

21(25)22(23)24(25)

T (8,8) ∶ 0(8,10,14)1(5,9,11)2(7,16,18)3(13,19,22)4(5,7,28)5(13)6(7,11,29)8(9,29)

9(12)10(11,28)12(13,17)14(15,23)15(17,18)16(17,20)18(21)19(23,26)20(21,27)21(24)

22(25,27)23(25)24(25,26)26(27)28(29)

T (13) ∶ 0(12,14,16)1(6,20,22)2(4,19,23)3(7,15,16)4(5,10)5(17,20)6(7,8)7(19)8(9,12)

9(11,23)10(14,21)11(18,21)12(13)13(15,17)14(15)16(17)18(19,22)20(21)22(23)

A2. T (8,8,8) ∶= [0,3,4,7,18,17,22,21] [1,2,15,12,11,8,5,6] [9,10,23,20,19,16,13,14].
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Figure 10: The hist-snark T (8,8,8) with three outer cycles of length 8.

For the sake of completeness we present the adjacency list of T (8,8,8).
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T (8,8,8) ∶ 0(3,21,24)1(2, 6, 24)2(15, 25)3(4, 25)4(7,26)5(6, 8, 26)6(27)7(18, 27)8(11, 28)

9(10,14,28)10(23, 29)11(12, 29)12(15, 30)13(14,16, 30)14(31)15(31)16(19,32)17(18, 22,32)

18(33)19(20,33)20(23, 34)21(22,34)22(35)23(35)24(36)25(36)26(37)27(37)28(38)29(38)30(39)

31(39)32(40)33(40)34(41)35(41)36(42)37(42)38(43)39(43)40(44)41(44)42(45)43(45)44(45)

A3. The adjacency lists of the hist-free snarks X1, X2 with 38 vertices.

X1 ∶ 0(8,12,18)1(5,9,13)2(4, 14,20)3(5, 7, 8)4(5, 12)6(7, 10, 13)7(14)8(15)9(19, 22)

10(18,24)11(26,34, 36)12(16)13(16)14(17)15(17, 19)16(17)18(21)19(21)20(25, 36)21(27)

22(30,34)23(25,28, 31)24(26,37)25(35)26(32)27(29, 31)28(29, 30)29(32)30(33)31(33)32(33)

34(35)35(37)36(37)

X2 ∶ 0(8,12,18)1(5,9,13)2(4, 14,20)3(5, 7, 8)4(5, 12)6(7, 10, 13)7(14)8(15)9(19, 22)

10(18,24)11(26,34, 36)12(16)13(16)14(17)15(17, 19)16(17)18(21)19(21)20(28, 34)21(27)

22(26,37)23(27,30, 32)24(25,36)25(30, 35)26(33)27(29)28(31, 32)29(31,33)30(31)32(33)

34(35)35(37)36(37)
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