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Abstract

Let φr
H(n) be the smallest integer such that, for all r-graphs G on n vertices,

the edge set E(G) can be partitioned into at most φr
H(n) parts, of which every

part either is a single edge or forms an r-graph isomorphic to H. The function

φ2
H(n) has been well studied in literature, but for the case r ≥ 3, the problem

that determining the value of φr
H(n) is widely open. Sousa (2010) gave an

asymptotic value of φr
H(n) when H is an r-graph with exactly 2 edges, and

determined the exact value of φr
H(n) in some special cases. In this paper, we

first give the exact value of φr
H(n) when H is an r-graph with exactly 2 edges,

which improves Sousa’s result. Second we determine the exact value of φr
H(n)

when H is an r-graph consisting of exactly k independent edges.

∗The work was supported by NNSF of China (No. 11671376) and NSF of Anhui Province (No.

1708085MA18).
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1 Introduction

Given two r-graphs G and H , an H-decomposition of G is a partition of the edge set

of G such that each part is either a single edge or forms an r-graph isomorphic to

H . The minimum number of parts in an H-decomposition of G is denoted by φr
H(G).

The H-decomposition number φr
H(n) is defined as

φr
H(n) = max{φr

H(G) : G is an r-graph with |V (G)| = n}.

An r-graph G with φr
H(G) = φr

H(n) is called an extremal graph of H .

For the case r = 2, we omit the index 2 for short in the paper, for example we write

graph for 2-graph, and φH(n) for φ
2
H(n). The function φH(n) has been well studied

in literature by many researchers. The first exact value of φH(n) when H = K3 was

given by Erdős, Goodman and Pósa [3] in 1966, where Kk is the complete graph on

k vertices. Ten years later, Bollobás [2] generalized the result to H = Kk, k ≥ 3.

Much more exact values of φH(n) can be found in the survey by Sousa [11] in 2015.

Recently, Hou, Qiu and Liu determined the exact values of φH(n) when H is a graph

consisting of k complete graphs of order at least 3 which intersect in exactly one

common vertex [7] and when H is a graph consisting of k cycles of odd lengths which

intersect in exactly one common vertex [8]. An asymptotic value of the function

φH(n) was given by Pikhurko and Sousa [9], and lately the value was improved by

Allen, Böttcher, and Person [1].

For the case r ≥ 3, the study of the function φr
H(n) is widely open. Sousa [10]

gave an asymptotic value of φr
H(n) when H is an r-graph consisting of 2 edges, and

determined the exact value of φr
H(n) in the special cases where the two edges of H

intersect exactly 1, 2 and r−1 vertices. In this paper, we first generalize Sousa’s result

in [10], that is we obtain the exact value of φr
H(n) when H is an r-graph consisting

of exactly 2 edges. Second we focus on the case that H is the r-graph consisting of

exactly k independent edges, and we determine the exact value of φr
H(n) in this case.

Given positive integer n, r and k with n ≥ r ≥ 2, let Kr
n be a complete r-graph

on n vertices and let Kr
n − ℓe be a graph obtained from Kr

n by deleting ℓ edges from

Kr
n, where ℓ is an integer so that 0 ≤ ℓ ≤ k − 1 and e(Kr

n − ℓe) ≡ k − 1 (mod k).

Note that ℓ is determined uniquely by n, r and k. Let Kr
n,k be the family of r-graphs

Kr
n − ℓe. The followings are our main results.

Theorem 1. Given integers r, k satisfying 0 ≤ k ≤ r − 1. Let H be an r-graph

consisting of exactly 2 edges which intersect k vertices. If n ≥ 2r − k, then φr
H(n) =

2



⌈

1
2

(

n

r

)⌉

. Moreover, graphs G ∈ Kr
n,2 and G = Kr

n if
(

n

r

)

≡ 0 (mod 2) are extremal

graphs of H.

Theorem 1 improves Sousa’s result in [10].

Theorem 2. Given integers k ≥ 1, r ≥ 2 and n0 = kr(k + r − 2) + 2r − 1, let H be

an r-graph on n vertices consisting of exactly k independent edges. If n ≥ n0 then

φr
H(n) =

{

⌊

1
k

(

n

r

)⌋

+ k − 1, if
(

n

r

)

≡ k − 1 (mod k);
⌊

1
k

(

n

r

)⌋

+ k − 2, otherwise.

Furthermore, G is an extremal graph of H if and only if G ∈ Kr
n,k or G = Kr

n if
(

n

r

)

≡ k − 2 (mod k).

The proofs of Theorems 1 and 2 will be given in Sections 2 and 3, respectively.

