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Abstract

We introduce the notion of a symmetric basis of a vector space equipped with a quadratic form,
and provide a sufficient and necessary condition for the existence to such a basis. Symmetric bases are
then used to study Cayley graphs of certain extraspecial 2-groups of order 2271 (r > 1), which are
further shown to be normal Cayley graphs and 2-arc-transitive covers of 2r-dimensional hypercubes.
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1 Introduction

Throughout this paper, all graphs are simple, connected and regular. Let I' be a graph with vertex
set V(I') and edge set E(I'). An s-arc of T' is a sequence (vy,...,vs+1) of s + 1 vertices such that
for all 1 < i < s, {v;,vi+1} is an edge in I and v; # v;19, and T is said to be s-arc-transitive if the
automorphism group of I' is transitive on the set of s-arcs. The study of s-arc-transitive graphs is
motivated by a result of Tutte (1949), which says that there are no s-arc-transitive graphs of valency 3
for s > 6. Later this result was extended by Weiss [16] saying that there are no 8-arc-transitive graphs
of valency at least 3. Thus analysing the s-arc-transitive graphs for 2 < s < 7 has become one of the
central goals in algebraic graph theory, and the classification of some 2-arc-transitive graphs has been
obtained. For example, the 2-arc-transitive circulants are classified in [I]; a complete classification of
2-arc-transitive dihedrants is given in [7]; and a class of 2-arc-transitive Cayley graphs of elementary
abelian 2-groups is classified in [9].

A natural idea to investigate the 2-arc-transitive graphs is to study their quotient graphs. Let P be
a partition of the vertex set V(I'). Define the quotient graph I'p of I to be the graph with vertex set P
and two parts P, P’ € P form an edge if and only if there is at least one edge in I' joining a vertex of P
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and a vertex of P’. If P is G-invariant for some group G of automorphisms of I', then the action of G
on I' induces an action of G on I'p. Let N be a nontrivial normal subgroup of G and P be the set of
N-orbits in V(T"). The quotient graph I'p is said to be a normal quotient of I, denoted I'y. In general,
the valency of I'y divides the valency of I'. If the valency of I' equals the valency of I'y, then I' is said
to be a cover of I'y. It has been proved by Praeger [11, Theorem 4.1] that if G is vertex-transitive and
2-arc-transitive on I', and N has more than two orbits in V(I"), then

1. G/N is s-arc transitive on I'y and G/N is faithful on V(I'y),
2. I' is a cover of I'y, and

3. N is semiregular on V(I').

We say that a permutation group is quasiprimitive on a set € if every nontrivial normal subgroup of
the permutation group is transitive on €2, and primitive if it acts transitively on {2 and preserves no
nontrivial partition of 2. A permutation group is said to be bi-quasiprimitive on € if

(i) each nontrivial normal subgroup of the permutation group has at most two orbits on 2, and

(ii) there exists a normal subgroup with two orbits on .

The structure of finite quasiprimitive permutation groups was investigated in [II] and the types of
quasiprimitive groups that are 2-arc-transitive on a graph were determined. Praeger studied bi-
quasiprimitive groups in [I2] and one specific class identified was previously studied in [I0]. One
family of such bipartite bi-quasiprimitive graphs are the affine ones. A 2-arc-transitive graph is said
to be affine, if there is a vector space N and a group G of automorphisms of the graph such that
N < G < AGL(N) with N regular on the vertices and G acting transitively on the set of 2-arcs. Table
1 in [9] classifies all affine bipartite 2-arc-transitive graphs with the stabilizer of the bipartition of the
vertices being primitive on each bipartition.

Another interesting topic is to reconstruct 2-arc-transitive covers of 2-arc-transitive graphs. It is
known that every finite regular graph has a 2-arc-transitive cover [2]. In [8] Du, Malni¢ and Waller
investigate the regular covers of complete graphs which are 2-arc-transitive, and they give a complete
classification of all graphs whose group of covering transformations is either cyclic or isomorphic to
Zyx Zy, where p is a prime and whose fibre-preserving subgroup of automorphisms acts 2-arc-transitively.
In particular, two families of 2-arc-transitive graphs are obtained. After that, many more results related
to the reconstruction of the 2-arc-transitive graphs have been obtained, see [6] for examples.

