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Abstract. We present a new non-existence proof for the strongly regular graph G with parameters
(76, 21, 2, 7), using the unit vector representation of the graph.
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1. Introduction

A graph G is said to be strongly regular with parameters (v, k, λ, µ) if the following
condition holds: G has v vertices (i.e., |V (G)| = v) and, for u,w ∈ V (G), the number
of common neighbours of u and w in G is k if u = w (so G is regular of valency k), λ if
u and w are adjacent, and µ if u and w are non-adjacent. Strongly regular graphs are
among the central objects in graph theory and its applications. We write srg(v, k, λ, µ)
for any strongly regular graph with parameters (v, k, λ, µ).

Haemers [4] proved non-existence of srg(76, 21, 2, 7). His proof is very efficient, and it
relies on edge counting to establish that such G must locally be a union of 3-cliques. This
means that G is the collinearity graph of a point-line geometry pg(3, 6, 1) (a generalized
quadrangle of order (3, 6)). At this point Haemers quotes the non-existence result for
pg(3, 6, 1) by Dixmier and Zara [2]. (A shorter proof for non-existence of pg(3, 6, 1) was
provided by van Lint and Brouwer [6]1.)

In this note, we give an alternative proof of Haemers’ theorem based on the well-
known fact that every distance regular graph (and in particular, every strongly regular
graph) admits a Euclidean realization as a set of unit vectors in an eigenspace of the
adjacency matrix of G. In this realization, the value of the inner product of two vectors
(the cosine of the angle between them) is fully determined by the mutual distance of
the corresponding vertices. This is encoded in the so-called cosine sequence. Note that
the eigenvalues of the adjacency matrix, dimension of each eigenspace, and the cosine
sequence can be easily deduced from the parameters of G via the readily available
formulas (for example, see [3]).

There are many open cases of strongly regular graphs even for relatively small values
of v (see the table of feasible parameters up to v = 100 in [1]). Of course, the aim of
our project is to contribute to one of the open cases. In this sense, the proof in this
note is just a sample of things to come. However, we think that even this taster proof
demonstrates efficiency of the method and it exhibits interesting features, such as the

1We thank the referee for pointing this out to us.
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relation to root systems, which arise in our proof not once, but twice. (We refer the
reader to [5] for the definition and classification of root systems.)

Just like Haemers, we aim to show that G is locally a union of cliques. However,
once we arrive there, we do not stop, but rather use our unit vector setup to achieve an
outright contradiction. In this sense, we also provide an alternative proof of the result
of Dixmier and Zara.

2. Starting point

Suppose G is srg(76, 21, 2, 7). Then the adjacency matrix of G has eigenvalues 21, 2,
and −7 with multiplicities 1, 56, and 19, respectively. We focus on the 19-dimensional
eigenspace corresponding to the eigenvalue −7. The cosine sequence for this eigenspace
is (1,−1

3
, 1
9
). This means that our graph G can be realized as a set of 76 unit vectors xv,

v ∈ V (G), in the Euclidean space R19 such that (xu, xv) = −1
3

if the distinct vertices u

and v are adjacent, and (xu, xv) = 1
9
, if they are not.

From now on we identify vertices of G with the corresponding unit vectors. Hence
we simply write u and v in place of xu and xv.

3. Neighbourhood

Fix an arbitrary u ∈ V (G). The subgraph induced on the 21 vertices in G1(u) is a
union of cycles C1, . . . , Cr, since its degree λ is 2, where Gl(u) = {x ∈ V (G) : d(x, u) =
l}, l = 1, 2. Let us slightly alter vectors v ∈ G1(u) to make them perpendicular to u.
Namely, we set v̂ := 3

2
v + 1

2
u for each v ∈ G1(u). Clearly, (u, v̂) = 3

2
(u, v) + 1

2
(u, u) =

3
2
(−1

3
)+ 1

2
1 = 0, as desired. Also, for v, w ∈ G1(u), we have (v̂, ŵ) = 9

4
(v, w)+ 3

4
(u,w)+

3
4
(v, u) + 1

4
(u, u) = 9

4
(v, w)− 1

4
. Therefore,

(v̂, ŵ) =

 2, if v = w,
−1, if v and w are adjacent,

0, if they are not adjacent.

Let Vi := 〈v̂ | v ∈ V (Ci)〉 be the subspace of R19 spanned by the vectors corresponding
to the vertices of the ith cycle Ci in G1(u). It follows from the above inner product
values that u ⊥ Vi for all i and that Vi ⊥ Vj for all i 6= j.

