Constructing 2-Arc-Transitive Covers of Hypercubes

Michael Giudici¹^{*}, Cai Heng Li²[†], Yian Xu³[‡]

¹ Centre for the Mathematics of Symmetry and Computation, School of Mathematics and Statistics, The University of Western Australia

> ² Department of Mathematics Southern University of Science and Technology ³ School of Mathematics Southeast University

Abstract

We introduce the notion of a symmetric basis of a vector space equipped with a quadratic form, and provide a sufficient and necessary condition for the existence to such a basis. Symmetric bases are then used to study Cayley graphs of certain extraspecial 2-groups of order 2^{2r+1} $(r \ge 1)$, which are further shown to be normal Cayley graphs and 2-arc-transitive covers of 2r-dimensional hypercubes.

Keywords extra
special 2-group symmetric basis quadratic form locally-primitive graph normal
 Cayley graph

1 Introduction

Throughout this paper, all graphs are simple, connected and regular. Let Γ be a graph with vertex set $V(\Gamma)$ and edge set $E(\Gamma)$. An *s*-arc of Γ is a sequence (v_1, \ldots, v_{s+1}) of s + 1 vertices such that for all $1 \leq i \leq s$, $\{v_i, v_{i+1}\}$ is an edge in Γ and $v_i \neq v_{i+2}$, and Γ is said to be *s*-arc-transitive if the automorphism group of Γ is transitive on the set of *s*-arcs. The study of *s*-arc-transitive graphs is motivated by a result of Tutte (1949), which says that there are no *s*-arc-transitive graphs of valency 3 for $s \geq 6$. Later this result was extended by Weiss [16] saying that there are no 8-arc-transitive graphs of valency at least 3. Thus analysing the *s*-arc-transitive graphs for $2 \leq s \leq 7$ has become one of the central goals in algebraic graph theory, and the classification of some 2-arc-transitive graphs has been obtained. For example, the 2-arc-transitive circulants are classified in [1]; a complete classification of 2-arc-transitive dihedrants is given in [7]; and a class of 2-arc-transitive Cayley graphs of elementary abelian 2-groups is classified in [9].

A natural idea to investigate the 2-arc-transitive graphs is to study their quotient graphs. Let \mathcal{P} be a partition of the vertex set $V(\Gamma)$. Define the quotient graph $\Gamma_{\mathcal{P}}$ of Γ to be the graph with vertex set \mathcal{P} and two parts $P, P' \in \mathcal{P}$ form an edge if and only if there is at least one edge in Γ joining a vertex of P

^{*}Email: michael.giudici@research.uwa.edu.au.

[†]Email: lich@sustc.edu.cn.

[‡]Email: yian.xu@research.uwa.edu.au.

and a vertex of P'. If \mathcal{P} is *G*-invariant for some group *G* of automorphisms of Γ , then the action of *G* on Γ induces an action of *G* on $\Gamma_{\mathcal{P}}$. Let *N* be a nontrivial normal subgroup of *G* and \mathcal{P} be the set of *N*-orbits in $V(\Gamma)$. The quotient graph $\Gamma_{\mathcal{P}}$ is said to be a normal quotient of Γ , denoted Γ_N . In general, the valency of Γ_N divides the valency of Γ . If the valency of Γ equals the valency of Γ_N , then Γ is said to be a cover of Γ_N . It has been proved by Praeger [11, Theorem 4.1] that if *G* is vertex-transitive and 2-arc-transitive on Γ , and *N* has more than two orbits in $V(\Gamma)$, then

- 1. G/N is s-arc transitive on Γ_N and G/N is faithful on $V(\Gamma_N)$,
- 2. Γ is a cover of Γ_N , and
- 3. N is semiregular on $V(\Gamma)$.

We say that a permutation group is *quasiprimitive* on a set Ω if every nontrivial normal subgroup of the permutation group is transitive on Ω , and *primitive* if it acts transitively on Ω and preserves no nontrivial partition of Ω . A permutation group is said to be *bi-quasiprimitive* on Ω if

- (i) each nontrivial normal subgroup of the permutation group has at most two orbits on Ω , and
- (ii) there exists a normal subgroup with two orbits on Ω .

The structure of finite quasiprimitive permutation groups was investigated in [11] and the types of quasiprimitive groups that are 2-arc-transitive on a graph were determined. Praeger studied biquasiprimitive groups in [12] and one specific class identified was previously studied in [10]. One family of such bipartite bi-quasiprimitive graphs are the affine ones. A 2-arc-transitive graph is said to be *affine*, if there is a vector space N and a group G of automorphisms of the graph such that $N \leq G \leq AGL(N)$ with N regular on the vertices and G acting transitively on the set of 2-arcs. Table 1 in [9] classifies all affine bipartite 2-arc-transitive graphs with the stabilizer of the bipartition of the vertices being primitive on each bipartition.

Another interesting topic is to reconstruct 2-arc-transitive covers of 2-arc-transitive graphs. It is known that every finite regular graph has a 2-arc-transitive cover [2]. In [8] Du, Malnič and Waller investigate the regular covers of complete graphs which are 2-arc-transitive, and they give a complete classification of all graphs whose group of covering transformations is either cyclic or isomorphic to $Z_p \times Z_p$ where p is a prime and whose fibre-preserving subgroup of automorphisms acts 2-arc-transitively. In particular, two families of 2-arc-transitive graphs are obtained. After that, many more results related to the reconstruction of the 2-arc-transitive graphs have been obtained, see [6] for examples.

The main subject of this paper is to construct a 2-arc-transitive cover for one family of affine graphs, namely the hypercubes. Let $V = \mathbb{Z}_2^d$ be a *d*-dimensional vector space over the field \mathbb{F}_2 , let e_1, \ldots, e_d be a basis of V and $\mathcal{B} = \{e_1, \ldots, e_d\}$. A *d*-dimensional hypercube is a Cayley graph $Q_d = Cay(V, \mathcal{B})$. It is known that Q_d admits a regular group of automorphisms \mathbb{Z}_2^d and $Aut(Q_d) = \mathbb{Z}_2^d \rtimes S_d$, where $S_d = Aut_1(Q_d)$ and permutes e_1, \ldots, e_d naturally (see [15]). Thus the hypercubes are 2-arc-transitive affine graphs. Furthermore, it has been shown in [9] that Q_d is bi-quasiprimitive if and only if d = 2or d is odd. In this paper, we are interested in the even-dimensional hypercubes, in particular, we construct a 2-arc-transitive cover for even-dimensional hypercubes. We also show that such a cover is a normal Cayley graph.