The main subject of this paper is to construct a 2-arc-transitive cover for one family of affine graphs,
namely the hypercubes. Let V = Zg be a d-dimensional vector space over the field Fo, let e1,...,eq4
be a basis of V and B = {e1,...,eq}. A d-dimensional hypercube is a Cayley graph Qq = Cay(V,B).
It is known that Q4 admits a regular group of automorphisms Z§ and Aut(Qq) = Z§ x Sg, where
Sq = Aut1(Qq) and permutes eq, ..., eq naturally (see [15]). Thus the hypercubes are 2-arc-transitive
affine graphs. Furthermore, it has been shown in [9] that Q4 is bi-quasiprimitive if and only if d = 2
or d is odd. In this paper, we are interested in the even-dimensional hypercubes, in particular, we
construct a 2-arc-transitive cover for even-dimensional hypercubes. We also show that such a cover is
a normal Cayley graph.

Let G be a finite group, and S be a subset of G such that S does not contain the identity of G
and S = S7! = {s7!|s € S}. We say that an element g of G is an involution if it has order 2, that
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is, > = 1 and g # 1. The Cayley graph T = Cay(G, S) is defined to have vertex set V(I') = G, and
edge set E(T') = {{g,sg}|s € S}. It is well known that a graph is a Cayley graph if and only if its full
automorphism group contains a subgroup acting regularly on the vertex set of the graph (see [14]).

Let I' = Cay(G, S) be a Cayley graph for some group G and Aut(I') be the full automorphism
group of I'. For each g € GG, define a map g : G — G by the right multiplication of g on G as below:

g:x—zxg, forzed.

Then § is an automorphism of I'. It follows from the definition that the group G = {§ | g € G} is a
subgroup of Aut(T") and acts regularly on V(I'). Following Xu [I8], we say that I is a normal Cayley
graph for G (or normal) if G< Aut(T"), otherwise we say that I' is a non-normal Cayley graph for G
(or non-normal).

Suppose that V is a d-dimensional vector space with a nondegenerate quadratic form ) where the
associated bilinear form Bg is symmetric. Let C = {v1,v2,...,v4} be a basis of V. We say that C is
symmetric if Q(v;) = 0 and B(v;,vj) =1 for all ¢,j with 1 <14 < j < d. In Section 3, we determine a
necessary and sufficient condition for a vector space to have a symmetric basis.

Let G be an extraspecial 2-group of order 22"+ with » > 1, that is, |Z(G)| = 2 and G/Z(G) = Z2".
There are two extraspecial 2-groups of each order, for which we will give more details in Section 3.
Let S = {31,...,%3,} be a symmetric basis of G/Z(G), and for each 1 < i < 2r, let s; be a preimage
of 5; in G. Notice that generally for a basis of G/Z(G), the preimages of the basis elements are not
necessary involutions in G. However in Section 3 we show that in the case where it is a symmetric basis
the preimages of the basis elements are all involutions in G, which is crucial for the proofs of the main
results. Note that ¥ = Cay(G/Z(G),S) is a 2r-dimensional hypercube. We will prove the following
result.

Theorem 1.1. Let G be an extraspecial 2-group of order 22" %1 with r > 1 such that G/Z(G) has a
symmetric basis {S1,...,S2,}. LetT' = Cay(G, S) be a Cayley graph of G with S = {s1,...,S2,}. Then
I' is a 2-arc-transitive cover of some 2r-dimensional hypercube 3, and I' is a normal Cayley graph with
Aut(F) =G x Sgr.

2 Preliminaries

Let V be a 2r-dimensional (r > 1) vector space over a field F,, where ¢ is a prime-power. Let B be
a bilinear form on V. We say that B is symmetric if B(u,v) = B(v,u) for all u,v € V, and B is
alternating if B(u,u) = 0 for all uw € V. The radical of B is the subspace

rad(B) = {u €V | B(u,v) =0 for all v € V'},
and B is said to be nondegenerate if rad(B) = {0}. Let W be a subspace of V. Define

Wt ={veV|Bw,uv)=0forall we W}

to be the orthogonal complement of W. It is known that if B is nondegenerate, then dim(W') +
dim(Wt) = dim(V). A map Q : V — F, is a quadratic form on V if the following two conditions are
satisfied:
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(1) Q(Mu) = N2Q(u) for all uw € V and X € F, and
(ii) the map Bg : V x V — F, defined by
Bq(u,v) = Q(u+v) — Q(u) — Q(v)

is a bilinear form.