Lemma 3.1. Let V (Ci) = {v1, v2, . . . , vt}. Then we have:

(i) v̂1 + v̂2 + · · ·+ v̂t = 0; and
(ii) dimVi = t− 1.

Proof. (i) Let v̂ = v̂1 + v̂2 + · · · + v̂t. Then, for each j, we have that (v̂, v̂j) = 0, since
v̂j itself contributes 2 to the sum, and its two neighbours contribute −1 each, while all

the other vertices of Ci contribute naught. Therefore, (v̂, v̂) =
∑t

j=1(v̂, v̂j) = 0, proving
that v̂ = 0.
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(ii) Assuming that the vertices v1, v2, . . . , vt appear in this order on the cycle Ci, let
At−1 be the Gram matrix of the vectors v̂1, v̂2, . . . , v̂t−1. Then

At−1 =


2 −1 0 0 . 0
−1 2 −1 0 . 0

0 −1 2 −1 . 0
. . . . . .
0 . . −1 2 −1
0 . . . −1 2

 .

Let dt−1 be the determinant of At−1. Viewing r = t − 1 as variable, we obtain the
recursive relation dr = 2dr−1 − dr−2 by expanding the determinant along the bottom
row. Taking into account that d1 = 2 and d2 = 3, we easily deduce that dr = r+ 1 6= 0,
and so v̂1, v̂2, . . . , v̂t−1 are linearly independent. �

We included this proof for completeness; however, we need to mention that these
facts are well known. Indeed, the matrix above is the Gram matrix of a basis from the
root system of type At−1, and if we add the missing vector v̂t then this gives the basis
of the affine root system Ãt−1.

We now focus on a vertex w from G2(u) and study the µ = 7 neighbours of w in
G1(u). Let si be the number of such neighbours on the cycle Ci.

Lemma 3.2. The length ti of Ci is a multiple of 3; namely, ti = 3si.

Proof. Let again V (Ci) = {v1, v2, . . . , vt}, where t = ti, and v̂ = v̂1 + v̂2 + · · ·+ v̂t.
Note that (v̂j, w) = (3

2
vj + 1

2
u,w) = 3

2
(vj, w) + 1

2
(u,w). If w is adjacent to vj, this

results in −1
2

+ 1
18

= −4
9
, and otherwise, the result is 1

6
+ 1

18
= 2

9
. Now consider the

equality
0 = (0, w) = (v̂, w) = (v̂1, w) + (v̂2, v) + · · ·+ (v̂t, x).

Since w is adjacent to s = si vertices and non-adjacent to t− s vertices, we obtain from
here that

0 = −4

9
s+

2

9
(t− s),

which gives t = 3s, as claimed. �

4. Second layer

We alter the vertices in G2(u) in a similar way to make them perpendicular to u. For
w ∈ G2(u), we set ŵ := 9

4
w− 1

4
u. Then (ŵ, u) = 9

4
1
9
− 1

4
1 = 0, as claimed. Similarly, we

compute, for v, w ∈ G2(u),

(v̂, ŵ) =

 5, if v = w,
−7

4
, if v adjacent to w,

1
2
, if v is not adjacent to w.

Finally, we also compute, and also in a very similar way, the inner products (v̂, ŵ) for
v ∈ G1(u) and w ∈ G2(u). These are:

(v̂, ŵ) =

{
−1, if v is adjacent to w,

1
2
, if v is not adjacent to w.

Recall that every vertex w ∈ G2(u) has seven neighbours in G1(u). Let us first
describe the subgraph M = Mw induced on these seven vertices.

Lemma 4.1. Each connected component of M is of size 1 or 2.
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Proof. If xyz is a 2-path in M , with x 6= z, then uxwz is a 4-cycle in G1(y), a contra-
diction with Lemma 3.2 with y in place of u. �

