A note on saturation for Berge- G hypergraphs

Maria Axenovich* ${ }^{*} \quad$ Christian Winter ${ }^{\ddagger}$

October 31, 2018

Abstract

For a graph $G=(V, E)$, a hypergraph H is called Berge- G if there is a hypergraph H^{\prime}, isomorphic to H, so that $V(G) \subseteq V\left(H^{\prime}\right)$ and there is a bijection $\phi: E(G) \rightarrow E\left(H^{\prime}\right)$ such that for each $e \in E(G), e \subseteq \phi(e)$. The set of all Berge- G hypergraphs is denoted $\mathcal{B}(G)$.

A hypergraph H is called Berge- G saturated if it does not contain any subhypergraph from $\mathcal{B}(G)$, but adding any new hyperedge of size at least 2 to H creates such a subhypergraph.

Since each Berge- G hypergraph contains $|E(G)|$ hypergedges, it follows that each Berge- G saturated hypergraph must have at least $|E(G)|-1$ edges. We show that for each graph G that is not a certain star and for any $n \geq|V(G)|$, there are Berge- G saturated hypergraphs on n vertices and exactly $|E(G)|-1$ hyperedges. This solves a problem of finding a saturated hypergraph with the smallest number of edges exactly.

1 Introduction

For a graph $G=(V, E)$, a hypergraph H is called Berge- G if there is a hypergraph H^{\prime}, isomorphic to H, so that $V(G) \subseteq V\left(H^{\prime}\right)$ and there is a bijection $\phi: E(G) \rightarrow E\left(H^{\prime}\right)$ such that for each $e \in E(G), e \subseteq \phi(e)$. The set of all Berge- G hypergraphs is denoted $\mathcal{B}(G)$.

Here, for a graph or a hypergraph F, we shall always denote the vertex set of F as $V(F)$ and the edge set of F as $E(F)$. A copy of a graph F in a graph G is a subgraph of G isomorphic to F. When clear from context, we shall drop the word "copy" and just say that there is an F in G.

Several classical questions regarding Berge- G hypergraphs have been considered. Among those are extremal numbers for Berge- G hypergraphs measuring the largest number of hyperedges or the largest weight of hypergraphs on n vertices that contain no subhypergraph from $\mathcal{B}(G)$, see for example [5, 9, 6, 11]. In addition, Ramsey numbers for Berge- G hypergraphs have been considered in [1, 8, 7].

In this paper, we consider a saturation problem. Let \mathcal{F} be a class of hypergraphs with edges of size at least two. A hypergraph \mathcal{H} is called \mathcal{F} saturated if it does not contain any subhypergraph isomorphic to a member of \mathcal{F}, but adding any new hyperedge of size at least 2 to \mathcal{H} creates such a subhypergraph.

Saturation problem for families of k-uniform hypergraphs has been treated by Pikhurko [12], see also [13]. Pikhurko [12] proved in particular, that for any k-uniform hypergraph G there is an n-vertex k-uniform hypergraph H that is $\{G\}$ saturated and has $O\left(n^{k-1}\right)$

[^0]edges. This extends a result of Kászonyi and Tuza 10 who proved this fact for $k=2$, i.e., for graphs. See also a survey of Faudree et al. 4. Here $\{G\}$ saturated means that H has no subhypergraph isomorphic to G but adding any new hyperedge of size k creates such a subhypergraph. This result is asymptotically tight for some G. The determination of a smallest size for $\{G\}$-saturated hypergraphs remains open in general. In the same setting of k-uniform hypergraphs, English et al. [2] proved that there are $\mathcal{B}_{k}(G)$ saturated hypergraphs on n vertices and $O(n)$ hyperedges, where $\mathcal{B}_{k}(G)$ is the set of all k-uniform Berge- G hypergraphs, $3 \leq k \leq 5$. See also English et al. [3], for Berge saturation results on some special graphs.