The bilinear form B is called the associated bilinear form of Q). A quadratic form @ is said to be
nondegenerate if and only if its associated bilinear form is nondegenerate.

Let u,v be two distinct vectors of V.. We say that {u,v} is a hyperbolic pair if Q(u) = Q(v) = 0
and B(u,v) = 1. By [4, Proposition 2.2.7], when @ is nondegenerate and B = Bg is symmetric , V' has
the following two types of standard bases, in particular, the basis is hyperbolic in case (i), and elliptic
in case (ii):

(i). B={e1,--- ens2, fis-- -, fnja} where
Q(ei) = Q(fi) =0, Blei, f;) = dij for all 4, j;
(). B={e1, - senja1s fise- s fuja1,2,y} where Q(e;) = Q(fi) = 0,
Blei,z) = Blei,y) = B(fi,z) = B(fi,y) = 0, B(ei, f;) = dij
for all 4,7, Q(x) = 1, B(x,y) = 1 and Q(y) = ¢ where 22 + x + ( € Fy[z] is irreducible,

where

0 if 1 £ 4.
If V' has a hyperbolic basis, then @ is said to be a hyperbolic quadratic form (or hyperbolic in short).
Similarly we say that @ is elliptic when V has an elliptic basis.

5“:{1 ifi=j

Let U be a subspace of V. We say that U is totally singular if Q(u) = 0 for all uw € U. The next
result is a consequence of Witt’s Lemma (see [4])

Proposition 2.1 ([5, Page 38]). Let V be a d-dimensional vector space over the field F, equipped with
a nondegenerate quadratic form @Q, and U be a mazximal totally singular subspace of V.. Then

dimU = %dz’mV —0

where § = 0 if Q is hyperbolic, and § = 1 if Q is elliptic.

3 Symmetric Basis of a Vector Space

Let V be a 2r-dimensional vector space over Fo with a nondegenerate quadratic form @ : V' — Fy and
an associated symmetric bilinear form B = Bg. Suppose that C = {vy,...,v2,} is a symmetric basis of
V. Let C' ={c1,...,cr—1} where for 1 <i <r — 1, we have

C; = V21 + v2; + V2541 + V2;42.
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1

Let U be the subspace of V' generated by C’. Then dim(U) = 5dim(V) — 1. Also U is totally singular
as Q(¢;) =0 and B(cj,¢j) =0forall 1 <i,j <r—1. If U is maximal subject to being totally singular
in V, then @ is elliptic. Otherwise @ is hyperbolic, and there is a vector v € V\U such that W = (v, (")

is a maximal totally singular subspace of V.

Let o € V be a non-zero vector that is not in C’. We may assume that o = p3 + po + - - - + p¢, where

pi € C and p; # pj for all 1 <@ # j < t.

Lemma 3.1. Q(«) =0 if and only if t =0 or 1 (mod 4).

Proof. First suppose that ¢t = 2k with £ > 0 and let u; = po;—1 + poj, for it =1,2,... k. So

Q1 + p2 + -+ + pok)
= Q(u1 +ug + -+ uy)

k
= Q(u1) + Quz + - +uy) + ZB(Ul,uz‘)
~ k k
= Q(u1) + Qu2) + Q(uz + - - +ug) + ZB(UL’U@') + ZB(Uz,uz')
i=2 i=3
k k k
= Q(u1) + Q(uz) + Q(usz) + Q(ug + - - - +ug) + Z B(u1,u;) + Z B(ug, u;) + Z B(us, u;)
. - . 1=2 =3 =4
= ZQ(%) + Z Z B(u;, uj).
i=1 i=1 j=i+1

For 1 <i < j <k we have

B(uj,uj) = B(poi—1 + t2i, ph2j—1 + f125)
= B(u2i—1, p2j—1) + B(pai—1, p2j) + B(p2i, paj—1) + B(pai, f12;)

and

Q(u;) =Q(p2i—1 + p2i)
= Q(p2i-1) + Q(p2i) + B(p2i-1, 12i)
= 1.
Thus Q(«) = 0 if and only if £ = 0 (mod 2), that is, if and only if ¢ = 0 (mod 4).
Next suppose that ¢ is odd, and so t = 2k 4+ 1 with k£ > 0. Then

2k

Qua + g + -+ piog + progs1) = Qo + -+ + piox) + Qaksr) + Y B, k1)
i=1

= Qu1 + - + pak)-
which implies that Q(«) = 0 if and only if £ =1 (mod 4).