If x is a size 1 component of M then the projection px of ŵ to the 1-space spanned

by x̂ coincides with (ŵ,x̂)
(x̂,x̂)

x̂ = −1
2
x̂. Hence (px, px) = 1

4
(x̂, x̂) = 1

2
. If xy is a size 2

component of M then by symmetry the projection pxy of ŵ to the subspace spanned by
x̂ and ŷ is a multiple of d = x̂+ ŷ. Note that (d, d) = (x̂+ ŷ, x̂+ ŷ) = 2− 1− 1 + 2 = 2

and (ŵ, d) = (ŵ, x̂ + ŷ) = −1 − 1 = −2. Hence pxy = (ŵ,d)
(d,d)

d = −d, and so (pxy, pxy) =

(−d,−d) = (d, d) = 2.
Projections corresponding to different components of M are orthogonal. Hence, if we

have k components of size 2 and, correspondingly, 7 − 2k components of size 1 then
the length of the projection of ŵ to the subspace of V spanned by all x̂ for x ∈ M , is
2k+ 1

2
(7−2k) = 2k−k+ 7

2
= k+ 7

2
. Since this must be at most (ŵ, ŵ) = 5, we conclude

that k = 0 or 1.
Consider one of the cycles C = Ci of length t = ti and N = C ∩M consisting of

s = si vertices. We know that t = 3s. Let U = Vi, the subspace spanned by the vectors
v̂ for v ∈ C, and let p be the projection of ŵ onto U .

Lemma 4.2. We have (p, p) ≥ s
2
. Furthermore, (p, p) = s

2
if and only if the vertices of

N are evenly spaced in C, containing every third vertex along C, and p = −1
2

∑
v∈N v̂.

Proof. Let p′ be the projection of ŵ to the subspace spanned by v̂ for v ∈ N . Then
certainly (p, p) ≥ (p′, p′) with equality holding if and only if p = p′. The graph induced
on N consists of several components of M . The computation before the lemma shows
that a component of size 1 contributes 1

2
to (p′, p′) and a component of size 2 contributes

2 > 2 · 1
2
. Hence (p, p) ≥ (p′, p′) ≥ s · 1

2
= s

2
, as claimed. Furthermore, the equality only

holds when every component is of size 1 and also p = p′ =
∑

v∈N pv = −1
2

∑
v∈N v̂. In

particular, N is an independent subset of C. Taking a vertex x ∈ C \ N , we see that
1
2

= (ŵ, x̂) = (p, x̂) = (p′, x̂) = −1
2
(
∑

v∈N v̂, x̂) = −1
2
(−m), where m is the numbers of

vertices of N adjacent to x. This shows that m = 1 for every x ∈ C \N , and hence the
graph induced by N is evenly spaced in C.

Conversely, if N is evenly spaced then (p′, x̂) = 1
2

= (ŵ, x̂) for every x ∈ C \ N and

(p′, x̂) = −1
2
(x̂, x̂) = −1

2
· 2 = −1 = (ŵ, x̂) for every x ∈ N . Hence p = p′. �

We now assume that k = 1 and focus on the cycle C = Ci containing the only
component ofM of size 2. Without loss of generality, we may assume that C = v1v2 · · · vt
and v1v2 is the size 2 component of N = C ∩M .

Clearly, t ≥ 6 and it follows from Lemma 3.1 that t ≤ 15, since dimV ≤ 18. Also, it
follows from Lemma 4.2 that the length (p, p) of the projection of ŵ onto the subspace
U corresponding to C is at most 5− 1

2
(7− s) = s+3

2
.

Lemma 4.3. If w is adjacent to v1 and v2 then ŵ ∈ V , p = −(v̂1+v̂2)+
∑s−1

m=1
1
2
(v̂3m+1+

v̂3m+2), and (p, p) = s+3
2
. Furthermore, Nm = Cm ∩M is evenly spaced in Cm for each

m 6= i.

Proof. The set of t− 4 = 3s− 4 vertices {v4, v5, . . . , vt−1} consists of s− 2 vertices from
N (neighbours of w) and (3s− 4)− (s− 2) = 2(s− 1) other vertices (non-neighbours).
Let us view the s − 2 neighbours as dividers splitting the non-neighbours into s − 1
connected parts Rj of size r1, r2, . . . , rs−1. Let d = v̂1 + v̂2 and, for j = 1, . . . , s − 1,
we set dj =

∑
v∈Rj

v̂. We let U ′ be the subspace of U spanned by d, d1, . . . , ds−1 and
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let p′ be the projection of ŵ onto U ′. Then, clearly, (p, p) ≥ (p′, p′) and, since the
vectors d, d1, . . . , ds−1 are pairwise orthogonal and of length 2, we have that p′ = −d+
1
4

∑s−1
j=1 rjdj, which means that (p′, p′) = 2 + 1

8

∑s−1
j=1 r

2
j . Hence, to find the minimum of

the latter, we need to minimize
∑s−1

j=1 r
2
j under the restriction that

∑s−1
j=1 rj = 2(s− 1).

