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Abstract

Two celebrated conjectures in chromatic symmetric function theory concern the

positivity chromatics symmetric functions of claw-free graphs. Here we extend the

claw-free idea to general graphs and consider the e-positivity question for H-free

graphs where H = {claw, F} and H ={claw, F , co-F}, where F is a four-vertex

graph. We settle the question for all cases except H ={claw, co-diamond}, and we

provide some partial results in that case.

1 Introduction

A key area of investigation in symmetric function theory concerns the e-positivity, and/or
Schur positivity, of a particular class of symmetric functions. In chromatic symmetric
function theory there are two celebrated conjectures in this regard that focus on claw-free
graphs, where the claw is the four-vertex bipartite graph K1,3 (see Figure 3). One con-
jecture, due to Stanley and Stembridge [12], hypothesizes that the chromatic symmetric
function of a claw-free incomparabilty graph is e-positive. The second conjecture, due to
Stanley [10] with credit to Gasharov, hypothesizes that the chromatic symmetric function
of a claw-free graph is Schur positive (for definitions see Section 2).

In parallel to this, in graph theory, much effort has been spent in characterizing the
chromatic characteristics of graphs that are H-free, where H is some set of induced
subgraphs. A key question in this domain is, can the chromatic number of a H-free graph
be determined in polynomial time? This answer is known for large classes of graphs, but,
interestingly, the classification for all combinations of subgraphs with four vertices (of
which the claw is obviously one) is not yet complete [7]. Thus, combining these two areas,
it is a natural question to generalize the claw-free conjectures and ask about other H-free
graphs: “For which H-free graphs are their chromatic symmetric functions e-positive?”
and to ask in particular, “For whichH-free graphs are their chromatic symmetric functions
e-positive, where H is the claw along with one other four-vertex graphs?” Obviously
the corresponding Schur positivity questions would be subcases of the Gasharov-Stanley
conjecture.
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Set H Positivity Reference

claw, P4 e-positive [13]
claw, paw e-positive Theorem 3.2

claw, co-paw e-positive Theorem 3.3
claw, co-diamond unknown unknown
claw, diamond not necessarily e-positive Lemma 3.1
claw, co-claw not necessarily e-positive Lemma 3.1
claw, K4 not necessarily e-positive Lemma 3.1
claw, 4K1 not necessarily e-positive Lemma 3.1
claw, C4 not necessarily e-positive Lemma 3.1
claw, 2K2 not necessarily e-positive Lemma 3.1

Figure 1: Table of e-positivity of pairs of four-vertex graphs

Formally, let H be a set of four-vertex graphs. By abuse of notation we say a graph
is e-positive if its chromatic symmetric function is e-positive. Then we want to know for
which sets H of four-vertex graphs, an H-free graph is e-positive (or not). There are
eleven graphs on four vertices, see Figure 3. The claw is not e-positive, since XK1,3

=
e4 + 5e3,1 − 2e2,2 + e2,1,1, and we include it always as part of H (as an aside, note that
some intuition as to why the claw is not e-positive can be gained by considering partition
dominance and the concept of nice graphs, as defined in Stanley [9]). We consider two
different directions.

First, H ={claw, F} for F a single four-vertex graph. By using an example of Stanley,
given here in Figure 4, we see that this example does not contain diamond, co-claw, K4,
4K1, C4, or 2K2, and we can thus show that a graph that is free of claw paired with
each of these is not necessarily e-positive. The remaining four-vertex graphs are P4, paw,
co-paw, and co-diamond. By a result of Tsujie [13], if H contains a claw and a P4, then
H-free graphs are e-positive. In this paper we show that if H contains a paw, or if H
contains a co-paw, then H-free graphs are e-positive. Thus the only outstanding case of
H ={claw, F} is H ={claw, co-diamond}. In Section 3 we present some partial results
on this case. We summarize the H ={claw, F} results in Table 1.