Before we introduce the sufficient and necessary conditions for V' to have a symmetric basis, we first

give the following lemma.
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Lemma 3.2. Let W be a nontrivial subspace of V' with dimension d = 2 (mod 4). Suppose that W

has a symmetric basis and there are three pairwise perpendicular hyperbolic pairs {a,b}, {c,d},{g, h} in
WA\W. Let
W' =W 1{a,b) L{c,d)L(g,h).

Then W' has a symmetric basis.

Proof. Let Cyy = {w1, ..., w4} be a symmetric basis of W. Let

d
w=a+c+d+ ) wi
i=1

d
ug =b+c+d+ Y w;
=1

d
uz =c+g+h+ ) w;
=1

d
ug=d+g+h+ ) w;

=1

"
us=g+a+b+ > w;

i=1

d
ug=h+a+b+ > w.
i=1
d
w;) = 1. So Q(uj) =0 for all j =1,2,...,6. For any
=1

1

Since d = 2 (mod 4), Lemma implies Q(

1 < j1 # jo < 6, one can check that
B(”jl?“jz) =1

Also we have B(uj,w;) = 1forall 1 <i<dandj=1,2,...,6. Therefore Cyyy U {ui,...,us} is a
symmetric basis of W'. |

Lemma 3.3. Let V' be a vector space of dimension 2r with nondegenerate quadratic form @ such that
r>1.

(i). If Q is hyperbolic and r =0 or 1 (mod 4), then V' has a symmetric basis;

(ii). If Q is elliptic and r =2 or 3 (mod 4), then V has a symmetric basis.

Proof. We prove this by using induction on 7.

(i) Suppose that @ is hyperbolic with » = 0 or 1 (mod 4). When r = 1, a hyperbolic basis of V is
also a symmetric basis of V. Now assume the lemma holds for all » < 4¢ + 1 with » =0 or 1 (mod 4),
where / is a nonnegative integer. Note that we have seen that the lemma holds when ¢ = 0. Let r’ = 4/
and suppose that r = +4 =4(£+ 1). Let W < V be a subspace of dimension 2(r’ 4+ 1) such that @
is hyperbolic on W and

V =WL1{a,b)L{c,d)L{g,h).
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where {a, b}, {c,d},{g,h} are hyperbolic pairs in V\W. By induction, W has a symmetric basis Cy =
{wi,wa, ..., wogny}. Take d = 2(r' 4 1). Then V has a symmetric basis Cy U {u1,...,ue} as
constructed in Lemma

Now suppose that 7 = 4(¢+ 1) + 1. We may assume that
V = W L{a,b) L{e,dy (g, b Lz, ),

where {a,b},{c,d},{g,h},{z,y} are hyperbolic. Clearly V contains a subspace U with a symmetric
basis Cy U {uq,...,us} as above, and let

2r' 42

a=z+4+ > wita+b+c+d+g+h;
=1
2r' 42

B=y+ > wita+b+c+d+g+h.

i=1

Then Q(a) = Q(B) =0 and B(a, 5) = 1. Also for 1 < i < 2(r' + 1) we have B(a,w;) = B(f,w;) = 1,
and B(o,uj) = B(f,u;) =1 for 1 < j < 6. Hence Cyy U {ul, ..y ug} U{a, B} forms a symmetric basis
of V.

(7i) Suppose that @ is elliptic and » = 2 or 3 (mod 4). When r = 2, let {ey, f1,2,y} be an elliptic
basis of V. Let

cr=e1,c2=fi,c3=x+c1+c2, c4 =y+c1+ca.

Then Q(c;) =0 and B(c;,¢j) =1 for 1 <i < j <4. So {c1,¢2,c3,c4} is a symmetric basis of V.

When r = 3, let {e1, ea, f1, fo, z,y} be an elliptic basis. Let ¢y, 2, c3, c4 be defined as above and let
cs=e€y+c1+cotesteq,c=fot+c+co+ces+cq.

