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Abstract

For a graph G = (V,E), a hypergraph H is called Berge-G if there is a hypergraph
H ′, isomorphic to H , so that V (G) ⊆ V (H ′) and there is a bijection φ : E(G) → E(H ′)
such that for each e ∈ E(G), e ⊆ φ(e). The set of all Berge-G hypergraphs is denoted
B(G).

A hypergraphH is called Berge-G saturated if it does not contain any subhypergraph
from B(G), but adding any new hyperedge of size at least 2 to H creates such a
subhypergraph.

Since each Berge-G hypergraph contains |E(G)| hypergedges, it follows that each
Berge-G saturated hypergraph must have at least |E(G)| − 1 edges. We show that for
each graph G that is not a certain star and for any n ≥ |V (G)|, there are Berge-G
saturated hypergraphs on n vertices and exactly |E(G)| − 1 hyperedges. This solves a
problem of finding a saturated hypergraph with the smallest number of edges exactly.

1 Introduction

For a graph G = (V,E), a hypergraph H is called Berge-G if there is a hypergraph H ′,
isomorphic to H , so that V (G) ⊆ V (H ′) and there is a bijection φ : E(G) → E(H ′) such
that for each e ∈ E(G), e ⊆ φ(e). The set of all Berge-G hypergraphs is denoted B(G).

Here, for a graph or a hypergraph F , we shall always denote the vertex set of F as V (F )
and the edge set of F as E(F ). A copy of a graph F in a graph G is a subgraph of G
isomorphic to F . When clear from context, we shall drop the word “copy” and just say that
there is an F in G.

Several classical questions regarding Berge-G hypergraphs have been considered. Among
those are extremal numbers for Berge-G hypergraphs measuring the largest number of hyper-
edges or the largest weight of hypergraphs on n vertices that contain no subhypergraph from
B(G), see for example [5, 9, 6, 11]. In addition, Ramsey numbers for Berge-G hypergraphs
have been considered in [1, 8, 7].

In this paper, we consider a saturation problem. Let F be a class of hypergraphs with
edges of size at least two. A hypergraph H is called F saturated if it does not contain any
subhypergraph isomorphic to a member of F , but adding any new hyperedge of size at least
2 to H creates such a subhypergraph.

Saturation problem for families of k-uniform hypergraphs has been treated by Pikhurko
[12], see also [13]. Pikhurko [12] proved in particular, that for any k-uniform hypergraph
G there is an n-vertex k-uniform hypergraph H that is {G} saturated and has O(nk−1)
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edges. This extends a result of Kászonyi and Tuza [10] who proved this fact for k = 2, i.e.,
for graphs. See also a survey of Faudree et al. [4]. Here {G} saturated means that H has
no subhypergraph isomorphic to G but adding any new hyperedge of size k creates such
a subhypergraph. This result is asymptotically tight for some G. The determination of a
smallest size for {G}-saturated hypergraphs remains open in general. In the same setting
of k-uniform hypergraphs, English et al. [2] proved that there are Bk(G) saturated hyper-
graphs on n vertices and O(n) hyperedges, where Bk(G) is the set of all k-uniform Berge-G
hypergraphs, 3 ≤ k ≤ 5. See also English et al. [3], for Berge saturation results on some
special graphs.

We restrict our attention to the non-uniform case and Berge-G hypergraphs. For n ≥
|V (G)|, let the saturation number for a Berge-G hypergraph be defined as

sat(n,B(G)) = min{|E(H)| : H is a B(G) saturated hypergraph on n vertices}.

Observe that for any nontrivial graph G,

sat(n,B(G)) ≥ |E(G)| − 1.

Since no Berge-G hypergraph has hyperedges of sizes less than 2, we can assume that all
hypergraphs considered have hyperedges of sizes at least 2. We further assume that graphs
considered have no isolated vertices. The following is the main result of this paper:

Theorem 1. Let G = (V,E) be a graph with no isolated vertices, n ≥ |V (G)|, and m =
|E(G)| − 1. Then

sat(n,B(G)) =

{

|E(G)|, if G is a star on at least four edges,

|E(G)| − 1, otherwise.

Moreover if G1 is a star on at least 4 edges and G2 is any other graph, then Ht(n) and

H(n,m) are a Berge-G1 and a Berge-G2 saturated hypergraphs, respectively.