Clearly, the minimum is achieved when all rj are equal, that is when all rj are equal to
2(s−1)
s−1 = 2. The minimum value (p′, p′) is, therefore, 2 + 1

8
(s− 1)22 = 2 + s−1

2
= s+3

2
.

Hence s+3
2
≥ (p, p) = (p′, p′) ≥ s+3

2
. Clearly, this means that p = p′ is of length s+3

2
,

and so every part Rj is of size 2, which leads to the vectors in the statement of the
lemma. Also for every cycle Cm other than C we must have the minimum length value
sm
2

and so the vertices Cm ∩M must be evenly spaced in Cm. �

Let us adopt the following terminology: the vectors d = v̂i + v̂i+1 will be called pairs,
while the edge vivi+1 will be called the base of the pair d. Using these terms, p in
the lemma above is the sum of the unique minus-pair −(v̂1 + v̂2) and s − 1 half-pairs
1
2
(v̂3m+1 + v̂3m+2).

Lemma 4.4. Every cycle Ci in G1(u) has length 3.

Proof. Suppose, by contradiction, that C = Ci = v1v2 . . . vt has length t ≥ 6. In G1(v1),
u is adjacent to vt and v2, which are not adjacent to each other. Hence vtuv2 is part of
a cycle D in G1(v1) of length at least 6. Let w 6= u be the second neighbour of v2 in D,
and let w′ 6= v2 be the second neighbour of w in D. Note that w is adjacent to v1 and v2,
and hence ŵ is as in Lemma 4.3. In particular, p = −(v̂1 + v̂2) +

∑s−1
j=1

1
2
(v̂3j+1 + v̂3j+2)

is the projection of ŵ to the subspace U = Vi.
We obtain a contradiction by computing (ŵ, ŵ′). Since w and w′ are adjacent vertices

in G2(u) (note that w and w′ are not adjacent to u, since D has length at least 6), the
value of the inner product must be −7

4
. On the other hand, we can estimate the value as

follows. Recall that ŵ ∈ V by Lemma 4.3 and so ŵ =
∑r

j=1 pj, where pj is the projection

of ŵ to the subspace Vj corresponding to the cycle Cj in G1(u). We already know p = pi
and, by Lemmas 4.3 and 4.2, if j 6= i then pj = −1

2

∑
v∈Nj

v̂, where Nj = M ∩ Cj is

evenly spaced in Cj. It follows that (ŵ, ŵ′) =
∑r

j=1(pj, ŵ
′). Clearly, w′ is adjacent to

v1 but not to v2. Hence (−(v̂1 + v̂2), ŵ
′) = −(−1 + 1

2
) = 1

2
. Consider now a half-pair

1
2
(v̂3m+1 + v̂3m+2). If w′ is adjacent to both v3m+1 and v3m+2 then ŵ′ is described as in

Lemma 4.3 with the minus-pair base − v3m+1v3m+2. This means, however, that v1v2
is the base of a half-pair for w′. Hence w′ cannot be adjacent to v1, a contradiction.
Therefore, w′ is adjacent to at most one of v3m+1 and v3m+2. If w′ is adjacent to one
of these then (1

2
(v̂3m+1 + v̂3m+2), ŵ

′) = 1
2
(−1 + 1

2
) = −1

4
. If w′ is adjacent to neither of

them then (1
2
(v̂3m+1 + v̂3m+2), ŵ

′) = 1
2
(1
2

+ 1
2
) = 1

2
. Hence the smallest possible value

of (p, ŵ′) is 1
2

+ (s − 1)(−1
4
) = 3

4
− s

4
. In all Cj 6= C, w is adjacent to 7 − s vertices v,

and for each such vertex, v̂ appears in ŵ with coefficient −1
2
. If w′ is adjacent to v then

this gives contribution −1
2
(−1) = 1

2
to the value of (ŵ, ŵ′). If w′ and v are not adjacent

then the contribution is −1
2
1
2

= −1
4
. Hence the smallest possible contribution from all

vectors v̂ appearing in ŵ, where v 6∈ C, is (7 − s)(−1
4
) = −7

4
+ s

4
. Putting all of the

above together, we conclude that (ŵ, ŵ′) ≥ (3
4
− s

4
) + (−7

4
+ s

4
) = −1. This clearly is a

contradiction since (ŵ, ŵ′) = −7
4
. �
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5. Contradiction

Vertices and 4-cliques of G form a point-line geometry. It follows from Lemma 4.4
that every point lies in seven lines and then, using the parameters of G, it is easy to
deduce that this geometry is a generalized quadrangle of order (3, 6), which cannot exist
due to a theorem of Dixmier and Zara [2]. However, with the wealth of information
that we have collected, we can achieve a quick contradiction without using [2].

