EHRHART POLYNOMIALS WITH NEGATIVE COEFFICIENTS

TAKAYUKI HIBI, AKIHIRO HIGASHITANI, AKIYOSHI TSUCHIYA AND KOUTAROU YOSHIDA

ABSTRACT. It is shown that, for each $d \ge 4$, there exists an integral convex polytope \mathcal{P} of dimension d such that each of the coefficients of n, n^2, \ldots, n^{d-2} of its Ehrhart polynomial $i(\mathcal{P}, n)$ is negative.

In his talk of the Clifford Lectures at Tulane University, 25–27 March 2010, Richard Stanley gave an Ehrhart polynomial with a negative coefficient. More precisely, the polynomial $\frac{13}{6}n^3 + n^2 - \frac{1}{6}n + 1$ is the Ehrhart polynomial of the tetrahedron in \mathbb{R}^3 with vertices (0,0,0), (1,0,0), (0,1,0) and (1,1,13). See [1, Example 3.22]. His talk naturally inspired us to find integral convex polytopes of dimension ≥ 4 whose Ehrhart polynomials possess negative coefficients. Consult [3, Part II] and [4, pp. 235–241] for fundamental materials on Ehrhart polynomials.

A convex polytope is called *integral* if any of its vertices has integer coordinates. Let $\mathcal{P} \subset \mathbb{R}^N$ be an integral convex polytope of dimension d and $\partial \mathcal{P}$ the boundary of \mathcal{P} . We introduce the function $i(\mathcal{P}, n)$ by setting

$$i(\mathcal{P}, n) = \sharp(n\mathcal{P} \cap \mathbb{Z}^N), \text{ for } n = 1, 2, \dots,$$

where $n\mathcal{P} = \{n\alpha : \alpha \in \mathcal{P}\}\)$ and where $\sharp(X)$ is the cardinality of a finite set X. The study on $i(\mathcal{P}, n)$ originated in Ehrhart [2] who showed that $i(\mathcal{P}, n)$ is a polynomial in n of degree d with $i(\mathcal{P}, 0) = 1$. Furthermore, the coefficients of n^d and n^{d-1} of $i(\mathcal{P}, n)$ are always positive ([1, Corollary 3.20 and Theorem 5.6]). We say that $i(\mathcal{P}, n)$ is the Ehrhart polynomial of \mathcal{P} .

The purpose of the present paper is, for each $d \ge 4$, to show the existence of an integral convex polytope of dimension d such that each of the coefficients of n, n^2, \ldots, n^{d-2} of its Ehrhart polynomial $i(\mathcal{P}, n)$ is negative. In fact,

Theorem 1. Given an arbitrary integer $d \ge 4$, there exists an integral convex polytope \mathcal{P} of dimension d such that each of the coefficients of n, n^2, \ldots, n^{d-2} of the Ehrhart polynomial $i(\mathcal{P}, n)$ of \mathcal{P} is negative.

Our proof of Theorem 1 will be given after preparing Lemmata 2 and 3.

Lemma 2. Let $\mathcal{P} \subset \mathbb{R}^N$ be an integral convex polytope of dimension d and $i(\mathcal{P}, n)$ its Ehrhart polynomial. Then, given an arbitrary integer k > 0, there exists an

²⁰¹⁰ Mathematics Subject Classification: Primary 52B20; Secondary 52B11.

Keywords: integral convex polytope, Ehrhart polynomial, δ -vector.

integral convex polytope $\mathcal{P}'_k \subset \mathbb{R}^{N+1}$ of dimension d+1 whose Ehrhart polynomial is equal to $(kn+1)i(\mathcal{P},n)$.

Proof. It follows immediately that the Ehrhart polynomial $i(\mathcal{P}'_k, n)$ of the integral convex polytope $\mathcal{P}'_k = \mathcal{P} \times [0, k] \subset \mathbb{R}^{N+1}$ coincides with $(kn+1)i(\mathcal{P}, n)$. \Box

Lemma 3. Let d and j be integers with $d \ge 5$ and $3 \le j \le d-2$, and

$$g(d,j) = (d-3)^2 {d-3 \choose j-1} - {d-3 \choose j-3}.$$

Then one has g(d, j) > 0.

Proof. Since $d \ge 5$, one has $g(d,3) = (d-3)^2 \binom{d-3}{2} - 1 > 0$ and $g(d,d-2) = (d-3)^2 - \binom{d-3}{2} > 0$. Thus g(d,j) > 0 for j = 3 and j = d-2. Especially the assertion is true for d = 5 and d = 6.

We now work with induction on d. Let $d \ge 7$ and $4 \le j \le d - 3$. Then

$$g(d,j) = ((d-4)^2 + 2d - 7) \left(\binom{d-4}{j-1} + \binom{d-4}{j-2} \right) - \left(\binom{d-4}{j-3} + \binom{d-4}{j-4} \right)$$
$$= g(d-1,j) + g(d-1,j-1) + (2d-7)\binom{d-3}{j-1}.$$

It follows from the assumption of induction that g(d-1,j) + g(d-1,j-1) > 0. Hence g(d,j) > 0, as desired.