We restrict our attention to the non-uniform case and Berge- G hypergraphs. For $n \geq$ $|V(G)|$, let the saturation number for a Berge- G hypergraph be defined as

$$
\operatorname{sat}(n, \mathcal{B}(G))=\min \{|E(\mathcal{H})|: \mathcal{H} \text { is a } \mathcal{B}(G) \text { saturated hypergraph on } n \text { vertices }\}
$$

Observe that for any nontrivial graph G,

$$
\operatorname{sat}(n, \mathcal{B}(G)) \geq|E(G)|-1
$$

Since no Berge- G hypergraph has hyperedges of sizes less than 2, we can assume that all hypergraphs considered have hyperedges of sizes at least 2 . We further assume that graphs considered have no isolated vertices. The following is the main result of this paper:

Theorem 1. Let $G=(V, E)$ be a graph with no isolated vertices, $n \geq|V(G)|$, and $m=$ $|E(G)|-1$. Then

$$
\operatorname{sat}(n, \mathcal{B}(G))= \begin{cases}|E(G)|, & \text { if } G \text { is a star on at least four edges, } \\ |E(G)|-1, & \text { otherwise. }\end{cases}
$$

Moreover if G_{1} is a star on at least 4 edges and G_{2} is any other graph, then $\mathcal{H}_{t}(n)$ and $\mathcal{H}(n, m)$ are a Berge $-G_{1}$ and a Berge- G_{2} saturated hypergraphs, respectively.

For a positive integer n, let $[n]=\{1,2, \ldots, n\}$. We shorten $\{i, j\}$ as $i j$ when clear from context. If F is a hypergraph and e is a hyperedge, we denote by $F+e, F-e$, a hypergraph obtained by adding e to F, deleting e from F, respectively.

Construction of a hypergraph $\mathcal{H}_{t}(n)$:
Let n and t be positive integers, $t \leq n$. Let $\mathcal{H}_{t}(n)=([n],\{[n],[n]-\{1\},[n]-\{2\}, \ldots,[n]-$ $\{t-3\},[t-3]\})$.

Construction of a set system $H^{\prime}(n, m)$ and a hypergraph $\mathcal{H}(n, m)$:
Let n and m be positive integers, $m \leq\binom{ n}{2}$. Let $x=\min \{m-1, n\}$. Let V^{\prime} be a set of singletons, $V^{\prime} \subseteq\{\{i\}: i \in[n]\},\left|V^{\prime}\right|=x$. Let E^{\prime} be an edge-set of an almost regular graph (the degrees of vertices differ by at most one) on the vertex set $[n]$, such that $\left|E^{\prime}\right|=m-x-1$. Let $H^{\prime}(n, m)=\{\varnothing\} \cup V^{\prime} \cup E^{\prime}$.

Informally, we build a set system $H^{\prime}(n, m)$ of m sets on the ground set $[n]$ by first picking an empty set, then as many as possible singletons, and then pairs, so that the pairs form an edge-set of an almost regular graph.

Let

$$
\mathcal{H}=\mathcal{H}(n, m)=\left([n],\left\{[n]-E: E \in H^{\prime}(n, m)\right\}\right) .
$$

Note that $|E(\mathcal{H})|=m$ and each hyperedge of \mathcal{H} has size $n, n-1$, or $n-2$.

Examples.

If $n=4$ and $m=4$, we have:

$$
\begin{aligned}
H^{\prime}(4,4) & =\{\varnothing,\{1\},\{2\},\{3\}\} \\
E(\mathcal{H}(4,4)) & =\{[4],\{2,3,4\},\{1,3,4\},\{1,2,4\}\}
\end{aligned}
$$

If $n=5$ and $m=8$, we have

$$
H^{\prime}(5,8)=\{\varnothing,\{1\},\{2\},\{3\},\{4\},\{5\},\{12\},\{34\}\}
$$

$E(\mathcal{H}(5,8))=\{[5],\{2,3,4,5\},\{1,3,4,5\},\{1,2,4,5\},\{1,2,3,5\},\{1,2,3,4\},\{3,4,5\},\{1,2,5\}\}$.
Let H be a Berge- G hypergraph, we call a copy G^{\prime} of G, where $V\left(G^{\prime}\right) \subseteq V(H)$ and the edges of G^{\prime} are contained in distinct hyperedges of H, an underlying graph of the BergeG hypergraph H. For example, if G^{\prime} is a triangle on vertices $1,2,3$, then a hypergraph $(\{1,2,3,4\},\{\{1,2\},\{2,3,4\},\{1,2,3,4\}\})$ is Berge- K_{3} and G^{\prime} is an underlying graph of BergeK_{3} hypergraph H.