Let T = S⊥, where S is the span of the vectors in {u}∪G1(u). That is, S = 〈u〉⊕V .
Since all cycles in G1(u) are of length 3, Lemma 3.1 shows that dimS = 1 + 7 · 2 = 15,
and so dimT = 19− 15 = 4.

If w ∈ G2(u) then the projection of ŵ onto V coincides with −1
2

∑
v∈M v̂ and it has

length 7
2
. It follows that the projection of ŵ onto T has length 5− 7

2
= 3

2
. Let w◦ denote

2√
3

times the projection of ŵ onto T . Then (w◦, w◦) = 2. We now compute (w◦, (w′)◦)

for distinct w,w′ ∈ G2(u).
If w and w′ are adjacent then (ŵ, ŵ′) = −7

4
. Note that the edge ww′ lies in a unique

4-clique and so w and w′ have a unique common neighbour in G1(u). It follows that if
p and p′ are the projections of ŵ and ŵ′ onto V then (p, p′) = 1

2
+ 6(−1

4
) = −1. Hence

(w◦, (w′)◦) = 4
3
(−7

4
+ 1) = −1.

If w and w′ are non adjacent then (ŵ, ŵ′) = 1
2
. Let β the the number of common

neighbours of w and w′ in G1(u). Then (p, p′) = β 1
2

+ (7 − β)(−1
4
) = −7

4
+ 3β

4
and

(w◦, (w′)◦) = 4
3
(1
2
− (−7

4
+ 3β

4
)) = 3− β.

To summarize, if w,w′ ∈ G2(u) and β = |G1(u) ∩G1(w) ∩G1(w
′)| then

(w◦, (w′)◦) =

 2, if w = w′,
−1, if w and w′ are adjacent,
3− β, if and w and w′ are non-adjacent.

Clearly, it follows that 1 ≤ β ≤ 5.
Notice that the above values of inner products mean that all vectors w◦, w ∈ G2(u)

are contained in a root system in T . Indeed, since all values are integers, the vectors
w◦ span an integral lattice and all vectors of length 2 from that lattice form a simply
laced root system.

The largest simply laced root system in dimension 4 is D4 having 24 vectors splitting
into 12 pairs of opposite roots. Since |G2(u)| = 54 > 4 · 12, we must have five vertices
{w1, . . . , w5} such that all vectors (wi)

◦ belong to the same pair of opposite roots.

Lemma 5.1. There is no strongly regular graph with parameters (76, 21, 2, 7).

Proof. Consider the five vertices {w1, . . . , w5} such that all vectors (wi)
◦ are in the

same pair of opposite roots {r,−r}. Without loss of generality, let the first s ≥ 3 of the
vectors (wi)

◦ be r and the remaining 5− s be −r.
From the calculations above, the vertices wi are pairwise non-adjacent. Furthermore,

if (wi)
◦ = (wj)

◦ then w and w′ have exactly one common neighbour in G1(u), and if
(wi)

◦ = −(wj)
◦ then wi and wj have exactly five common neighbours in G1(u).

If s 6= 5 then (w5)
◦ = −r and so both w1 and w2 must have five neighbours among

the seven vertices from M = G1(u)∩G1(w5). However, this means that w1 and w2 have
at least two common neighbours in M ; a contradiction. Therefore, s = 5 and any two
vectors wi and wj share a unique common neighbour in G1(u).

For the final contradiction, note that there are at most three 3-cycles in G1(u) where
w1, w2, and w3 may have common neighbours. It follows that there are at least four



ON THE NON-EXISTENCE OF SRG(76, 21, 2, 7) 7

3-cycles C where w1, w2 and w3 are adjacent to the three distinct vertices of C. This
means that, in each of these 3-cycles C, the vertex w4 would have the same neighbour
as one of the vertices w1, w2, and w3. Clearly, this means that w4 must share at least
two common neighbours with one of the vectors w1, w2, or w3; a contradiction. �
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