Second, H ={claw, F , co-F}, where F is a single four-vertex graph and co-F is the
graph complement of F . Again, the Stanley example, Figure 4, takes care of a number
of cases and our theorems in Section 3 handle all but one of the rest. The last case,
H ={claw, diamond, co-diamond} is handled by a case-by-case argument.

2 Background and Notation

The original interest in claw-free graphs in the context of chromatic symmetric functions
stems from Conjecture 5.1 of Stanley and Stembridge [12]. This interest can be traced
farther back to another historically significant conjecture, the Goulden-Jackson immanant
conjecture [3], that hypothesizes that the expansion of the immanant of the Jacobi-Trudi
matrix has nonnegative coefficients (the immanant is similar to a determinant but with
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Set H Positivity Reference

claw, P4 e-positive [13]
claw, paw, co-paw e-positive Theorem 5.2

claw, diamond, co-diamond e-positive Theorem 5.1
claw, co-claw not necessarily e-positive Lemma 3.1
claw, C4, 2K2 not necessarily e-positive Theorem 5.3
claw, K4, 4K1 not necessarily e-positive Theorem 5.3

Figure 2: Table of e-positivity of claw plus F and co-F .
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paw
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•
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• •

•

4K1
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• •

•

co-diamond
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• •

•

2K2

•
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•

co-paw
•

• •

•

co-claw

Figure 3: All four-vertex graphs
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the sign replaced by another symmetric group character). This conjecture was proved
soon after by Curtis Greene [4]. Related to this, Stanley and Stembridge [12] investigated
conjectures involving the positivity of coefficients in immanants and conjectured that if a
poset is (3 + 1)-free, then the chromatic symmetric function of its incomparability graph
is e-positive (see Stanley [9] or Stanley and Stembridge [12] for definitions).

Gasharov [2] proved that the chromatic symmetric functions of the incomparability
graphs of (3 + 1)-free posets are Schur positive. Note that if a symmetric function is e-
positive it is necessarily Schur positive, but not the other way around, so this is a weaker
result than the one asked for. The e-positivity of the chromatic symmetric function of
the incomparability graph of a (3 + 1)-free poset remains open, although there has been
much progress on this question, see Guay-Paquet [5].

We now turn to some definitions. Further details on definitions and notation can be
found in Stanley [11]. A coloring of the set of vertices V of some graph G = (V,E) is
a function κ from V to the positive integers Z

+: κ : V → Z
+. A coloring κ is proper

if κ(u) 6= κ(v) whenever vertex u is not adjacent to vertex v. Chromatic symmetric
functions were defined by Stanley [9] as a generalization of the chromatic polynomial.
Indeed, if x1 = x2 = x3 = . . . = 1, this expression reduces to the chromatic polynomial
for a graph.

Definition 2.1. For a graph G with vertex set V = {v1, v2, . . . , vN} and edge set E, the
chromatic symmetric function is defined to be

XG =
∑

κ

xκ(v1)xκ(v2) · · ·xκ(vN )

where the sum is over all proper colorings κ of G.

A partition λ = (λ1, λ2, . . . λℓ) of a positive integer n is a nondecreasing sequence of
positive integers: λ1 ≥ λ2 ≥ . . . ≥ λℓ, where λi is called the ith part of λ, 1 ≤ i ≤ ℓ. The
transpose, λ′, of λ, is defined by its parts: λ′

i = |{j : λj ≥ i}|. The elementary symmetric
function, ei(x), is defined as

ei(x) =
∑

j1<j2<···<ji

xj1 · · ·xji

and the elementary symmetric function, eλ(x), is defined as eλ(x) = eλ1
eλ2

. . . eλℓ
.