Let G be a finite group, and S be a subset of G such that S does not contain the identity of G and $S = S^{-1} = \{s^{-1} | s \in S\}$. We say that an element g of G is an *involution* if it has order 2, that

is, $g^2 = \mathbf{1}$ and $g \neq \mathbf{1}$. The Cayley graph $\Gamma = Cay(G, S)$ is defined to have vertex set $V(\Gamma) = G$, and edge set $E(\Gamma) = \{\{g, sg\} | s \in S\}$. It is well known that a graph is a Cayley graph if and only if its full automorphism group contains a subgroup acting regularly on the vertex set of the graph (see [14]).

Let $\Gamma = Cay(G, S)$ be a Cayley graph for some group G and $Aut(\Gamma)$ be the full automorphism group of Γ . For each $g \in G$, define a map $\hat{g}: G \to G$ by the right multiplication of g on G as below:

$$\hat{g}: x \to xg, \text{ for } x \in G.$$

Then \hat{g} is an automorphism of Γ . It follows from the definition that the group $\hat{G} = \{\hat{g} \mid g \in G\}$ is a subgroup of $Aut(\Gamma)$ and acts regularly on $V(\Gamma)$. Following Xu [18], we say that Γ is a normal Cayley graph for G (or normal) if $\hat{G} \leq Aut(\Gamma)$, otherwise we say that Γ is a non-normal Cayley graph for G (or non-normal).

Suppose that V is a d-dimensional vector space with a nondegenerate quadratic form Q where the associated bilinear form B_Q is symmetric. Let $\mathcal{C} = \{v_1, v_2, \ldots, v_d\}$ be a basis of V. We say that \mathcal{C} is symmetric if $Q(v_i) = 0$ and $B(v_i, v_j) = 1$ for all i, j with $1 \leq i < j \leq d$. In Section 3, we determine a necessary and sufficient condition for a vector space to have a symmetric basis.

Let G be an extraspecial 2-group of order 2^{2r+1} with $r \ge 1$, that is, |Z(G)| = 2 and $G/Z(G) \cong \mathbb{Z}_2^{2r}$. There are two extraspecial 2-groups of each order, for which we will give more details in Section 3. Let $\overline{S} = \{\overline{s_1}, \ldots, \overline{s_{2r}}\}$ be a symmetric basis of G/Z(G), and for each $1 \le i \le 2r$, let s_i be a preimage of $\overline{s_i}$ in G. Notice that generally for a basis of G/Z(G), the preimages of the basis elements are not necessary involutions in G. However in Section 3 we show that in the case where it is a symmetric basis the preimages of the basis elements are all involutions in G, which is crucial for the proofs of the main results. Note that $\Sigma = Cay(G/Z(G), \overline{S})$ is a 2r-dimensional hypercube. We will prove the following result.

Theorem 1.1. Let G be an extraspecial 2-group of order 2^{2r+1} with $r \ge 1$ such that G/Z(G) has a symmetric basis $\{\overline{s_1}, \ldots, \overline{s_{2r}}\}$. Let $\Gamma = Cay(G, S)$ be a Cayley graph of G with $S = \{s_1, \ldots, s_{2r}\}$. Then Γ is a 2-arc-transitive cover of some 2r-dimensional hypercube Σ , and Γ is a normal Cayley graph with $Aut(\Gamma) = G \rtimes S_{2r}$.

2 Preliminaries

Let V be a 2r-dimensional $(r \ge 1)$ vector space over a field \mathbb{F}_q , where q is a prime-power. Let B be a bilinear form on V. We say that B is symmetric if B(u, v) = B(v, u) for all $u, v \in V$, and B is alternating if B(u, u) = 0 for all $u \in V$. The radical of B is the subspace

$$rad(B) = \{ u \in V \mid B(u, v) = 0 \text{ for all } v \in V \},\$$

and B is said to be *nondegenerate* if $rad(B) = \{0\}$. Let W be a subspace of V. Define

$$W^{\perp} = \{ v \in V \mid B(w, v) = 0 \text{ for all } w \in W \}$$

to be the orthogonal complement of W. It is known that if B is nondegenerate, then $dim(W) + dim(W^{\perp}) = dim(V)$. A map $Q: V \to \mathbb{F}_q$ is a quadratic form on V if the following two conditions are satisfied:

- (i) $Q(\lambda u) = \lambda^2 Q(u)$ for all $u \in V$ and $\lambda \in \mathbb{F}_q$, and
- (ii) the map $B_Q: V \times V \to \mathbb{F}_q$ defined by

$$B_Q(u,v) = Q(u+v) - Q(u) - Q(v)$$

is a bilinear form.

The bilinear form B_Q is called the *associated bilinear form* of Q. A quadratic form Q is said to be *nondegenerate* if and only if its associated bilinear form is nondegenerate.

Let u, v be two distinct vectors of V. We say that $\{u, v\}$ is a hyperbolic pair if Q(u) = Q(v) = 0and B(u, v) = 1. By [4, Proposition 2.2.7], when Q is nondegenerate and $B = B_Q$ is symmetric, V has the following two types of standard bases, in particular, the basis is hyperbolic in case (i), and elliptic in case (ii):

(i). $\mathcal{B} = \{e_1, \dots, e_{n/2}, f_1, \dots, f_{n/2}\}$ where

$$Q(e_i) = Q(f_i) = 0, \ B(e_i, f_j) = \delta_{ij} \text{ for all } i, j;$$
(ii). $\mathcal{B} = \{e_1, \dots, e_{n/2-1}, f_1, \dots, f_{n/2-1}, x, y\}$ where $Q(e_i) = Q(f_i) = 0,$
 $B(e_i, x) = B(e_i, y) = B(f_i, x) = B(f_i, y) = 0, \ B(e_i, f_j) = \delta_{ij}$

for all i, j, Q(x) = 1, B(x, y) = 1 and $Q(y) = \zeta$ where $x^2 + x + \zeta \in \mathbb{F}_q[x]$ is irreducible,

where

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j. \end{cases}$$

If V has a hyperbolic basis, then Q is said to be a *hyperbolic* quadratic form (or hyperbolic in short). Similarly we say that Q is *elliptic* when V has an elliptic basis.