Before giving the proofs, we first introduce some definitions and notation. Let H be

an r-graph with vertex set V (H) and E(H). For a vertex v ∈ V (H), the degree of

v, denoted by dH(v), is the number of edges of H containing v, and the minimum

degree of H is denoted by δ(H). The matching number of H is the maximum number

of independent edges in H . We write e(H) for the number of edges of H , that is

e(H) = |E(H)|.

2 Proof of Theorem 1

We need some basic facts in algebraic graph theory. A graph G is called vertex-

transitive if its automorphism group acts transitively on V (G). Given nonnegative

integers n, r and k, let J(n, r, k) be the graph with vertex set E(Kr
n), where two

vertices are adjacent if and only if their intersection has size k. For n ≥ r, the graphs

J(n, r, r− 1) and J(n, r, 0) are known as the Johnson graphs and the Kneser graphs,

respectively.

Fact 1 (See page 9 and page 35 in [5]). (1) J(n, r, k) has
(

n

r

)

vertices, and each vertex

has degree
(

r

k

)(

n−r

r−k

)

.

(2) The graphs J(n, r, k) are vertex-transitive.

(3) If n ≥ r ≥ k, J(n, r, k) ∼= J(n, n− r, n− 2r + k).

Lemma 3 (Theorem 3.5.1 in [5]). If G is a connected vertex-transitive graph, then

G has a matching that misses at most one vertex.
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Lemma 4 (Theorem 2.3 in [10]). Let H be a fixed r-graph with 2 edges and G an

r-graph with n vertices. Then φr
H(G) ≤ φr

H(K
r
n).

Proof of Theorem 1: Lemma 4 implies that φr
H(n) = φr

H(K
r
n). So, to prove the

result, it is sufficient to show that φr
H(K

r
n) = ⌈1

2

(

n

r

)

⌉. Clearly, φr
H(K

r
n) ≥ ⌈1

2

(

n

r

)

⌉ as

e(H) = 2. To prove φr
H(K

r
n) ≤ ⌈1

2

(

n

r

)

⌉, it is sufficient to find an H-decomposition of

Kr
n with ⌈1

2

(

n

r

)

⌉ parts.

By the definition of J(n, r, k), Kr
n has an H-decomposition with ⌈1

2

(

n

r

)

⌉ parts is

equivalent to the statement that J(n, r, k) has a matching missing at most one vertex.

By (3) of Fact 1, we may assume n ≥ 2r. If k = 0 and n = 2r, then J(2r, r, 0) consists

of exactly 1
2

(

n

r

)

independent edges, so the statement holds.

Now we assume k > 0 or n > 2r. By (2) of Fact 1, J(n, r, k) is vertex-transitive.

Hence, by Lemma 3, to show J(n, r, k) has a matching missing at most one vertex,

it is sufficient to show that J(n, r, k) is connected. That is, we need to show that

any pair of vertices e, f of J(n, r, k) are connected. Suppose |e ∩ f | = i. We prove

e and f are connected by induction on i. If i = r, then statement is trivial. If

i = r − 1, assume e = {1, 2, . . . , r − 1, r} and f = {1, 2, . . . , r − 1, r + 1}. Then ehf

with h = {1, 2, . . . , k, r+2, . . . , 2r+1− k} is a walk connecting e and f in J(n, r, k).

So the result is true for the base case. Now suppose i < r − 1 and the statement is

true for any large i. By symmetry, one could assume that e = {1, 2, . . . , r− 1, r} and

f = {1, 2, . . . , i, r+1, . . . , 2r− i}. Let h = {1, . . . , i, i+1, r+1, . . . , 2r− i−1}. Then

|e ∩ h| = i + 1 > i and |f ∩ h| = r − 1 > i. By induction hypothesis, e and h (resp.

f and h) are connected in J(n, r, k). By the transitivity of connectivity, e and f are

connected in J(n, r, k).

3 Proof of Theorem 2

We need two known theorems to prove our result. Given graphs G and H , we say G

has an H-factor if G contains
⌊

|V (G)|
|V (H)|

⌋

vertex-disjoint copies of H .

Theorem 5 (Hajnal, Szemerédi [6]). Let k be a positive integer. If G is a graph on

n vertices with minimum degree

δ(G) ≥ (1−
1

k
)n,

then G has a Kk-factor.
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Theorem 6 (Frankl [4]). If H is an r-graph on n vertices with matching number of

size k and n ≥ (2k + 1)r − k, then

e(H) ≤

(

n

r

)

−

(

n− k

r

)

.

Proof of Theorem 2: Let G be an r-graph on n ≥ n0 vertices with φH(G) = φH(n).