Then {c1, c9, 3,4, ¢5,c6} is a symmetric basis of V.

Now assume the lemma holds for all r < 4¢ + 3 with » = 2 or 3 (mod 4) where ¢ is a nonnegative
integer. Note that we have seen that the lemma holds when ¢ = 0. Let ' = 4/ + 2 and suppose that
r=1r"4+4=4({+1)+2. Let W < V be a subspace of dimension 2(r' + 1) such that @ is elliptic on
W and

V = W L{a,b) L{e,d) L{g, h),
where {a,b},{c,d},{g, h} are hyperbolic. By our induction W has a symmetric basis

Cw = {wb ceey Wop4 1, w?r’—i—Z}-

Then by Lemma [3.2) when r = 4(¢ 4 1) 4+ 2, V' contains a symmetric basis. When r = 4(¢ + 1) + 3, let
x,y, a, 3 be vectors of V as defined in (7). Then Cy U{uq,...,us} U{a, 8} forms a symmetric basis of
V. |
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Let V' be a d-dimensional vector space over field IF, equipped with a quadratic form () and U be a
d-dimensional vector spaces over field F, equipped with a quadratic form @’. An isometry from V' to
U is an invertible linear map o : V' — U such that

Q'(v7) = Q(v) (1)
for all v € V. Notice that implies that
Bg(u?,v7) = Bg(u,v)

for all u,v € V. If such an isometry exists, then both U and V, and Q and Q' are said to be isometric.
Let W C V and W C U. Then W and W’ are isometric if the restrictions @ | and Q' | are
isometric. We say that o is an isometry of Q if U = V. The isometry group of @ is the set of isometries
of () under composition. Notice that the isometry group of @) is a subgroup of the isometry group of
the associated bilinear form Byg.

Lemma 3.4. Let V' be a vector space of dimension 2r with nondegenerate quadratic form @Q and a
symmetric basis C = {v1,va, ..., v }.

(i). If r =0 or 1 (mod 4), then @Q is hyperbolic;
(ii). If r =2 or 3 (mod 4), then Q is elliptic.
Proof. Let 1 and Q2 be quadratic forms on V' such that V has a symmetric basis C = {cy,...,ca,}

with respect to @1 and a symmetric basis C' = {¢}, ..., .} with respect to Q2. Let o : V' — V be the
linear map defined by

¢ —d, for 1 <i<2r.
Then we have
Bg,(cf,¢]) = Bg, (ci; ¢;) and Q2(cf) = Q1(c;), for all 1 <, j < 2r.

Thus o is an isometry of ()1 and hence (1 and Q5 have the same type. Therefore by Lemma [3.3
either Q2 is hyperbolic with » =0 or 1 (mod 4), or Q3 is elliptic with » = 2 or 3 (mod 4). |

Combining the results of this section, we obtain the following theorem.

Theorem 3.1. Let V be a vector space of dimension 2r over Fo with nondegenerate quadratic form Q.
Then V' has a symmetric basis if and only if either @Q is hyperbolic and r = 0 or 1 (mod 4), or Q is
elliptic and r =2 or 3 (mod 4).

4 A 2-Arc-Transitive Cover of Hypercubes

Let G be an extraspecial 2-group of order 22”1 with identity 1 (r > 1). Let Z = (z) be the center of
G. Then Z = 7y and G/Z = 72" is elementary abelian. The commutator of any two elements in G or

the square of any element in G lies in Z. So G is a nilpotent group of class 2. Define two functions
B:G/ZxG]Z — Z and Q : G/Z — Z as below: for any Zz, Zy in G/Z,
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B(Zx, Zy) = [z,y],
Q(Zz) = 2.

Then @ is a quadratic form on V = G/Z with associated bilinear form B. Note that if B(Zx, Zy) =1
for some x,y € G, then x,y commute. So if B(Zx, Zy) = 1 for all y € G, then Zx must be the identity
in G/Z. Therefore Q is nondegenerate on (G/Z. Furthermore B is symmetric as [y, x| = [z,y] ™! = [z, ]
for all x,y € G.