Let U be a subspace of V. We say that U is *totally singular* if Q(u) = 0 for all $u \in U$. The next result is a consequence of Witt's Lemma (see [4])

Proposition 2.1 ([5, Page 38]). Let V be a d-dimensional vector space over the field \mathbb{F}_q equipped with a nondegenerate quadratic form Q, and U be a maximal totally singular subspace of V. Then

$$dimU = \frac{1}{2}dimV - \delta$$

where $\delta = 0$ if Q is hyperbolic, and $\delta = 1$ if Q is elliptic.

3 Symmetric Basis of a Vector Space

Let V be a 2r-dimensional vector space over \mathbb{F}_2 with a nondegenerate quadratic form $Q: V \to \mathbb{F}_2$ and an associated symmetric bilinear form $B = B_Q$. Suppose that $\mathcal{C} = \{v_1, \ldots, v_{2r}\}$ is a symmetric basis of V. Let $\mathcal{C}' = \{c_1, \ldots, c_{r-1}\}$ where for $1 \leq i \leq r-1$, we have

$$c_i = v_{2i-1} + v_{2i} + v_{2i+1} + v_{2i+2}$$

Let U be the subspace of V generated by \mathcal{C}' . Then $\dim(U) = \frac{1}{2}\dim(V) - 1$. Also U is totally singular as $Q(c_i) = 0$ and $B(c_i, c_j) = 0$ for all $1 \leq i, j \leq r - 1$. If U is maximal subject to being totally singular in V, then Q is elliptic. Otherwise Q is hyperbolic, and there is a vector $v \in V \setminus U$ such that $W = \langle v, \mathcal{C}' \rangle$ is a maximal totally singular subspace of V.

Let $\alpha \in V$ be a non-zero vector that is not in \mathcal{C}' . We may assume that $\alpha = \mu_1 + \mu_2 + \cdots + \mu_t$, where $\mu_i \in \mathcal{C}$ and $\mu_i \neq \mu_j$ for all $1 \leq i \neq j \leq t$.

Lemma 3.1. $Q(\alpha) = 0$ if and only if $t \equiv 0$ or $1 \pmod{4}$.

Proof. First suppose that t = 2k with $k \ge 0$ and let $u_i = \mu_{2i-1} + \mu_{2i}$, for i = 1, 2, ..., k. So

$$\begin{aligned} Q(\mu_1 + \mu_2 + \dots + \mu_{2k}) \\ &= Q(u_1 + u_2 + \dots + u_k) \\ &= Q(u_1) + Q(u_2 + \dots + u_k) + \sum_{i=2}^k B(u_1, u_i) \\ &= Q(u_1) + Q(u_2) + Q(u_3 + \dots + u_k) + \sum_{i=2}^k B(u_1, u_i) + \sum_{i=3}^k B(u_2, u_i) \\ &= Q(u_1) + Q(u_2) + Q(u_3) + Q(u_4 + \dots + u_k) + \sum_{i=2}^k B(u_1, u_i) + \sum_{i=3}^k B(u_2, u_i) + \sum_{i=4}^k B(u_3, u_i) \\ &= \sum_{i=1}^k Q(u_i) + \sum_{i=1}^{k-1} \sum_{j=i+1}^k B(u_i, u_j). \end{aligned}$$

For $1 \leq i < j \leq k$ we have

$$B(u_i, u_j) = B(\mu_{2i-1} + \mu_{2i}, \mu_{2j-1} + \mu_{2j})$$

= $B(\mu_{2i-1}, \mu_{2j-1}) + B(\mu_{2i-1}, \mu_{2j}) + B(\mu_{2i}, \mu_{2j-1}) + B(\mu_{2i}, \mu_{2j})$
= 0,

and

$$Q(u_i) = Q(\mu_{2i-1} + \mu_{2i})$$

= $Q(\mu_{2i-1}) + Q(\mu_{2i}) + B(\mu_{2i-1}, \mu_{2i})$
= 1.

Thus $Q(\alpha) = 0$ if and only if $k \equiv 0 \pmod{2}$, that is, if and only if $t \equiv 0 \pmod{4}$.

Next suppose that t is odd, and so t = 2k + 1 with $k \ge 0$. Then

$$Q(\mu_1 + \mu_2 + \dots + \mu_{2k} + \mu_{2k+1}) = Q(\mu_1 + \dots + \mu_{2k}) + Q(\mu_{2k+1}) + \sum_{i=1}^{2k} B(\mu_i, \mu_{2k+1})$$
$$= Q(\mu_1 + \dots + \mu_{2k}).$$

which implies that $Q(\alpha) = 0$ if and only if $t \equiv 1 \pmod{4}$.

Before we introduce the sufficient and necessary conditions for V to have a symmetric basis, we first give the following lemma.

Lemma 3.2. Let W be a nontrivial subspace of V with dimension $d \equiv 2 \pmod{4}$. Suppose that W has a symmetric basis and there are three pairwise perpendicular hyperbolic pairs $\{a, b\}, \{c, d\}, \{g, h\}$ in $W^{\perp} \setminus W$. Let

$$W' = W \bot \langle a, b \rangle \bot \langle c, d \rangle \bot \langle g, h \rangle.$$

Then W' has a symmetric basis.

Proof. Let $C_W = \{w_1, \ldots, w_d\}$ be a symmetric basis of W. Let

$$u_{1} = a + c + d + \sum_{i=1}^{d} w_{i};$$

$$u_{2} = b + c + d + \sum_{i=1}^{d} w_{i};$$

$$u_{3} = c + g + h + \sum_{i=1}^{d} w_{i};$$

$$u_{4} = d + g + h + \sum_{i=1}^{d} w_{i};$$

$$u_{5} = g + a + b + \sum_{i=1}^{d} w_{i};$$

$$u_{6} = h + a + b + \sum_{i=1}^{d} w_{i}.$$

Since $d \equiv 2 \pmod{4}$, Lemma 3.1 implies $Q(\sum_{i=1}^{d} w_i) = 1$. So $Q(u_j) = 0$ for all j = 1, 2, ..., 6. For any $1 \leq j_1 \neq j_2 \leq 6$, one can check that

$$B(u_{j_1}, u_{j_2}) = 1.$$

Also we have $B(u_j, w_i) = 1$ for all $1 \leq i \leq d$ and j = 1, 2, ..., 6. Therefore $\mathcal{C}_W \cup \{u_1, ..., u_6\}$ is a symmetric basis of W'.