Proof of Theorem 1. It is known [1, Example 3.22] that, given an arbitrary integer $m \ge 1$, there exists an integral convex polytope \mathcal{Q}_m of dimension 3 with

$$i(\mathcal{Q}_m, n) = \frac{m}{6}n^3 + n^2 + \frac{-m+12}{6}n + 1.$$

Given an arbitrary integer $d \ge 4$, applying Lemma 2 with k = d - 3 repeatedly yields an integral convex polytope $\mathcal{P}_m^{(d)}$ of dimension d such that

$$i(\mathcal{P}_m^{(d)}, n) = ((d-3)n+1)^{d-3}i(\mathcal{Q}_m, n)$$
$$= ((d-3)n+1)^{d-3} \left(\frac{m}{6}n^3 + n^2 + \frac{-m+12}{6}n + 1\right)$$

Let $i(\mathcal{P}_m^{(d)}, n) = \sum_{i=0}^d c_i^{(d,m)} n^i$ with each $c_i^{(d,m)} \in \mathbb{Q}$. Then $c_1^{(d,m)} = \frac{-m+12}{6} + A_1, \qquad c_2^{(d,m)} = 1 + \frac{-m+12}{6} A_1 + A_2$

$$c_j^{(d,m)} = \frac{m}{6}A_{j-3} + A_{j-2} + \frac{-m+12}{6}A_{j-1} + A_j, \qquad 3 \le j \le d-2,$$

where

$$A_{i} = (d-3)^{i} \binom{d-3}{i}_{2}, \qquad 0 \le i \le d-2.$$

Now, since each A_j is independent of m, it follows that each of $c_1^{(d,m)}$ and $c_2^{(d,m)}$ is negative for m sufficiently large. Let $3 \leq j \leq d-2$. One has

$$c_{j}^{(d,m)} = -\frac{A_{j-1} - A_{j-3}}{6}m + (A_{j-2} + 2A_{j-1} + A_{j})$$
$$= -(d-3)^{j-3}\frac{g(d,j)}{6}m + (A_{j-2} + 2A_{j-1} + A_{j}),$$

where g(d, j) is the same function as in Lemma 3. Since g(d, j) > 0, it follows that $c_j^{(d,m)}$ can be negative for m sufficiently large. Hence, for m sufficiently large, the integral convex polytope $\mathcal{P}_m^{(d)}$ of dimension d enjoys the required property. \Box

We conclude this paper with

Remark 4. The polynomial

$$i(\mathcal{Q}_m, n) = \frac{m}{6}n^3 + n^2 + \frac{-m + 12}{6}n + 1$$
$$= \frac{1}{6}(n+1)(mn^2 + (6-m)n + 6)$$

has a real positive zero for m sufficient large. Hence $i(\mathcal{P}_m^{(d)}, n)$ has a real positive zero for m sufficient large.

Thus in particular, for m sufficient large and for an arbitrary integral convex polytope \mathcal{Q} , the Ehrhart polynomial $i(\mathcal{P}_m^{(d)} \times \mathcal{Q}, n)$ of $\mathcal{P}_m^{(d)} \times \mathcal{Q}$ also possesses a negative coefficient.

We are grateful to Richard Stanley for his suggestion on real positive roots of Ehrhart polynomials.

References

- M. Beck and S. Robins, "Computing the Continuous Discretely," Undergraduate Texts in Mathematics, Springer, 2007.
- [2] E. Ehrhart, "Polynômes Arithmétiques et Méthode des Polyèdres en Combinatoire," Birkhäuser, Boston/Basel/Stuttgart, 1977.
- [3] T. Hibi, "Algebraic Combinatorics on Convex Polytopes," Carslaw Publications, Glebe NSW, Australia, 1992.
- [4] R. P. Stanley, "Enumerative Combinatorics, Volume 1," Wadsworth & Brooks/Cole, Monterey, Calif., 1986.

TAKAYUKI HIBI, DEPARTMENT OF PURE AND APPLIED MATHEMATICS, GRADUATE SCHOOL OF INFORMATION SCIENCE AND TECHNOLOGY, PE OSAKA UNIVERSITY, TOYONAKA, OSAKA 560-0043, JAPAN

E-mail address: hibi@math.sci.osaka-u.ac.jp

Akihiro Higashitani, Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail address: a-higashitani@cr.math.sci.osaka-u.ac.jp

Akiyoshi Tsuchiya, Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail address: u619884k@ecs.osaka-u.ac.jp

Koutarou Yoshida, Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan

E-mail address: u912376b@ecs.osaka-u.ac.jp