The Schur function is another common symmetric functions. There are a number of
useful definitions of the Schur functions, but the easiest in this context is one in terms of
the elementary symmetric functions: sλ(x) = det(eλ′

i−i+j(x))1≤i,j≤λ1
where if λ′

i−i+j < 0
then eλ′

i−i+j(x) = 0.
Both the set of elementary symmetric functions and the set of Schur functions each

form a basis for the algebra of symmetric functions (for details, see Stanley[11]). If a given
symmetric function can be written as a nonnegative linear combination of elementary
(resp. Schur) symmetric functions we say the symmetric function is e-positive (resp. Schur
positive).

In graph theory we often discuss the idea of an H-free graph. Define H-free to be
the class of graphs that do not contain any graph is H as an induced subgraph. Let Pk
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be the chordless path on k vertices and Ck be the chordless cycle on k vertices. The
complete graph Kn is the graph on n vertices such that there is an edge between all pairs
of vertices. The graph K3 is called the triangle, and it’s complement, which is 3K1, three
vertices with no edges at all, is called the co-triangle. A stable set is a set S of vertices of
a graph such that there are no edges between any of the vertices in S, e.g. a co-triangle
is a stable set of size 3. The notation α(G) denotes the number of vertices in the largest
stable set of G.

We will make use of a number of known results concerning chromatic symmetric func-
tions and e-positivity. These lemmas are as follows:

Lemma 2.2. [9, Proposition 2.3] If a finite simple graph G is a disjoint union of sub-
graphs G1 ∪G2, then XG = XG1

XG2
.

Lemma 2.3. [1, Theorem 8] XKn
= n!en.

Lemma 2.4. [9, Proposition 5.3] XPk
is e-positive.

Lemma 2.5. [9, Proposition 5.4] XCk
is e-positive.

Lemma 2.6. [11, Exercise 7.47j] If G is co-triangle-free, G is e-positive.

Moreover, we also employ a number of results from the graph theory literature:

Theorem 2.7. [13, Theorem 1.5] If G is (claw, P4)-free, then XG is e-positive.

Theorem 2.8. [8] If G is paw-free, then every connected component of G is triangle-free
or is a complete multipartite graph.

We will also need the following statement of the structure of (claw,triangle)-free graphs.

Lemma 2.9. If G is (claw, triangle)-free, then each component of G is a chordless path
or cycle, i.e. G = Pk or G = Ck.

Proof of Lemma 2.9. Let T be a component of G. Suppose T contains a chordless
cycle C. Since G is triangle-free, we may assume C has at least four vertices. If every
vertex of T lies on C, then we are done. So we may assume there is a vertex v ∈ T − C

that has a neighbor c in C. If v is adjacent to a neighbor c′ of c on C, then T contains
a triangle with vertices v, c, c′; otherwise c is the center of a claw in T . Now, we may
assume T contains no cycle, that is, T is a tree, but a claw-free tree has maximum degree
at most two and so is necessarily a chordless path. ✷
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• • • •

•

•

3− sun

Figure 4: Example from Stanley [9] of a graph that is not e-positive.

3 H ={claw, F}

We are now ready to show which (claw, F )-free graphs G, for F a single four-vertex graph,
can guarantee that XG is e-positive; however, we begin with a negative result that will
eliminate a number of cases:

Lemma 3.1. A graph that is H-free for H equal to {claw, diamond}, {claw, K4}, {claw,
4K1}, {claw, C4}, {claw, 2K2}, or {claw, co-claw}, is not necessarily e-positive.

Proof. Consider the graph G which is the 3-sun graph (Figure 4). Note that G is
(claw,K4)-free, (claw, diamond)-free, (claw, C4)-free, (claw, 4K1)-free, (claw, 2K2)-free,
and (claw, co-claw)-free; however, recall from Stanley [9] that the chromatic symmetric
function for the 3-sun is

XG = 6e3,2,1 − 6e3,3 + 6e4,1,1 + 12e4,2 + 18e5,1 + 12e6,

implying XG is not e-positive.

Theorem 3.2. If G is (claw, paw)-free, then XG is e-positive.