Lemma 3.3. Let V be a vector space of dimension 2r with nondegenerate quadratic form Q such that $r \ge 1$.

- (i). If Q is hyperbolic and $r \equiv 0$ or 1 (mod 4), then V has a symmetric basis;
- (ii). If Q is elliptic and $r \equiv 2$ or $3 \pmod{4}$, then V has a symmetric basis.

Proof. We prove this by using induction on r.

(i) Suppose that Q is hyperbolic with $r \equiv 0$ or 1 (mod 4). When r = 1, a hyperbolic basis of V is also a symmetric basis of V. Now assume the lemma holds for all $r \leq 4\ell + 1$ with $r \equiv 0$ or 1 (mod 4), where ℓ is a nonnegative integer. Note that we have seen that the lemma holds when $\ell = 0$. Let $r' = 4\ell$ and suppose that $r = r' + 4 = 4(\ell + 1)$. Let $W \leq V$ be a subspace of dimension 2(r' + 1) such that Q is hyperbolic on W and

$$V = W \bot \langle a, b \rangle \bot \langle c, d \rangle \bot \langle g, h \rangle.$$

where $\{a, b\}, \{c, d\}, \{g, h\}$ are hyperbolic pairs in $V \setminus W$. By induction, W has a symmetric basis $C_W = \{w_1, w_2, \ldots, w_{2(r'+1)}\}$. Take d = 2(r'+1). Then V has a symmetric basis $C_W \cup \{u_1, \ldots, u_6\}$ as constructed in Lemma 3.2.

Now suppose that $r = 4(\ell + 1) + 1$. We may assume that

$$V = W \bot \langle a, b \rangle \bot \langle c, d \rangle \bot \langle g, h \rangle \bot \langle x, y \rangle,$$

where $\{a, b\}, \{c, d\}, \{g, h\}, \{x, y\}$ are hyperbolic. Clearly V contains a subspace U with a symmetric basis $\mathcal{C}_W \cup \{u_1, \ldots, u_6\}$ as above, and let

$$\alpha = x + \sum_{\substack{i=1\\2r'+2}}^{2r'+2} w_i + a + b + c + d + g + h;$$

$$\beta = y + \sum_{\substack{i=1\\i=1}}^{2r'+2} w_i + a + b + c + d + g + h.$$

Then $Q(\alpha) = Q(\beta) = 0$ and $B(\alpha, \beta) = 1$. Also for $1 \le i \le 2(r'+1)$ we have $B(\alpha, w_i) = B(\beta, w_i) = 1$, and $B(\alpha, u_j) = B(\beta, u_j) = 1$ for $1 \le j \le 6$. Hence $C_W \cup \{u_1, \ldots, u_6\} \cup \{\alpha, \beta\}$ forms a symmetric basis of V.

(*ii*) Suppose that Q is elliptic and $r \equiv 2$ or 3 (mod 4). When r = 2, let $\{e_1, f_1, x, y\}$ be an elliptic basis of V. Let

$$c_1 = e_1, c_2 = f_1, c_3 = x + c_1 + c_2, c_4 = y + c_1 + c_2.$$

Then $Q(c_i) = 0$ and $B(c_i, c_j) = 1$ for $1 \le i < j \le 4$. So $\{c_1, c_2, c_3, c_4\}$ is a symmetric basis of V.

When r = 3, let $\{e_1, e_2, f_1, f_2, x, y\}$ be an elliptic basis. Let c_1, c_2, c_3, c_4 be defined as above and let

$$c_5 = e_2 + c_1 + c_2 + c_3 + c_4, c_6 = f_2 + c_1 + c_2 + c_3 + c_4.$$

Then $\{c_1, c_2, c_3, c_4, c_5, c_6\}$ is a symmetric basis of V.

Now assume the lemma holds for all $r \leq 4\ell + 3$ with $r \equiv 2$ or 3 (mod 4) where ℓ is a nonnegative integer. Note that we have seen that the lemma holds when $\ell = 0$. Let $r' = 4\ell + 2$ and suppose that $r = r' + 4 = 4(\ell + 1) + 2$. Let $W \leq V$ be a subspace of dimension 2(r' + 1) such that Q is elliptic on W and

$$V = W \bot \langle a, b \rangle \bot \langle c, d \rangle \bot \langle g, h \rangle,$$

where $\{a, b\}, \{c, d\}, \{g, h\}$ are hyperbolic. By our induction W has a symmetric basis

$$C_W = \{w_1, \ldots, w_{2r'+1}, w_{2r'+2}\}.$$

Then by Lemma 3.2, when $r = 4(\ell + 1) + 2$, V contains a symmetric basis. When $r = 4(\ell + 1) + 3$, let x, y, α, β be vectors of V as defined in (i). Then $\mathcal{C}_W \cup \{u_1, \ldots, u_6\} \cup \{\alpha, \beta\}$ forms a symmetric basis of V.

Let V be a d-dimensional vector space over field \mathbb{F}_q equipped with a quadratic form Q and U be a d-dimensional vector spaces over field \mathbb{F}_q equipped with a quadratic form Q'. An isometry from V to U is an invertible linear map $\sigma: V \to U$ such that

$$Q'(v^{\sigma}) = Q(v) \tag{1}$$

for all $v \in V$. Notice that (1) implies that

$$B_{Q'}(u^{\sigma}, v^{\sigma}) = B_Q(u, v)$$

for all $u, v \in V$. If such an isometry exists, then both U and V, and Q and Q' are said to be *isometric*. Let $W \subseteq V$ and $W' \subseteq U$. Then W and W' are isometric if the restrictions $Q \mid_W$ and $Q' \mid_{W'}$ are isometric. We say that σ is an *isometry of* Q if U = V. The *isometry group* of Q is the set of isometries of Q under composition. Notice that the isometry group of Q is a subgroup of the isometry group of the associated bilinear form B_Q .

Lemma 3.4. Let V be a vector space of dimension 2r with nondegenerate quadratic form Q and a symmetric basis $C = \{v_1, v_2, \ldots, v_{2r}\}.$

(i). If r ≡ 0 or 1 (mod 4), then Q is hyperbolic;
(ii). If r ≡ 2 or 3 (mod 4), then Q is elliptic.

Proof. Let Q_1 and Q_2 be quadratic forms on V such that V has a symmetric basis $\mathcal{C} = \{c_1, \ldots, c_{2r}\}$ with respect to Q_1 and a symmetric basis $\mathcal{C}' = \{c'_1, \ldots, c'_{2r}\}$ with respect to Q_2 . Let $\sigma : V \to V$ be the linear map defined by

$$\sigma: c_i \to c'_i$$
, for $1 \le i \le 2r$.