2 Proof of the main theorem

Let S_{t} denote a star on t vertices.
Lemma 2. Let $t \geq 5$, $n \geq t$. Then $\operatorname{sat}\left(n, \mathcal{B}\left(S_{t}\right)\right)=t-1=\left|E\left(S_{t}\right)\right|$.
Proof. To show the lower bound, assume first that there is a hypergraph \mathcal{H} on $t-2$ hyperedges and vertex set $[n]$ that is Berge- S_{t} saturated. Since maximum degree of any member in $\mathcal{B}\left(S_{t}\right)$ is at least $t-1$, we have that the maximum degree of $\mathcal{H}+e$ for any new edge e of size at least 2 is at least $t-1$. We have that \mathcal{H} has at least $\left|V\left(S_{t}\right)\right|=t \geq 5$ vertices. Assume first that \mathcal{H} contains an edge of size 2 , say 12 . Then any vertex in $\{3, \ldots, n\}$ does not belong to this edge, so it has a degree at most $t-3$. Thus, for any $i, j \in\{3, \ldots, n\}$, $i \neq j$, the maximum degree of $\mathcal{H}+i j$ is at most $t-2$, implying that $i j \in E(\mathcal{H})$. Since the edge 12 was chosen arbitrarily, we can conclude that \mathcal{H} contains all edges of size 2 . Thus \mathcal{H} has at least $\binom{n}{2} \geq\binom{ t}{2}>t-2$ edges, a contradiction. Therefore \mathcal{H} has no hyperedges of size 2. Assume next that all but at most one vertex, say n, belong to all hyperedges of \mathcal{H}. Thus each hyperedge contains the set $[n-1]$, implying that each hyperedge is either $[n-1]$ or [n], a contradiction to the fact that there are $t-2 \geq 3$ distinct hyperedges in $E(\mathcal{H})$. Hence, there are two vertices, say 1 and 2 , each with degree at most $t-3$. We know that $12 \notin E(\mathcal{H})$ and that $\mathcal{H}+12$ has maximum degree at most $t-2$, a contradiction. Thus \mathcal{H} is not $\mathcal{B}\left(S_{t}\right)$ saturated.

For the upper bound, we show that \mathcal{H}_{t} is a $\mathcal{B}\left(S_{t}\right)$-saturated hypergraph. Recall that $\mathcal{H}=\mathcal{H}_{t}=([n],\{[n],[n]-\{1\},[n]-\{2\}, \ldots,[n]-\{t-3\},[t-3]\})$.

Note that each vertex of \mathcal{H} has degree $t-2$. Thus \mathcal{H} is $\mathcal{B}\left(S_{t}\right)$-free. Let $e \subseteq[n]$ of size at least 2 , such that $e \notin E(\mathcal{H})$. Let $i, j \in e, i \neq j$. We shall show that $\mathcal{H}+e$ contains a Berge S_{t} hypergraph.

Case 1. $i, j \in[t-3]$, without loss of generality $i=1, j=2$. Then the pairs $1 n, 1(n-$ 1), $13, \ldots, 1(t-2), 12$ are contained in $[n],[n]-\{2\}, \ldots,[n]-\{t-3\},[t-3], e$, respectively, and form an underlying graph of Berge- S_{t} in $\mathcal{H}+e$.

Case 2. i or j is not in $[t-3]$. Let, without loss of generality $i=n$. Then, without loss of generality $j=n-1$ or $j=1$. Then the pairs $n 2, n 3, \ldots, n(t-2)$ are contained in $[n]-\{1\},[n]-\{2\}, \ldots,[n]-\{t-3\}$, respectively, and and the pairs $1 n,(n-1) n$ are contained in $[n], e$ or $e,[n]$, respectively. Thus all these $t-1$ pairs form an underlying graph of Berge- S_{t} in $\mathcal{H}+e$.