For a positive integer n, let [n] = {1, 2, . . . , n}. We shorten {i, j} as ij when clear from
context. If F is a hypergraph and e is a hyperedge, we denote by F +e, F −e, a hypergraph
obtained by adding e to F , deleting e from F , respectively.

Construction of a hypergraph Ht(n):
Let n and t be positive integers, t ≤ n. Let Ht(n) = ([n], {[n], [n]− {1}, [n]− {2}, . . . , [n]−
{t− 3}, [t− 3]}).

Construction of a set system H ′(n,m) and a hypergraph H(n,m):
Let n and m be positive integers, m ≤

(

n

2

)

. Let x = min{m− 1, n}. Let V ′ be a set of sin-
gletons, V ′ ⊆ {{i} : i ∈ [n]}, |V ′| = x. Let E′ be an edge-set of an almost regular graph (the
degrees of vertices differ by at most one) on the vertex set [n], such that |E′| = m− x− 1.
Let H ′(n,m) = {∅} ∪ V ′ ∪ E′.

Informally, we build a set system H ′(n,m) of m sets on the ground set [n] by first picking
an empty set, then as many as possible singletons, and then pairs, so that the pairs form an
edge-set of an almost regular graph.

Let
H = H(n,m) = ([n], {[n]− E : E ∈ H ′(n,m)}).
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Note that |E(H)| = m and each hyperedge of H has size n, n− 1, or n− 2.

Examples.

If n = 4 and m = 4, we have:

H ′(4, 4) = {∅, {1}, {2}, {3}},

E(H(4, 4)) = {[4], {2, 3, 4}, {1, 3, 4}, {1, 2, 4}}.

If n = 5 and m = 8, we have

H ′(5, 8) = {∅, {1}, {2}, {3}, {4}, {5}, {12}, {34}},

E(H(5, 8)) = {[5], {2, 3, 4, 5}, {1, 3, 4, 5}, {1, 2, 4, 5}, {1, 2, 3, 5}, {1, 2, 3, 4}, {3, 4, 5}, {1, 2, 5}}.

Let H be a Berge-G hypergraph, we call a copy G′ of G, where V (G′) ⊆ V (H) and the
edges of G′ are contained in distinct hyperedges of H , an underlying graph of the Berge-
G hypergraph H . For example, if G′ is a triangle on vertices 1, 2, 3, then a hypergraph
({1, 2, 3, 4}, {{1, 2}, {2, 3, 4}, {1, 2, 3, 4}}) is Berge-K3 andG′ is an underlying graph of Berge-
K3 hypergraph H .

2 Proof of the main theorem

Let St denote a star on t vertices.

Lemma 2. Let t ≥ 5, n ≥ t. Then sat(n,B(St)) = t− 1 = |E(St)|.

Proof. To show the lower bound, assume first that there is a hypergraph H on t− 2 hyper-
edges and vertex set [n] that is Berge-St saturated. Since maximum degree of any member
in B(St) is at least t − 1, we have that the maximum degree of H + e for any new edge e
of size at least 2 is at least t − 1. We have that H has at least |V (St)| = t ≥ 5 vertices.
Assume first that H contains an edge of size 2, say 12. Then any vertex in {3, . . . , n} does
not belong to this edge, so it has a degree at most t − 3. Thus, for any i, j ∈ {3, . . . , n},
i 6= j, the maximum degree of H + ij is at most t− 2, implying that ij ∈ E(H). Since the
edge 12 was chosen arbitrarily, we can conclude that H contains all edges of size 2. Thus H
has at least

(

n

2

)

≥
(

t

2

)

> t− 2 edges, a contradiction. Therefore H has no hyperedges of size
2. Assume next that all but at most one vertex, say n, belong to all hyperedges of H. Thus
each hyperedge contains the set [n − 1], implying that each hyperedge is either [n − 1] or
[n], a contradiction to the fact that there are t− 2 ≥ 3 distinct hyperedges in E(H). Hence,
there are two vertices, say 1 and 2, each with degree at most t−3. We know that 12 6∈ E(H)
and that H + 12 has maximum degree at most t− 2, a contradiction. Thus H is not B(St)
saturated.

For the upper bound, we show that Ht is a B(St)-saturated hypergraph. Recall that
H = Ht = ([n], {[n], [n]− {1}, [n]− {2}, . . . , [n]− {t− 3}, [t− 3]}).