Then we have

$$B_{Q_2}(c_i^{\sigma}, c_j^{\sigma}) = B_{Q_1}(c_i, c_j)$$
 and $Q_2(c_i^{\sigma}) = Q_1(c_i)$, for all $1 \le i, j \le 2r$.

Thus σ is an isometry of Q_1 and hence Q_1 and Q_2 have the same type. Therefore by Lemma 3.3 either Q_2 is hyperbolic with $r \equiv 0$ or 1 (mod 4), or Q_2 is elliptic with $r \equiv 2$ or 3 (mod 4).

Combining the results of this section, we obtain the following theorem.

Theorem 3.1. Let V be a vector space of dimension 2r over \mathbb{F}_2 with nondegenerate quadratic form Q. Then V has a symmetric basis if and only if either Q is hyperbolic and $r \equiv 0$ or 1 (mod 4), or Q is elliptic and $r \equiv 2$ or 3 (mod 4).

4 A 2-Arc-Transitive Cover of Hypercubes

Let G be an extraspecial 2-group of order 2^{2r+1} with identity $\mathbf{1}$ $(r \ge 1)$. Let $Z = \langle z \rangle$ be the center of G. Then $Z \cong \mathbb{Z}_2$ and $G/Z \cong \mathbb{Z}_2^{2r}$ is elementary abelian. The commutator of any two elements in G or the square of any element in G lies in Z. So G is a nilpotent group of class 2. Define two functions $B: G/Z \times G/Z \to Z$ and $Q: G/Z \to Z$ as below: for any Zx, Zy in G/Z,

$$\begin{split} B(Zx,Zy) &= [x,y],\\ Q(Zx) &= x^2. \end{split}$$

Then Q is a quadratic form on V = G/Z with associated bilinear form B. Note that if $B(Zx, Zy) = \mathbf{1}$ for some $x, y \in G$, then x, y commute. So if $B(Zx, Zy) = \mathbf{1}$ for all $y \in G$, then Zx must be the identity in G/Z. Therefore Q is nondegenerate on G/Z. Furthermore B is symmetric as $[y, x] = [x, y]^{-1} = [x, y]$ for all $x, y \in G$.

We say that G is an extraspecial 2-group of plus type if Q is hyperbolic, denoted by 2^{2r+1}_+ , and G is an extraspecial 2-group of minus type if Q is elliptic, denoted by 2^{2r+1}_- . It is known [17] that if $G = 2^{2r+1}_+$, then it is the central product of r dihedral groups D_8 , otherwise G is the central product of r-1 dihedral groups D_8 with one quaternion group Q_8 . Also Winter proved that $\operatorname{Aut}(2^{2r+1}_{\epsilon}) = 2^{2r} \cdot O^{\epsilon}(2r, 2)$ where $O^{\epsilon}(2r, 2)$ with $\epsilon \in \{+, -\}$ is an orthogonal group (see [17, Theorem 1]).

By Theorem 3.1, G/Z has a symmetric basis if and only if either G is of plus type with $r \equiv 0$ or 1 (mod 4), or G is of minus type with $r \equiv 2$ or 3 (mod 4). Let $\mathcal{B} = \{Zg_1, Zg_2, \ldots, Zg_{2r}\}$ be a symmetric basis of G/Z, and so for all $1 \leq i \neq j \leq 2r$ we have that $Q(Zg_i) = (g_i)^2 = 1$ and $B(Zg_i, Zg_j) = [g_i, g_j] = z$. This implies that g_1, g_2, \ldots, g_{2r} are involutions of G, and $g_ig_j = g_jg_iz$ for all distinct i and j with $1 \leq i, j \leq 2r$. Let $\Sigma = \operatorname{Cay}(G/Z, \mathcal{B})$ and $\Gamma = \operatorname{Cay}(G, S)$ with $S = \{g_1, g_2, \ldots, g_{2r}\}$. Thus Σ is a 2r-dimensional hypercube.

To prove Theorem 1.1, we first show that Γ is a 2-arc-transitive cover of Σ . The *Frattini subgroup* $\Phi(M)$ of a group M is the intersection of all maximal subgroups of M. If M is a p-group, then the *Frattini quotient* $M/\Phi(M)$ of M is isomorphic to Z_p^k where k is the smallest number of generators for M. Since G is an extraspecial 2-group, we have that $\Phi(G) = Z$. Since $G/Z \cong \mathbb{Z}_2^{2r}$ has a symmetric basis \mathcal{B} , by the Burnside Basis Theorem (see [13, Theorem 11.12]) we have that $G = \langle g_1, g_2, \ldots, g_{2r} \rangle$.

Let $g \in G$ where $\mathbf{1} \neq g \neq z$. Then Zg can be uniquely written as $Zg_{s_1}Zg_{s_2}\cdots Zg_{s_t}$ where $1 \leq s_1 < s_2 < \cdots < s_t \leq 2r$. So $g = z^j g_{s_1} \cdots g_{s_t}$ for j = 0 or 1.

For each $\sigma \in S_{2r}$, define a map $\tilde{\sigma} : G \to G$ by $z^{\tilde{\sigma}} = z$, and for all $g \in G$ with $g \neq z$,

$$g^{\tilde{\sigma}} = z^j g_{s_1^{\sigma}} \cdots g_{s_t^{\sigma}}$$

where $g = z^j g_{s_1} \cdots g_{s_t}$ for j = 0 or 1. Note that $(Zg_1)(Zg_2) = Zg_1g_2 = Zg_2g_1$ for any g_1 and g_2 in G. In particular, for all s_i, s_k we have $g_{s_i}g_{s_k} = z^j g_{s_k}g_{s_i}$ for some j and so we can deduce that $\tilde{\sigma}$ is a homomorphism. Suppose that $h \in \text{Ker}(\tilde{\sigma})$ and $h \neq \mathbf{1}$. Since $h \neq z$, the element h can be uniquely written as $z^j g_{s_1} \cdots g_{s_t}$ for some $s_i \in \{1, \ldots, 2r\}$. Since $h^{\tilde{\sigma}} = \mathbf{1}$, we have

$$Z = Z(h^{\sigma}) = Zg_{s_1^{\sigma}} \cdots Zg_{s_t^{\sigma}}.$$

This is a contradiction as $\{Zg_1, \ldots, Zg_{2r}\}$ is a basis of G/Z. Therefore, $Ker(\tilde{\sigma}) = 1$. Thus, $\tilde{\sigma}$ is injective and as G is finite, it follows that $\tilde{\sigma}$ is surjective. Hence, $\tilde{\sigma} \in Aut(G)$.