Let pH(G) denote the maximum number of pairwise edge-disjoint copies of H in G.

Then we have

φH(G) = e(G)− (k − 1)pH(G). (1)

If we remove the edges of pH(G) pairwise edge-disjoint copies of H from G, then we

obtain an H-free graph, that is a graph with matching number at most k− 1. Hence

by Theorem 6, we have

(

n

r

)

−

(

n− k + 1

r

)

≥ e(G)− kpH(G). (2)

On the other hand,

φH(G) ≥ φH(K
r
n) ≥

1

k

(

n

r

)

. (3)

From (1), (2) and (3), we have

e(G) ≥

(

n

r

)

− (k − 1)

[(

n

r

)

−

(

n− k + 1

r

)]

. (4)

Now we define an auxiliary graph LG as follows: let V (LG) = E(G) and two

vertices e1, e2 ∈ V (LG) is adjacent if and only if e1 ∩ e2 = ∅ in G. Hence the edge set

of a copy of H in E(G) induces a clique of order k in LG. Therefore, a collection of

edge-disjoint copies of H in G corresponds to a collection of vertex-disjoint Kk in LG.

Claim 1. LG has a Kk-factor. In particular, LKr

n
−ℓe has a Kk-factor for every ℓ with

0 ≤ ℓ ≤ k − 1 .

Proof of the claim: By definition of LG, we have

δ(LG) ≥

(

n− r

r

)

−

[(

n

r

)

− e(G)

]

.

By Theorem 5, it suffices to show that

(

n− r

r

)

−

[(

n

r

)

− e(G)

]

≥ (1−
1

k
)e(G),
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that is

e(G) ≥ k

[(

n

r

)

−

(

n− r

r

)]

. (5)

To show (5), by (4) it suffices to show

(

n

r

)

− (k − 1)

[(

n

r

)

−

(

n− k + 1

r

)]

≥ k

[(

n

r

)

−

(

n− r

r

)]

,

that is, we need to show

k

(

n− r

r

)

+ (k − 1)

(

n− k + 1

r

)

≥ (2k − 2)

(

n

r

)

. (6)

By the inequality

(

n−t

r

)

(

n

r

) ≥

(

n− t− r + 1

n− r + 1

)r

≥ 1−
rt

n− r + 1
, (r ≥ t ≥ 0)

and n ≥ n0 = kr(k + r − 2) + 2r − 1, it can be easily check that (6) holds. This

completes the proof of the claim.

Now suppose e(G) ≡ i (mod k) and e(G) = tk + i (0 ≤ i ≤ k − 1) for some

t ≤ ⌊ 1
k

(

n

r

)

⌋. By Claim 1, pH(G) = t and hence by (1), we have φH(G) = t + i. In

particular,

φr
H(K

r
n − ℓe) =

{

⌊

1
k

(

n

r

)⌋

+ k − 1, if
(

n

r

)

≡ k − 1 (mod k)
⌊

1
k

(

n

r

)⌋

+ k − 2, otherwise
.

If
(

n

r

)

≡ k − 1 (mod k), then φr
H(n) = φr

H(G) = t + i ≤
⌊

1
k

(

n

r

)⌋

+ k − 1, and the

equality holds if and only if G = Kr
n ∈ Kr

n,k. Otherwise, φr
H(n) = φr

H(G) = t + i ≤
⌊

1
k

(

n

r

)⌋

+ k − 2, the equality holds if and only if t = ⌊ 1
k

(

n

r

)

⌋ − 1 and i = k − 1 or

t = ⌊ 1
k

(

n

r

)

⌋ and i = k−2, in the former case G ∈ Kr
n,k and in the latter case it happens

if and only if G = Kr
n and

(

n

r

)

≡ k − 2 (mod k).

4 Concluding Remarks

In this paper we determine the exact value of of φr
H(n) whenH is an r-graph consisting

of exactly 2 edges or consisting of exactly k INDEPENDENT edges. We believe that

Theorem 2 still holds when H consists of exactly k edges which intersect the same

set of size i (0 ≤ i ≤ r − 1), we leave this as an open problem.
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Question 7. Is the following statement true? Given integers k ≥ 1, r ≥ 2, let

H be an r-graph consisting of exactly k edges which intersect the same set of size i

(0 ≤ i ≤ r − 1). If n is sufficiently large, then

φr
H(n) =

{

⌊

1
k

(

n

r

)⌋

+ k − 1, if
(

n

r

)

≡ k − 1 (mod k);
⌊

1
k

(

n

r

)⌋

+ k − 2, otherwise.
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