Note that each vertex of H has degree t− 2. Thus H is B(St)-free. Let e ⊆ [n] of size at
least 2, such that e 6∈ E(H). Let i, j ∈ e, i 6= j. We shall show that H + e contains a Berge
St hypergraph.

Case 1. i, j ∈ [t − 3], without loss of generality i = 1, j = 2. Then the pairs 1n, 1(n −
1), 13, . . . , 1(t− 2), 12 are contained in [n], [n]− {2}, . . . , [n]− {t− 3}, [t− 3], e, respectively,
and form an underlying graph of Berge-St in H+ e.
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Case 2. i or j is not in [t − 3]. Let, without loss of generality i = n. Then, without
loss of generality j = n − 1 or j = 1. Then the pairs n2, n3, . . . , n(t − 2) are contained
in [n] − {1}, [n] − {2}, . . . , [n] − {t − 3}, respectively, and and the pairs 1n, (n − 1)n are
contained in [n], e or e, [n], respectively. Thus all these t− 1 pairs form an underlying graph
of Berge-St in H+ e.

Proof of Theorem 1. First we consider some special graphs: stars on at most three edges
and a triangle. For the upper bounds on sat(n,B(G)) for G = S2, S3, S4,K3, consider
the following hypergraphs in order for n ≥ 2, n ≥ 3, n ≥ 4, and n ≥ 3, respectively:
([n], ∅), ([n], {[n]}), ([n], {[n], [n] − {1}}), ([n], {[n], [n] − {1}}). It is easy to see that these
hypergraphs are saturated for the respective Berge hypergraphs. Thus, for G being one
of these graphs, sat(B(G)) ≤ |E(G)| − 1. Since the lower bound on sat(B(G)) is trivially
|E(G)| − 1, the theorem holds in this case. Lemma 2 implies that the theorem holds for all
other stars.

From now on, let G be a non-empty graph which is neither a star nor a K3. Let n be
the number of vertices in G, n ≥ 4. We shall further assume that G has no isolated vertices
and that V (G) = [n]. Let m = |E(G)| − 1. We shall prove that H = H(n,m) as defined
in the introduction is a Berge-G saturated hypergraph, i.e. such that it does not contain
any member of B(G) as a subhypergraph and such that for any new hyperedge e of size at
least two, H+ e contains a Berge-G sub-hypergraph. In fact, instead of H(n,m) we shall be
mostly using the system H ′(n,m) also defined in the introduction. Note that H does not
contain any member of B(G) since H has |E(G)| − 1 edges.

Consider e, e ⊆ [n], |e| ≥ 2, e 6∈ E(H). Let {i, j} ⊆ e, i 6= j. Relabel the vertices of G
such that ij ∈ E(G) and i is a vertex of maximum degree in G. We shall show that H is
a Berge-(G− ij), thus showing that H + e is Berge-G. We shall prove one of the following
equivalent statements:

(i) there is a bijection φ between E(G − ij) and E(H) such that e′ ⊆ φ(e′) for any
e′ ∈ E(G − ij),
(ii) there is a bijection f between E(G − ij) and H ′ = H ′(n,m) such that for each
e′ ∈ E(G − ij), e′ ∩ f(e′) = ∅,
(iii) there is a perfect matching in a bipartite graph F with one part A = E(G) − {ij} and
the other part B = H ′ such that e′ ∈ A = E(G) − {ij} and e′′ ∈ B = H ′ are adjacent in F
iff e′ ∩ e′′ = ∅.

One can see that (i) and (ii) are equivalent by defining φ(e′) to be [n] − f(e′). The
equivalence of (ii) and (iii) is clear since |A| = |B|. Next, we shall prove (iii).

In each of the cases below, we assume that there is no perfect matching in F , thus by
Hall’s theorem, there is a set S ⊆ A such that |NF (S)| < |S|. Let Q = B \ NF (S). We
see that each element of Q intersects each edge in S. Let GS be a subgraph of G with edge
set S. Since each element in Q has size one or two, GS has a vertex cover of size one or
two. Thus GS is either a star, a triangle, or an edge-disjoint union of two stars. Clearly,
∅ is not in Q. Assume some singleton, say {1} is in Q. Then S forms a star with center
1. Then all singletons {2}, {3}, ... and ∅ are in NF (S). If S 6= A, i.e., |E(G)| − 1 > |S|,
then |NF (S)| ≥ |S|, a contradiction to our assumption on S. If S = A, i.e., G is a union
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of a star and an edge ij, since i is a vertex of maximum degree in G, we see that G is a
star, a contradiction. Thus we can assume that Q contains only two-elements sets, i.e., in
particular H ′ has two-element sets and thus, by definition of H ′, |H ′| > n+1. Finally, since
an empty set and all singletons are not in Q, they are in NF (S), so |NF (S)| ≥ n. Thus
|S| ≥ n + 1, and in particular, S does not form a star. We observed earlier that we could
assume that G is not a star.