Proof of Theorem 1. First we consider some special graphs: stars on at most three edges and a triangle. For the upper bounds on $\operatorname{sat}(n, \mathcal{B}(G))$ for $G=S_{2}, S_{3}, S_{4}, K_{3}$, consider the following hypergraphs in order for $n \geq 2, n \geq 3, n \geq 4$, and $n \geq 3$, respectively: $([n], \emptyset),([n],\{[n]\}),([n],\{[n],[n]-\{1\}\}),([n],\{[n],[n]-\{1\}\})$. It is easy to see that these hypergraphs are saturated for the respective Berge hypergraphs. Thus, for G being one of these graphs, $\operatorname{sat}(\mathcal{B}(G)) \leq|E(G)|-1$. Since the lower bound on $\operatorname{sat}(\mathcal{B}(G))$ is trivially $|E(G)|-1$, the theorem holds in this case. Lemma 2 implies that the theorem holds for all other stars.

From now on, let G be a non-empty graph which is neither a star nor a K_{3}. Let n be the number of vertices in $G, n \geq 4$. We shall further assume that G has no isolated vertices and that $V(G)=[n]$. Let $m=|E(G)|-1$. We shall prove that $\mathcal{H}=\mathcal{H}(n, m)$ as defined in the introduction is a Berge- G saturated hypergraph, i.e. such that it does not contain any member of $\mathcal{B}(G)$ as a subhypergraph and such that for any new hyperedge e of size at least two, $\mathcal{H}+e$ contains a Berge- G sub-hypergraph. In fact, instead of $\mathcal{H}(n, m)$ we shall be mostly using the system $H^{\prime}(n, m)$ also defined in the introduction. Note that \mathcal{H} does not contain any member of $\mathcal{B}(G)$ since \mathcal{H} has $|E(G)|-1$ edges.

Consider $e, e \subseteq[n],|e| \geq 2, e \notin E(H)$. Let $\{i, j\} \subseteq e, i \neq j$. Relabel the vertices of G such that $i j \in E(G)$ and i is a vertex of maximum degree in G. We shall show that \mathcal{H} is a Berge- $(G-i j)$, thus showing that $\mathcal{H}+e$ is Berge- G. We shall prove one of the following equivalent statements:
(i) there is a bijection ϕ between $E(G-i j)$ and $E(\mathcal{H})$ such that $e^{\prime} \subseteq \phi\left(e^{\prime}\right)$ for any $e^{\prime} \in E(G-i j)$,
(ii) there is a bijection f between $E(G-i j)$ and $H^{\prime}=H^{\prime}(n, m)$ such that for each $e^{\prime} \in E(G-i j), e^{\prime} \cap f\left(e^{\prime}\right)=\varnothing$,
(iii) there is a perfect matching in a bipartite graph F with one part $A=E(G)-\{i j\}$ and the other part $B=H^{\prime}$ such that $e^{\prime} \in A=E(G)-\{i j\}$ and $e^{\prime \prime} \in B=H^{\prime}$ are adjacent in F iff $e^{\prime} \cap e^{\prime \prime}=\varnothing$.

One can see that (i) and (ii) are equivalent by defining $\phi\left(e^{\prime}\right)$ to be $[n]-f\left(e^{\prime}\right)$. The equivalence of (ii) and (iii) is clear since $|A|=|B|$. Next, we shall prove (iii).