We say that G is an extraspecial 2-group of plus type if () is hyperbolic, denoted by 2%:“, and G is an
extraspecial 2-group of minus type if Q is elliptic, denoted by 221, It is known [17] that if G = 2?:“,
then it is the central product of r dihedral groups Dg, otherwise G is the central product of r — 1
dihedral groups Dg with one quaternion group Qg. Also Winter proved that Aut(22"+1) = 22.0¢(2r, 2)
where O¢(2r,2) with € € {4+, —} is an orthogonal group (see [I7, Theorem 1]).

By Theorem G/Z has a symmetric basis if and only if either G is of plus type with r = 0
or 1 (mod 4), or G is of minus type with » = 2 or 3 (mod 4). Let B = {Zg1,Zg2,...,Zg2r} be
a symmetric basis of G/Z, and so for all 1 < i # j < 2r we have that Q(Zg;) = (¢;)> = 1 and
B(Zgi, Zgj) = [gi, gj] = z. This implies that g1, g2, ..., g2r are involutions of G, and g;g; = g;jg= for all
distinct 7 and j with 1 < 4,j < 2r. Let ¥ = Cay(G/Z,B) and I = Cay(G, S) with S = {g1, g2, ..., g2r }.
Thus ¥ is a 2r-dimensional hypercube.

To prove Theorem we first show that I' is a 2-arc-transitive cover of X. The Frattini subgroup
®(M) of a group M is the intersection of all maximal subgroups of M. If M is a p-group, then the
Frattini quotient M /®(M) of M is isomorphic to Z;,f where £ is the smallest number of generators for
M. Since G is an extraspecial 2-group, we have that ®(G) = Z. Since G/Z = Z2" has a symmetric
basis B, by the Burnside Basis Theorem (see [13, Theorem 11.12]) we have that G = (g1, g2, - . ., g2r)-

Let g € G where 1# g # z. Then Zg can be uniquely written as Zgs, Zgs, - - - Zgs, where 1 < 51 <
So < --- < 8 L 2r. Sog:zjgsl---gst for j =0or 1.

For each o € Sy,, define a map & : G — G by 2° = z, and for all g € G with g # 2,

g __
97 = 2gsg - 9sg

where g = 27g,, -+ gs, for j = 0 or 1. Note that (Z¢1)(Zg2) = Zg1g2 = Zgog1 for any g1 and g in
G. In particular, for all s;, s;; we have g, 95, = zjgskgsi for some j and so we can deduce that ¢ is a
homomorphism. Suppose that h € Ker(¢) and h # 1. Since h # z, the element h can be uniquely
written as z/gs, - - - gs, for some s; € {1,...,2r}. Since h® =1, we have

Z = Z(h&) — ngtly- ng,?

This is a contradiction as {Zg1, ..., Zgs,} is a basis of G/Z. Therefore, Ker(6) =1. Thus, ¢ is injective
and as G is finite, it follows that & is surjective. Hence, 6 € Aut(G).

Theorem 4.1. Sy, < Aut(G).
Proof. Let ¢ : Sop — Aut(G) be the map defined as below:
¢: 0 — &7, for each o € So,.
It is not hard to prove that ¢ is a homomorphism from So, into Aut(G). Let K be the kernel of ¢, that

is,
K={o€Sy|s=1}
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Since & = 1, we have that g7 = go = g; for all 1 <i < 2r. Thus 0 = 1, and so K = {1}. Therefore,
Sor < Aut(Q). |

Theorem 4.2. The graph I is a 2-arc-transitive Cayley graph of G.

Proof. Let A = Aut(I"). Then Sy, < Ay as Sy, fixes the identity element 1 of G. Let N(1) be the set
of neighbours of 1 in I'. Thus Ss, is 2-transitive on N(1). Since I' is vertex-transitive, we have that T’
is 2-arc-transitive. |

Theorem 4.3. I' is a 2-arc-transitive cover for an even-dimensional hypercube.

Proof. 1t follows from Theorem [4.2]that G x So, < Aut(T) is 2-arc-transitive on I'. Since |G : Z(G)| > 4,
by [I1, Theorem 4.1] we have that I' is a cover of I'y(g) = . 1

Now we prove that I" is a normal Cayley graph for G. By a computation in MAGMA [3], we found
that I' is a normal Cayley graph for G for all r € {1,2,3}. Next, we show that this is true for the
general case, that is, for all r > 4.