Proof. We prove by induction on the number of vertices. Let G be (claw, paw)-free. If G
is disconnected, then by the induction hypothesis, each component of G is e-positive and
so by Lemma 2.2, G is e-positive. So we may assume G is connected. By Theorem 2.8
(Olariu’s theorem), G is triangle-free or is a complete multipartite graph. By Lemma 2.9,
G is either Pk or Ck, or G is a complete multipartite graph.

If G is Pk or Ck, then by Lemma 2.4 or Lemma 2.5, G is e-positive. If G is a complete
multipartite graph, since G is also claw-free we have α(G) ≤ 2. It then follows from
Lemma 2.6 that G is e-positive. Therefore, (claw, paw)-free graphs are e-positive.

Theorem 3.3. If G is (claw, co-paw)-free, then XG is e-positive.

Proof. We prove by induction on the number of vertices. Let G be (claw, co-paw)-free. If
G is disconnected, then G is the join of two vertex sets VA and VB. Since G is claw-free, we
have α(VA) ≤ 2 and α(VB) ≤ 2, and thus α(G) ≤ 2, and so G is e-positive by Lemma 2.6.
Thus, we may assume G is connected.
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By Theorem 2.8, G is the graph Pk or Ck, or G is the complement of a complete
bipartite graph. If G is Pk or Ck, then α(G) ≤ 2, which implies G is e-positive by
Lemma 2.6. If G is the complement of a complete bipartite graph, then G is a disjoint
union of cliques. So, G is e-positive by Lemma 2.2 and Lemma 2.3.

The last four-vertex graph F to consider is the co-diamond. However, there is no
straightforward decomposition that allows us to handle this case. To this end, we will
make some observations about the structure of (claw, co-diamond)-free graphs in the next
section.

4 The structure of (claw, co-diamond)-free graphs

In this section, we study the structure of (claw, co-diamond)-free graphs.

Lemma 4.1. Let G be a co-diamond-free graph that is disconnected. Then

• Each component of G is a clique, or

• G is the union of a complete multipartite graph and the graph K1.

Proof. Let G be a co-diamond-free graph that is disconnected. We may assume some
component C of G is not a clique, for otherwise we are done. So C contains a P3 as
induced subgraph. If G has at least three components, then G − C contains a 2K1 and
this 2K1 together with an edge of C induce a co-diamond, a contradiction. So G has
exactly two components. Let C ′ be the component different from C. If C ′ contains an
edge, then this edge and the two end-points of the P3 in C from a co-diamond. So C ′ is the
graph K1. The component C cannot contain a co-P3 as induced subgraph, for otherwise
this co-P3 and C ′ form a co-diamond. Since a connected graph without co-P3 must be a
complete multipartite graph, the Lemma follows.

Lemma 4.2. If a (claw, co-diamond)-free graph G is disconnected, then G is e-positive.

Proof. Let G be a (claw, co-diamond)-free graph that is disconnected. We will rely on
Lemma 4.1. If each component of G is a clique, the G is e-positive by Lemma 2.2 and
Lemma 2.3. So we may assume G is the union of a complete multipartite graph M and the
graph K1. Since G is claw-free, we have α(M) ≤ 2, and so M is e-positive by Lemma 2.6.
It follows from Lemma 2.2 that G is e-positive.

Lemma 4.3. If a (claw, co-diamond)-free graph G has α(G) ≥ 4, then G is e-positive.