Case 1. G is a union of two stars.
We already excluded the case that G is a star, so let’s assume that G is an edge-disjoint

union of two stars with different centers. If one of the stars has at most two edges, then
|E(G)| ≤ n+ 1, and |S| ≤ n, a contradiction. Thus each of the stars has at least 3 edges.

Note that G has at most 2n− 1 edges. In particular, since there are n singletons and an
empty set in H ′ and |H ′| ≤ 2n − 1, we have that E′, the set of pairs from H ′, has size at
most n− 2 and thus the graph on edge set E′ has maximum degree at most 2. This implies
that for every vertex there is a non-adjacent vertex in a graph with edge-set E′. Let k be
the integer such that ik 6∈ E′. Relabel the vertices of G such that ij is an edge of G, and i
and k are the centers of the stars whose union is G, and j 6= k. Since ik 6∈ E′, it follows that
ik 6∈ Q. Since each pair from Q forms a vertex cover of GS , there is a pair different from ik
that forms a vertex cover of GS . Since ik is a vertex cover of G, it is a vertex cover of GS .
Thus GS has two distinct vertex covers of size 2. Then GS is a subgraph of a triangle with
possibly some further edges incident to the same vertex of the triangle or a subgraph of a
C4. This implies that |S| ≤ n, a contradiction.

Case 2. G is not a union of two stars.
If |Q| = 1, then |NF (S)| = |B| − 1 = |A| − 1. Since |S| > |NF (S)| = |A| − 1 and S ⊆ A,

we have that S = A, hence GS = G − ij. Since there is a vertex cover of GS of size 2,
we have that GS = G − ij is a union of two stars S′, S′′, so G is a union of two stars and
an edge incident to a vertex of maximum degree of G. If maximum degree of G is at least
four, then i is a center of S′ and S′′. Thus G is a union of two stars, a contradiction. If the
maximum degree of G is at most 3, then |E(G)| ≤ 7. On the other hand, m = |H ′| ≥ n+2.
Thus n + 3 ≤ |E(G)| ≤ 7. Thus n = |V (G)| ≤ 4 and for each such choice of n we reach a
contradiction by the fact that n+ 3 ≤ |E(G)|. If Q contains two disjoint edges, say 12 and
34, then GS can only be a subgraph of a 4-cycle 13241. So, |S| ≤ 4 ≤ n, a contradiction to
our assumption that |S| ≥ n+ 1.

Thus Q contains edges that either form a star on at least three edges or a subgraph of
a triangle. If the edges of Q form a star on at least three edges, say 12, 13, 14, . . ., S forms
a star with center 1, a contradiction. If the edges of Q form a triangle, say 123, then we
arrive at a contradiction since no two-element set can at the same time intersect 12, 23, and
13. Thus Q contains exactly two adjacent edges, say 12 and 13. It follows that S forms a
star with center 1 and maybe an edge 23. Then |S| ≤ n, a contradiction. Hence, there is a
perfect matching in F and thus H is Berge-G saturated.

3 Conclusions

In this note, we completely determine sat(n,B(G)) for any n ≥ |V (G)| and show in par-
ticular that this function does not depend on n. There are many variations of saturation
numbers for non-uniform hypergraphs that could be considered. Among those are functions
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optimising the total weight of a saturated hypergraph, i.e., the sum of cardinalities of all hy-
peredges, or functions optimising the size of a saturated multihypergraph. These have been
considered by the second author in [14]. One particularly interesting variation considered
in [14] is the following notion of saturation: a hypergraph H is called strongly F saturated
with respect to a family of hypergraphs F if H does not contain any member of F as a
subhypergraph, but replacing any hyperedge e of H with e ∪ {v} for any vertex v 6∈ e such
that e ∪ {v} /∈ E(H) creates such a member of F .

Acknowledgements We thank Casey Tompkins for useful discussions and carefully
reading the manuscript.
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