In each of the cases below, we assume that there is no perfect matching in F, thus by Hall's theorem, there is a set $S \subseteq A$ such that $\left|N_{F}(S)\right|<|S|$. Let $Q=B \backslash N_{F}(S)$. We see that each element of Q intersects each edge in S. Let G_{S} be a subgraph of G with edge set S. Since each element in Q has size one or two, G_{S} has a vertex cover of size one or two. Thus G_{S} is either a star, a triangle, or an edge-disjoint union of two stars. Clearly, \emptyset is not in Q. Assume some singleton, say $\{1\}$ is in Q. Then S forms a star with center 1. Then all singletons $\{2\},\{3\}, \ldots$ and \emptyset are in $N_{F}(S)$. If $S \neq A$, i.e., $|E(G)|-1>|S|$, then $\left|N_{F}(S)\right| \geq|S|$, a contradiction to our assumption on S. If $S=A$, i.e., G is a union
of a star and an edge $i j$, since i is a vertex of maximum degree in G, we see that G is a star, a contradiction. Thus we can assume that Q contains only two-elements sets, i.e., in particular H^{\prime} has two-element sets and thus, by definition of $H^{\prime},\left|H^{\prime}\right|>n+1$. Finally, since an empty set and all singletons are not in Q, they are in $N_{F}(S)$, so $\left|N_{F}(S)\right| \geq n$. Thus $|S| \geq n+1$, and in particular, S does not form a star. We observed earlier that we could assume that G is not a star.

Case 1. G is a union of two stars.
We already excluded the case that G is a star, so let's assume that G is an edge-disjoint union of two stars with different centers. If one of the stars has at most two edges, then $|E(G)| \leq n+1$, and $|S| \leq n$, a contradiction. Thus each of the stars has at least 3 edges.

Note that G has at most $2 n-1$ edges. In particular, since there are n singletons and an empty set in H^{\prime} and $\left|H^{\prime}\right| \leq 2 n-1$, we have that E^{\prime}, the set of pairs from H^{\prime}, has size at most $n-2$ and thus the graph on edge set E^{\prime} has maximum degree at most 2 . This implies that for every vertex there is a non-adjacent vertex in a graph with edge-set E^{\prime}. Let k be the integer such that $i k \notin E^{\prime}$. Relabel the vertices of G such that $i j$ is an edge of G, and i and k are the centers of the stars whose union is G, and $j \neq k$. Since $i k \notin E^{\prime}$, it follows that $i k \notin Q$. Since each pair from Q forms a vertex cover of G_{S}, there is a pair different from $i k$ that forms a vertex cover of G_{S}. Since $i k$ is a vertex cover of G, it is a vertex cover of G_{S}. Thus G_{S} has two distinct vertex covers of size 2 . Then G_{S} is a subgraph of a triangle with possibly some further edges incident to the same vertex of the triangle or a subgraph of a C_{4}. This implies that $|S| \leq n$, a contradiction.

Case 2. G is not a union of two stars.
If $|Q|=1$, then $\left|N_{F}(S)\right|=|B|-1=|A|-1$. Since $|S|>\left|N_{F}(S)\right|=|A|-1$ and $S \subseteq A$, we have that $S=A$, hence $G_{S}=G-i j$. Since there is a vertex cover of G_{S} of size 2 , we have that $G_{S}=G-i j$ is a union of two stars $S^{\prime}, S^{\prime \prime}$, so G is a union of two stars and an edge incident to a vertex of maximum degree of G. If maximum degree of G is at least four, then i is a center of S^{\prime} and $S^{\prime \prime}$. Thus G is a union of two stars, a contradiction. If the maximum degree of G is at most 3, then $|E(G)| \leq 7$. On the other hand, $m=\left|H^{\prime}\right| \geq n+2$. Thus $n+3 \leq|E(G)| \leq 7$. Thus $n=|V(G)| \leq 4$ and for each such choice of n we reach a contradiction by the fact that $n+3 \leq|E(G)|$. If Q contains two disjoint edges, say 12 and 34, then G_{S} can only be a subgraph of a 4-cycle 13241. So, $|S| \leq 4 \leq n$, a contradiction to our assumption that $|S| \geq n+1$.