Theorem 4.1. $S_{2r} \leq Aut(G)$.

Proof. Let $\phi: S_{2r} \to Aut(G)$ be the map defined as below:

$$\phi: \sigma \to \tilde{\sigma}$$
, for each $\sigma \in S_{2r}$.

It is not hard to prove that ϕ is a homomorphism from S_{2r} into Aut(G). Let K be the kernel of ϕ , that is,

$$K = \{ \sigma \in S_{2r} \mid \tilde{\sigma} = \mathbf{1} \}.$$

Since $\tilde{\sigma} = \mathbf{1}$, we have that $g_i^{\tilde{\sigma}} = g_i^{\sigma} = g_i$ for all $1 \leq i \leq 2r$. Thus $\sigma = \mathbf{1}$, and so $K = \{\mathbf{1}\}$. Therefore, $S_{2r} \leq Aut(G)$.

Theorem 4.2. The graph Γ is a 2-arc-transitive Cayley graph of G.

Proof. Let $A = Aut(\Gamma)$. Then $S_{2r} \leq A_1$ as S_{2r} fixes the identity element **1** of *G*. Let $N(\mathbf{1})$ be the set of neighbours of **1** in Γ . Thus S_{2r} is 2-transitive on $N(\mathbf{1})$. Since Γ is vertex-transitive, we have that Γ is 2-arc-transitive.

Theorem 4.3. Γ is a 2-arc-transitive cover for an even-dimensional hypercube.

Proof. It follows from Theorem 4.2 that $G \rtimes S_{2r} \leq \operatorname{Aut}(\Gamma)$ is 2-arc-transitive on Γ . Since $|G: Z(G)| \geq 4$, by [11, Theorem 4.1] we have that Γ is a cover of $\Gamma_{Z(G)} \cong \Sigma$.

Now we prove that Γ is a normal Cayley graph for G. By a computation in MAGMA [3], we found that Γ is a normal Cayley graph for G for all $r \in \{1, 2, 3\}$. Next, we show that this is true for the general case, that is, for all $r \ge 4$.

Let C be a cycle in Γ with $V(C) = \{c_1, \ldots, c_{t_c}\}$ and $E = \{\{c_{t_c}, c_1\}\} \cup \{\{c_i, c_{i+1}\} \mid 1 \leq i \leq t_c - 1\}$ where t_c is the length of C. There is a sequence (s_1, \ldots, s_{t_c}) induced by C where $s_i \in S$ for $1 \leq i \leq t_c$, such that $c_1 = s_{t_c}c_{t_c}$ and $c_{i+1} = s_ic_i$ for $1 \leq i \leq t_c - 1$. Since s_i is an involution for all $1 \leq i \leq 2r$, we have that

$$s_1 s_2 \cdots s_{t_c} = \mathbf{1},\tag{2}$$

and

$$c_{i} = \begin{cases} s_{t_{c}}c_{t_{c}}, & i = 1, \\ (s_{i-1}s_{i-2}\cdots s_{1})c_{1}, & 2 \leqslant i \leqslant t_{c}. \end{cases}$$
(3)

The sequence is uniquely determined by C. Since Γ is simple, we have the following lemma.

Lemma 4.1. $s_1 \neq s_{t_c}$, and $s_i \neq s_{i+1}$ for all $1 \leq i \leq t_c - 1$.

We call the sequence induced by C the cycle-sequence for C.

Lemma 4.2. Suppose that (s_1, \ldots, s_n) is a sequence with $s_i \in S$ for all $1 \leq i \leq n$ such that $s_1 \cdots s_n \in Z$. Then for each $1 \leq i \leq n$, the element s_i appears an even number of times in the sequence.

Proof. Note that

$$Z = Zs_1 \cdots s_n = (Zs_1) \cdots (Zs_n) = (Zs_{m_1})^{k_1} \cdots (Zs_{m_t})^{k_t},$$

where $\sum_{1 \leq i \leq t} k_i = n$ and k_i is the number of s_{m_i} in (s_1, \ldots, s_n) . Since $\{Zs_1, \ldots, Zs_{2r}\}$ is a basis and s_i is an involution for all $1 \leq i \leq 2r$, we have that k_i is even for all $1 \leq i \leq t$.

Let $A_{\mathbf{1}}^{[1]}$ be the automorphisms in $A_{\mathbf{1}}$ that fix each vertex in $N(\mathbf{1})$. Recall that $N(\mathbf{1}) = S$. For each distinct i and j with $1 \leq i, j \leq 2r$, note that the sequence (s_1, \ldots, s_8) defined by

$$s_k = \begin{cases} g_i, & \text{if } k \text{ is odd,} \\ g_j, & \text{if } k \text{ is even.} \end{cases}$$

is an 8-cycle in Γ which we will denote by C_{ij} (see Figure 1(a)). Let $c_1 = \mathbf{1}$ and for each $2 \leq k \leq 8$, let $c_k = s_{k-1}s_{k-2}\cdots s_1$, in particular, we have that $c_5 = g_jg_ig_jg_i = z$ and $c_8 = g_j$.

Let $\rho \in A_1^{[1]}$ and let C_{ij}^{ρ} be the image of C_{ij} under ρ with $V(C_{ij}^{\rho}) = \{u_k \mid u_k = c_k^{\rho}, 1 \leq k \leq 8\}$. Since $g_i, g_j \in N(1)$ and $\rho \in A_1^{[1]}$, we have that $u_1 = \mathbf{1}, u_2 = g_i$ and $u_8 = g_j$. Let $\{a_1, \ldots, a_8\}$ be the cycle-sequence for C_{ij}^{ρ} , and so $a_1 = g_i$ and $a_8 = g_j$ (see Figure 1(b)).

Figure 1: The 8-cycle C_{ij} and its image under $\rho \in A_1^{[1]}$ $(1 \leq i, j \leq 2r, i \neq j)$

Lemma 4.3. Suppose that $z^{\rho} \neq z$. Then for $1 \leq i \leq 8$, the element a_i appears exactly twice in the cycle sequence (s_1, \ldots, s_8) . Moreover, a_1, a_2, a_3, a_4 are pairwise distinct, and a_5, a_6, a_7, a_8 are pairwise distinct.