Let C be a cycle in I with V/(C) = {c1,...,¢.} and E = {{er.,c1}} U {{ci,cita} | 1 <i <t — 1}
where t. is the length of C. There is a sequence (s, ..., s ) induced by C' where s; € S for 1 < i < ¢,
such that ¢; = st,¢p, and ci11 = sic; for 1 <@ <t — 1. Since s; is an involution for all 1 < i < 2r, we
have that

$189+ -8 =1, (2)

c

and

i = {Stcctc) ? ‘7 (3)

(si—18i—2---s1)c1, 2<i <t
The sequence is uniquely determined by C. Since I' is simple, we have the following lemma.

Lemma 4.1. s1 # s¢,, and s; # Si+1 for all 1 <i <t,— 1.
We call the sequence induced by C the cycle-sequence for C.

Lemma 4.2. Suppose that (s1,. .., Sy) is a sequence with s; € S for all1 < i < n such thatsy---s, € Z.
Then for each 1 < i < n, the element s; appears an even number of times in the sequence.

Proof. Note that
Z=27s1- 8y, =(Zs1) - (Zsp) = (Zsml)k1 e (Zsmt)kt,

where ) k; =n and k; is the number of s,,, in (s1,...,sy). Since {Zs1,...,Zs9,-} is a basis and s;
1<i<t
is an involution for all 1 < ¢ < 2r, we have that k; is even for all 1 <7 < ¢. ]

Let A[ll] be the automorphisms in A; that fix each vertex in N(1). Recall that N(1) = S. For each
distinct ¢ and j with 1 < 4,5 < 2r, note that the sequence (s1,..., ss) defined by

gi, if kis odd,
S =
g g;, if kis even.

is an 8-cycle in ' which we will denote by Cj; (see Figure[lfa)). Let ¢; = 1 and for each 2 < k < 8, let
Ck = Sg—1Sk—2 - - - 81, in particular, we have that c5 = g;9;9;9; = z and cg = g;.
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Let p € A[ll] and let C’fj be the image of C;; under p with V(C’fj) = {up | wp = ¢,1 <k <8}

Since g;,9; € N(1) and p € A[ll], we have that u; = 1, up = g; and ug = g;. Let {a1,...,ag} be the
cycle-sequence for ij, and so a; = g; and ag = g; (see Figure (b))

1 gi 1 9i

us

9i9i Uy

Figure 1: The 8-cycle C;; and its image under p € A[ll] (1<i,5<2r,i#j)

Lemma 4.3. Suppose that z° # z. Then for 1 < i < 8, the element a; appears exactly twice in the
cycle sequence (s1,...,s8). Moreover, ai,as,as,as are pairwise distinct, and as,ag, ay,as are pairwise
distinct.

Proof. By Lemma, we have that a1 # as and a; # a;41 for all 1 < i < 7. Suppose that a3 = a;.
Then by , we have that

U5 = a4a3a2a1
= a4a10a2a1
= a4a2%

= ag04.

If as = a4, then us = 1, which is a contradiction. Thus as # a4, which implies that there is a 2-path
in I connecting 1 and wus. Since p € A and z” = us, we have that there is a 2-path in I' connecting 1
and z, which leads to a contradiction. Hence ag # ay. If agy = a1, then

Us = @4G30201
= aijazaszaq

= asaz,

and by the same arguments, we deduce that a4 # a1. Suppose that ao = a4. Then us = aqazasa; =
ajaz, which leads to a contradiction by the same arguments. Thus ai, as, as, a4 are pairwise distinct.
By we have that

ug = aragasus.

Since 1 = u; = agug, we have that 1 = agatagasus. Since S consists of involutions, we have that
us = asagayas. Then by the same arguments, we may conclude that as, ag, a7, ag are pairwise distinct.
Therefore, by Lemma we conclude that each term in {a1,...,ag} appears exactly twice. |

Lemma 4.4. The cycle C;; is fized pointwise by p.
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Proof. We first show that z” = z. Suppose to the contrary that z” # z. Since us = z”, we have that
(N(2) N Cy5)P ={giz, gj2}° = {ua, ue}. Recall that us = azaza; and ug = asasasaza.