Thus Q contains edges that either form a star on at least three edges or a subgraph of a triangle. If the edges of Q form a star on at least three edges, say $12,13,14, \ldots, S$ forms a star with center 1 , a contradiction. If the edges of Q form a triangle, say 123 , then we arrive at a contradiction since no two-element set can at the same time intersect 12,23 , and 13. Thus Q contains exactly two adjacent edges, say 12 and 13 . It follows that S forms a star with center 1 and maybe an edge 23. Then $|S| \leq n$, a contradiction. Hence, there is a perfect matching in F and thus \mathcal{H} is Berge- G saturated.

3 Conclusions

In this note, we completely determine $\operatorname{sat}(n, \mathcal{B}(G))$ for any $n \geq|V(G)|$ and show in particular that this function does not depend on n. There are many variations of saturation numbers for non-uniform hypergraphs that could be considered. Among those are functions
optimising the total weight of a saturated hypergraph, i.e., the sum of cardinalities of all hyperedges, or functions optimising the size of a saturated multihypergraph. These have been considered by the second author in [14]. One particularly interesting variation considered in [14] is the following notion of saturation: a hypergraph \mathcal{H} is called strongly \mathcal{F} saturated with respect to a family of hypergraphs \mathcal{F} if \mathcal{H} does not contain any member of \mathcal{F} as a subhypergraph, but replacing any hyperedge e of \mathcal{H} with $e \cup\{v\}$ for any vertex $v \notin e$ such that $e \cup\{v\} \notin E(\mathcal{H})$ creates such a member of \mathcal{F}.

Acknowledgements We thank Casey Tompkins for useful discussions and carefully reading the manuscript.

References

[1] M. Axenovich, A. Gyárfás, A note on Ramsey numbers for Berge-G hypergraphs, submitted.
[2] S. English, D. Gerbner, A. Methuku, M. Tait, Linearity of Saturation for Berge Hypergraphs, (2018) arXiv:1807.06947.
[3] S. English, N. Graber, P. Kirkpatrick, A. Methuku, E. C. Sullivan, Saturation of Berge Hypergraphs, (2017) arXiv:1710.03735.
[4] J. Faudree, R. Faudree, and J. Schmitt, A survey of minimum saturated graphs, Electronic Journal of Combinatorics (2011) 1000: 19-29.
[5] D. Gerbner, C. Palmer, Extremal results for Berge-hypergraphs, SIAM Journal on Discrete Mathematics, (2015) 31(4): 2314-2327.
[6] D. Grósz, A. Methuku, C. Tompkins, Uniformity thresholds for the asymptotic size of extremal Berge-F-free hypergraphs, (2018) arXiv:1803.01953v1
[7] A. Gyárfás, J. Lehel, G. N. Sárközy, R. H. Schelp, Monochromatic Hamiltonian Berge cycles in colored complete uniform hypergraphs, Journal of Combinatorial Theory B. (2008) 98: 342-358.
[8] A. Gyárfás, G. N. Sárközy, The 3-colour Ramsey number of a 3-uniform Berge cycle, Combinatorics, Probability and Computing (2011) 20: 53-71.
[9] E. Győri, Triangle-free hypergraphs, Combinatorics, Probability and Computing 15 (2006), 185-191.
[10] L. Kászonyi and Z. Tuza, Saturated graphs with minimal number of edges, Journal of Graph Theory, (1986) 10(2): 203-210.
[11] C. Palmer, M. Tait, C. Timmons, A. Z. Wagner, Turán numbers for Berge-hypergraphs and related extremal problems, (2017) arXiv:1706.04249v1
[12] O. Pikhurko, The minimum size of saturated hypergraphs, Combinatorics, Probability and Computing (1999) 8(5): 483-492. .
[13] O. Pikhurko, Results and open problems on minimum saturated hypergraphs, Ars Combinatoria (2004) 72: 111-127.
[14] C. Winter, Berge saturation of non-uniform hypergraphs, Bachelor Thesis, Karlsruhe Institute of Technology, 2018.

[^0]: *Karlsruhe Institute of Technology, Karlsruhe, Germany
 ${ }^{\dagger}$ Karlsruhe Institute of Technology, Karlsruhe, Germany
 ${ }^{\ddagger}$ Research supported in part by Talenx stipendium.