Proof. By Lemma 4.1 we have that $a_1 \neq a_8$ and $a_i \neq a_{i+1}$ for all $1 \leq i \leq 7$. Suppose that $a_3 = a_1$. Then by (3), we have that

$$u_5 = a_4 a_3 a_2 a_1 = a_4 a_1 a_2 a_1 = a_4 a_2 z = a_2 a_4.$$

If $a_2 = a_4$, then $u_5 = \mathbf{1}$, which is a contradiction. Thus $a_2 \neq a_4$, which implies that there is a 2-path in Γ connecting $\mathbf{1}$ and u_5 . Since $\rho \in A$ and $z^{\rho} = u_5$, we have that there is a 2-path in Γ connecting $\mathbf{1}$ and z, which leads to a contradiction. Hence $a_3 \neq a_1$. If $a_4 = a_1$, then

$$u_5 = a_4 a_3 a_2 a_1$$

= $a_1 a_3 a_2 a_1$
= $a_3 a_2$,

and by the same arguments, we deduce that $a_4 \neq a_1$. Suppose that $a_2 = a_4$. Then $u_5 = a_4 a_3 a_2 a_1 = a_1 a_3$, which leads to a contradiction by the same arguments. Thus a_1, a_2, a_3, a_4 are pairwise distinct. By (3) we have that

$$u_8 = a_7 a_6 a_5 u_5.$$

Since $\mathbf{1} = u_1 = a_8 u_8$, we have that $\mathbf{1} = a_8 a_7 a_6 a_5 u_5$. Since S consists of involutions, we have that $u_5 = a_5 a_6 a_7 a_8$. Then by the same arguments, we may conclude that a_5, a_6, a_7, a_8 are pairwise distinct. Therefore, by Lemma 4.2, we conclude that each term in $\{a_1, \ldots, a_8\}$ appears exactly twice.

Lemma 4.4. The cycle C_{ij} is fixed pointwise by ρ .

Proof. We first show that $z^{\rho} = z$. Suppose to the contrary that $z^{\rho} \neq z$. Since $u_5 = z^{\rho}$, we have that $(N(z) \cap C_{ij})^{\rho} = \{g_i z, g_j z\}^{\rho} = \{u_4, u_6\}$. Recall that $u_4 = a_3 a_2 a_1$ and $u_6 = a_5 a_4 a_3 a_2 a_1$.

Suppose that $(g_i z)^{\rho} = u_4$. Let $g_k \in S$ be such that $g_k \neq a_i$ for all $1 \leq i \leq 3$, and let C_{ik} be an 8-cycle. Note that C_{ik} has the same shape as in Figure 1(a). Thus $g_i z$ and g_k are connected by a 2-path in C_{ik} , and so we have that $(g_i z)^{\rho}$ and g_k^{ρ} are connected by a 2-path, that is, u_4 and g_k are connected by a 2-path in Γ . We may assume that $x_2 x_1 u_4 = g_k$ for some $x_1, x_2 \in S$ where $x_1 \neq x_2$, and so $x_2 x_1 a_3 a_2 a_1 g_k = \mathbf{1}$. By Lemma 4.2 and Lemma 4.3, we must have that $g_k = a_i$ for some $1 \leq i \leq 3$, which leads to a contradiction. Thus $(g_i z)^{\rho} \neq u_4$, and so $(g_i z)^{\rho} = u_6$.

By Lemma 4.3, $a_5 = a_j$ for some $1 \leq j \leq 3$. Suppose that $a_5 = a_1$. Then $(g_i z)^{\rho} = u_6 = a_1 a_4 a_3 a_2 a_1 = a_4 a_3 a_2 z$. Let $g_{k'} \in S$ such that $g_{k'} \neq a_i$ for $2 \leq i \leq 4$, and let $C_{ik'}$ be the corresponding 8-cycle. Since $g_i z$ and $g_{k'}$ are joined by a 2-path, we have that u_6 and $g_{k'}$ are joined by a 2-path, and so we have $y_2 y_1 a_4 a_3 a_2 g_{k'} = z$ for some $y_1, y_2 \in S$ where $y_1 \neq y_2$. Then by similar arguments, we conclude that $g_{k'} = a_j$ for some $2 \leq j \leq 4$, which is a contradiction. For the remaining two cases where $a_5 = a_2$ or $a_5 = a_3$, we can obtain contradictions following similar arguments. Hence $(g_i z)^{\rho} \neq u_6$, which leads to a contradiction to the fact that $(g_i z)^{\rho} \in \{u_4, u_6\}$. Therefore, $z^{\rho} = z$, that is, $u_5 = z$.

Recall that $u_5 = a_4 a_3 a_2 a_1 = a_5 a_6 a_7 a_8$ where $a_1 = g_i$ and $a_8 = g_j$. By Lemma 4.2 we have that $a_1 = a_3 = g_i$, $a_2 = a_4$, $a_5 = a_7$ and $a_6 = a_8 = g_j$ as $u_5 = z$ and $a_i \neq a_{i+1}$ for all $1 \leq i \leq 7$. If $a_2 = a_4 = g_j$ and $a_5 = a_7 = g_i$, then C_{ij} and C_{ij}^{ρ} have the same cycle sequence, that is, $C_{ij}^{\rho} = C_{ij}$.

Suppose to the contrary that $a_2 = a_4 \neq g_j$. Since $u_5 = z$, we have that $u_4 = a_4 z = a_2 z$ and $u_6 = a_5 z$. Recall that $\{g_i z, g_j z\}^{\rho} = \{u_4, u_6\}$. Since $a_2 \in S$, we may assume that there exists $1 \leq t \leq 2r$ such that $a_2 = g_t$ with $t \neq i$ and $t \neq j$. Suppose that $(g_i z)^{\rho} = u_4 = a_2 z$, that is, $(g_i z)^{\rho} = g_t z$. Let C_{it} be the corresponding 8-cycle. Thus g_t and $g_i z$ are connected by a 2-path in C_{it} , and so we have that g_t and $(g_i z)^{\rho}$ are connected by a 2-path. Thus there exists $w_1, w_2 \in S$ such that $w_1 \neq w_2$ and $w_2 w_1 g_t = g_t z$, that is, $w_1 w_2 = z$, which is a contradiction as $Z w_1$ and $Z w_2$ are base elements. Hence $(g_i z)^{\rho} = u_6 = a_5 z$, that is, $(g_j z)^{\rho} = u_4 = a_2 z$.