Proof. We use a result of Lozin and Malyshev (Lemma 9 in [7]) that shows a (claw, co-
diamond)-free graph G with α(G) ≥ 4 must be a stable set. For the sake of completeness,
we are going to provide a proof of this statement. Let G be a (claw, co-diamond)-free
graph G with α(G) ≥ 4. Consider a stable set S that has at least four vertices and is
maximal (that is, not belonging to a larger stable set). Consider any vertex v ∈ G−S, if
such a vertex exists. Vertex v must have a neighbor in S by the maximality of S. If v has
at least three neighbors in S, then G contains a claw, otherwise G contains a co-diamond.
So G must be S. Clearly, a stable set is e-positive.
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So we only need to consider (claw, co-diamond)-free graphs G that are connected and
have α(G) ≤ 3 (4K1-free). If G is triangle-free, then by Lemma 2.9, G is e-positive.
Similarly, if G is co-triangle-free, then G is e-positive. So, we have α(G) = 3. Suppose
G contains a triangle and co-triangle. Let us name the vertices of the co-triangle a, b, c.
Since G is co-diamond-free, any vertex not in the co-triangle must be joined to two vertices
in the co-triangle (if it is joined to none we get a 4K1, if it is joined to one then we get
a co-diamond, and if it is joined to three then we get a claw). Let the set Sx,y be the
vertices adjacent to the two vertices x, y of the co-triangle. This means that (claw, co-
diamond)-free graphs which are not known to be e-positive from the previous theorems
have the structure depicted in Figure 5 (we will call such graphs peculiar).

•

•

•
a b

c

Sa,b

Sa,c Sb,c

Figure 5: The structure of a connected (claw, co-diamond)-free graph that is not known
to be e-positive. The three black vertices are the co-triangle. Each oval represents a
subgraph, with each vertex in subgraph being joined to the two corresponding vertices of
the co-triangle. At least two ovals are non-empty.

Now that we understand the structure of (claw, co-diamond)-free graphs, we can
consider adding additional restrictions to the graph. In the following theorems we explore
the e-positivity question for (claw, co-diamond, F )-free graphs for F a four-vertex graph.

Theorem 4.4. If G is (claw, co-diamond, P4)-free, (claw, co-diamond, paw)-free, or
(claw, co-diamond, co-paw)-free, then XG is e-positive.

Proof. This follows directly from Theorems 2.7, 3.2, and 3.3.

Theorem 4.5. If G is (claw, co-diamond, diamond)-free or (claw, co-diamond, co-claw)-
free, then XG is e-positive.

Proof. Let G have a structure defined in Figure 5. If G is (claw, co-diamond, diamond)-
free, then the vertices in each oval is a stable set (if Sx,y contains an edge, then this edge
and {x, y} form a diamond). Similarly, if G is (claw, co-diamond, co-claw)-free, then each
oval is a stable set (if Sx,y contains an edge, then this edge form a co-claw with {x, z}
where z is the vertex of the co-triangle different from x and y). However, if there are
three or more vertices in a oval then there exists an induced claw. Therefore each oval
can have a maximum of two vertices.
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Since G is connected, there must be two non-empty ovals. There are seven base cases
to consider when placing vertices in each oval. For each of these base graphs, the number
of possible edges (between the ovals) each graph can have are also noted:

• one vertex in two ovals (one possible edge)

• two vertices in an oval, one vertex in another oval (two possible edges)

• two vertices in two ovals (four possible edges)

• one vertex in all three ovals (three possible edges)

• two vertices in an oval, one vertex in the remaining two ovals (five possible edges)

• two vertices in two ovals, one vertex in the remaining oval (eight possible edges)

• two vertices in all three ovals (twelve possible edges)

For each of the cases, there are a finite number of possible graphs. For each of these
graphs, we check if the graph is (claw, co-diamond, diamond)-free/(claw, co-diamond,
co-claw)-free and if it has an induced triangle. If it meets these requirements, we then
check whether the XG is e-positive.

Since the number of total cases is relatively small, they are easily verifiable through
the use of a computer program. Combining every possible case listed above, there are
only 36 graphs (including isomorphic cases) which are (claw, co-diamond, diamond)-free
or (claw, co-diamond, co-claw)-free and have an induced triangle, and all of them are
e-positive.

Thus, for (claw, co-diamond, H)-free graphs, there are only three remaining cases
to consider: (claw, co-diamond, C4)-free, (claw, co-diamond, 2K2)-free, and (claw, co-
diamond, K4)-free.