Suppose that (g;z)? = uys. Let gx € S be such that gp # a; for all 1 < i < 3, and let Cj; be an
8-cycle. Note that Cj; has the same shape as in Figure a). Thus g;z and g are connected by a
2-path in Cj, and so we have that (g;2)” and QZ are connected by a 2-path, that is, u4 and g, are
connected by a 2-path in I'. We may assume that zox1us = gi for some x1, x5 € S where x1 # x5, and
so zaziazazaigry, = 1. By Lemma [4:2] and Lemma we must have that g, = a; for some 1 <7 < 3,
which leads to a contradiction. Thus (g;2)” # u4, and so (g;2)” = ug.

By Lemma as = a; for some 1 < j < 3. Suppose that as = a;. Then (g;2)” = ug =
ajaqasasal = aqasasz. Let gy € S such that gp # a; for 2 < i < 4, and let C;p be the corresponding
8-cycle. Since g;z and g are joined by a 2-path, we have that ug and gi are joined by a 2-path, and so
we have yoy1a4a3a2gy = z for some y1,y2 € S where y; # yo. Then by similar arguments, we conclude
that gir = a; for some 2 < j < 4, which is a contradiction. For the remaining two cases where a5 = a2
or as = az, we can obtain contradictions following similar arguments. Hence (g;2)” # ug, which leads
to a contradiction to the fact that (g;z)” € {u4,ug}. Therefore, 2 = z, that is, us = z.

Recall that us = asazasa; = asagarag where a; = g; and ag = g;. By Lemma we have that
ay = a3z = gi, a2 = a4, a5 = a7 and ag = ag = g; as us = z and a; # a;41 forall 1 < ¢ < 7. If
az = a4 = g; and a5 = a7 = g;, then Cj; and Cipj have the same cycle sequence, that is, ij = Cjj.

Suppose to the contrary that as = a4 # gj. Since us = z, we have that usy = asz = azz and
ug = asz. Recall that {g;z, gjz}” = {u4,ue}. Since ay € S, we may assume that there exists 1 < ¢ < 2r
such that ay = ¢g; with ¢ # ¢ and t # j. Suppose that (g;2)? = uqs = agz, that is, (g;2)” = g1z. Let
C;t be the corresponding 8-cycle. Thus g; and g;z are connected by a 2-path in Cj, and so we have
that g and (g;2z)” are connected by a 2-path. Thus there exists wi,wy € S such that w; # wy and
wow1gy = g¢2, that is, wiws = z, which is a contradiction as Zw; and Zws are base elements. Hence
(9iz)P = ug = asz, that is, (g;2)” = u4 = asz.

Recall that as = g; where ¢ # ¢ and t # j. Let Cj; be the corresponding 8-cycle. Note that C'j; has
the same shape as in Figure (a). Thus g;z and g; are connected by a 2-path. Hence (g;2)” = a2z = g1z
and g; are connected by a 2-path. Suppose that there exist ui,us € S such that usuigs = grz. Thus
we have that ujus = 2z, which is a contradiction. Hence as = a4 = g;.

By a similar argument, we may conclude that as = a7 = g;. Therefore ij = Cj;. |

Corollary 4.1. Let v € N(1). Then p € A

Proof. Let w € N(v). We may assume that v = g1, and so w = g1g; for some 1 < i < 2r. If i = 1, then
w = 1, and so p fixes 1. Suppose that i # 1, and consider the 8-cycle Cy;. By Lemma Cl = Ch,

that is, p fixes each vertex on C;, and so w” = w. Therefore p € ALH. |

Lemma 4.5. A[ll} ={1}.

Proof. By Corollary u we have that A[ll] < ALI]. Since I' is vertex-transitive and finite, we have that
|A[1”| = |A£,1]\, which implies that A[ll] = Ag,l]. Since T is vertex-transitive, it follows that AE - ALI,] for
each v € V(I') and w € N(u). Thus by connectivity A[ll} = A forall w € V(T"), and so A[ll} ={1}. 1

Proof of Theorem . By Lemma M we have A7 = Allv(l) = Sy,.. Further by Theorem we
obtain A1 = Aut(G,S). Therefore A = G x Sa,, namely, I" is a normal Cayley graph for G. Also in
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Theorem we have proved that I' is a 2-arc-transitive cover of a hypercube of dimension 2r. This
completes the proof of Theorem |
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