Recall that $a_2 = g_t$ where $t \neq i$ and $t \neq j$. Let C_{jt} be the corresponding 8-cycle. Note that C_{jt} has the same shape as in Figure 1(a). Thus $g_j z$ and g_t are connected by a 2-path. Hence $(g_j z)^{\rho} = a_2 z = g_t z$ and g_t are connected by a 2-path. Suppose that there exist $u_1, u_2 \in S$ such that $u_2 u_1 g_t = g_t z$. Thus we have that $u_1 u_2 = z$, which is a contradiction. Hence $a_2 = a_4 = g_j$.

By a similar argument, we may conclude that $a_5 = a_7 = g_i$. Therefore $C_{ij}^{\rho} = C_{ij}$.

Corollary 4.1. Let $v \in N(\mathbf{1})$. Then $\rho \in A_v^{[1]}$.

Proof. Let $w \in N(v)$. We may assume that $v = g_1$, and so $w = g_1g_i$ for some $1 \leq i \leq 2r$. If i = 1, then w = 1, and so ρ fixes **1**. Suppose that $i \neq 1$, and consider the 8-cycle C_{1i} . By Lemma 4.4, $C_{1i}^{\rho} = C_{1i}$, that is, ρ fixes each vertex on C_{1i} , and so $w^{\rho} = w$. Therefore $\rho \in A_v^{[1]}$.

Lemma 4.5.
$$A_1^{[1]} = \{1\}.$$

Proof. By Corollary 4.1 we have that $A_{\mathbf{1}}^{[1]} \leq A_{v}^{[1]}$. Since Γ is vertex-transitive and finite, we have that $|A_{\mathbf{1}}^{[1]}| = |A_{v}^{[1]}|$, which implies that $A_{\mathbf{1}}^{[1]} = A_{v}^{[1]}$. Since Γ is vertex-transitive, it follows that $A_{u}^{[1]} = A_{w}^{[1]}$ for each $u \in V(\Gamma)$ and $w \in N(u)$. Thus by connectivity $A_{\mathbf{1}}^{[1]} = A_{u}^{[1]}$ for all $u \in V(\Gamma)$, and so $A_{\mathbf{1}}^{[1]} = \{\mathbf{1}\}$.

Proof of Theorem 1.1. By Lemma 4.5 we have $A_1 \cong A_1^{N(1)} = S_{2r}$. Further by Theorem 4.1 we obtain $A_1 = Aut(G, S)$. Therefore $A = G \rtimes S_{2r}$, namely, Γ is a normal Cayley graph for G. Also in

Theorem 4.3 we have proved that Γ is a 2-arc-transitive cover of a hypercube of dimension 2r. This completes the proof of Theorem 1.1.

5 Acknowledgements

This research is part of my Ph.D project at the Centre for the Mathematics of Symmetry and Computation of the University of Western Australia. I would like to express my gratitude to my supervisors Dr. Michael Giudici and Dr. Cai Heng Li, who offered continuous advice and encouragement throughout the progress of this paper.

I would also like to thank the referees of this paper for their great suggestions, which helped me a lot in improving the presentation of this paper.

References

- ALSPACH, B., CONDER, M. D., MARUŠIČ, D., AND XU, M.-Y. A classification of 2-arc-transitive circulants. *Journal of Algebraic Combinatorics* 5, 2 (1996), 83–86.
- [2] BABAI, L. Arc transitive covering digraphs and their eigenvalues. *Journal of Graph Theory 9*, 3 (1985), 363–370.
- [3] BOSMA, W., CANNON, J., AND PLAYOUST, C. The Magma algebra system I: The user language. Journal of Symbolic Computation 24, 3-4 (1997), 235–265.
- [4] BURNESS, T. C., AND GIUDICI, M. Classical Groups, Derangements And Primes, vol. 25. Cambridge University Press, 2016.
- [5] BURNESS, T. C., AND GIUDICI, M. Classical groups, derangements and primes, vol. 25 of Australian Mathematical Society Lecture Series. Cambridge University Press, Cambridge, 2016.
- [6] DU, S.-F., KWAK, J. H., AND XU, M.-Y. 2-Arc-transitive regular covers of complete graphs having the covering transformation group Z³_p. Journal of Combinatorial Theory, Series B 93, 1 (2005), 73–93.
- [7] DU, S.-F., MALNIČ, A., AND MARUŠIČ, D. Classification of 2-arc-transitive dihedrants. Journal of Combinatorial Theory, Series B 98, 6 (2008), 1349–1372.
- [8] DU, S.-F., MARUŠIČ, D., AND WALLER, A. O. On 2-arc-transitive covers of complete graphs. Journal of Combinatorial Theory. Series B 74, 2 (1998), 276–290.
- [9] IVANOV, A. A., AND PRAEGER, C. E. On finite affine 2-arc transitive graphs. European Journal of Combinatorics 14, 5 (1993), 421–444.
- [10] PRAEGER, C. E. Bipartite 2-arc-transitive graphs. Australas. J. Combin 7 (1993), 21–36.
- [11] PRAEGER, C. E. An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs. *Journal of the London Mathematical Society* 2, 2 (1993), 227–239.

- [12] PRAEGER, C. E. Finite transitive permutation groups and bipartite vertex-transitive graphs. *Illinois Journal of Mathematics* 47, 1-2 (2003), 461–475. Special issue in honor of Reinhold Baer (1902–1979).
- [13] ROSE, J. S. A course on group theory. Courier Corporation, 1994.
- [14] SABIDUSSI, G. On a class of fixed-point-free graphs. Proceedings of the American Mathematical Society 9, 5 (1958), 800–804.
- [15] SPIGA, P. Enumerating groups acting regularly on a d-dimensional cube. Comm. Algebra 37, 7 (2009), 2540–2545.
- [16] WEISS, R. The nonexistence of 8-transitive graphs. Combinatorica 1, 3 (1981), 309–311.
- [17] WINTER, D. L. The automorphism group of an extraspecial p-group. Rocky Mountain J. Math. 2, 2 (1972), 159–168.
- [18] XU, M.-Y. Automorphism groups and isomorphisms of Cayley digraphs. Discrete Mathematics 182, 1 (1998), 309–319.