Observation 4.6. If a peculiar graph G is (claw, co-diamond, C4)-free, then each oval
induces a clique.

Proof. Suppose G is (claw, co-diamond, C4)-free. If Sx,y contains two non-adjacent ver-
tices u, v, then the set {x, y, u, v} induces a C4.

Consider the graph G of Figure 5. We will call G the generalized pyramid if every oval
is a clique and there are all edges between any two ovals, see Figure 6.

Lemma 4.7. If a peculiar graph G is (claw, co-diamond, 2K2)-free, then G is the gener-
alized pyramid.

Proof. Let G be a peculiar (claw, co-diamond, 2K2)-free graph. Suppose there are non-
adjacent vertices u, v with u ∈ Sa,b and v ∈ Sb,c, then the set {a, u, c, v} induces a
2K2. Thus, there are all edges between any two ovals. Suppose Sa,b contains two non-
adjacent vertices u, v. Assume without loss of generality that Sb,c is non-empty. Then,
for any vertex x ∈ Sb,c, the set {x, a, b, c} induces a claw. So G must be the generalized
pyramid.
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•

•

•
a b

c

Sa,b

Sa,c Sb,c

Figure 6: The generalized pyramid graph.

Lemma 4.8. If a peculiar graph G is (claw, co-diamond, K4)-free, then G has at most
18 vertices.

Proof. Consider a peculiar graph G is (claw, co-diamond, K4)-free. Consider the oval
Sa,b. Now, let T be a set with three vertices in Sa,b. If T is a stable set, the T and a

induce a claw. If T is a clique, then T and a induce a K4. So Sa,b contains no triangle,
and no co-triangle. It follows from a folklore (Ramsey’s theorem) that Sa,b has at most
five vertices. So G has at most 5 + 5 + 5 + 3 = 18 vertices.

By Lemma 4.8, there are a finite number of graphs to verify. Brute force checking is
theoretically possible, but it is infeasible unless further properties of (claw, co-diamond,
K4)-free graphs are discovered.

5 H ={claw, F , co-F}

We can also consider which graphs are e-positive which are (claw, H, co-H)-free. Referring
back to Figure 3, we see that:

• K4 is complementary to 4K1

• diamond is complementary to co-diamond

• C4 is complementary to 2K2

• paw is complementary to co-paw

• claw is complementary to co-claw

• P4 is self-complementary.

The case of the (claw, P4)-free graphs was settled by Tsujie [13]. The remaining five cases
are settled by the results of this paper.
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Theorem 5.1. If G is (claw, diamond, co-diamond)-free, then XG is e-positive.

Proof. By Theorem 4.5, XG is e-positive.

Theorem 5.2. If G is (claw, paw, co-paw)-free, then XG is e-positive.

Proof. By Theorem 3.2 and Theorem 3.3, XG is e-positive.

Theorem 5.3. If G is (claw, K4, 4K1)-free, (claw, C4, 2K2)-free, or (claw, co-claw)-free,
then XG may not be e-positive.

Proof. Use the 3-sun graph in Figure 4 and the same reasoning as in Lemma 3.1.

6 Concluding Remarks

We have considered the e-positivity question for the chromatic symmetric functions for
two different classes of H-free graphs: H = {claw, F} and H ={claw, F , co-F}, where
F is a four-vertex graph. In the case of H = {claw, F} there are ten different cases
to consider, of which one of these, the case H = {claw, P4}, was previously proved e-
positive by Tsujie [13]. Here we settle eight of the remaining cases, leaving just the case
of H ={claw, co-diamond}. Based on our results and our investigations towards a result
for H ={claw, co-diamond}, we propose the following two open problems:

Open Problem 6.1. Are generalized pyramids e-positive?

Open Problem 6.2. Are (claw, co-diamond)-free graphs e-positive?
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