On the sizes of vertex-k-maximal r-uniform hypergraphs *

Yingzhi Tian^a[†] Hong-Jian Lai^b, Jixiang Meng^a

^aCollege of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China ^bDepartment of Mathematics, West Virginia University, Morgantown, WV 26506, USA

Abstract Let H = (V, E) be a hypergraph, where V is a set of vertices and E is a set of non-empty subsets of V called edges. If all edges of H have the same cardinality r, then H is a r-uniform hypergraph; if E consists of all r-subsets of V, then H is a complete runiform hypergraph, denoted by K_n^r , where n = |V|. A hypergraph H' = (V', E') is called a subhypergraph of H = (V, E) if $V' \subseteq V$ and $E' \subseteq E$. A r-uniform hypergraph H = (V, E) is vertex-k-maximal if every subhypergraph of H has vertex-connectivity at most k, but for any edge $e \in E(K_n^r) \setminus E(H)$, H + e contains at least one subhypergraph with vertex-connectivity at least k+1. In this paper, we first prove that for given integers n, k, r with $k, r \ge 2$ and $n \ge k+1$, every vertex-k-maximal r-uniform hypergraph H of order n satisfies $|E(H)| \ge {n \choose r} - {n-k \choose r}$, and this lower bound is best possible. Next, we conjecture that for sufficiently large n, every vertexk-maximal r-uniform hypergraph H on n vertices satisfies $|E(H)| \le {n \choose r} - {n-k \choose k} + {n \choose k} - 2){k \choose r}$, where $k, r \ge 2$ are integers. And the conjecture is verified for the case r > k.

Keywords: Vertex-connectivity; Vertex-k-maximal hypergraphs; r-uniform hypergraphs

1 Introduction

In this paper, we consider finite simple graphs. For graph-theoretical terminologies and notation not defined here, we follow [4]. For a graph G, we use $\kappa(G)$ to denote the *vertex-connectivity* of G. The *complement* of a graph G is denoted by G^c . For $X \subseteq E(G^c)$, G + X is the graph with vertex set V(G) and edge set $E(G) \cup X$. We will use G + e for $G + \{e\}$. The *floor* of a real number x, denoted by $\lfloor x \rfloor$, is the greatest integer not larger than x; the *ceil* of a real number x, denoted by $\lfloor x \rfloor$, is the least integer greater than or equal to x. For two integers n and k, we define $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ when $k \leq n$ and $\binom{n}{k} = 0$ when k > n.

Matula [14] first explicitly studied the quantity $\overline{\kappa}(G) = max\{\kappa(G') : G' \subseteq G\}$. For a positive integer k, the graph G is *vertex-k-maximal* if $\overline{\kappa}(G) \leq k$ but for any edge $e \in E(G^c)$, $\overline{\kappa}(G+e) > k$. Because $\kappa(K_n) = n-1$, a vertex-k-maximal graph G with at most k+1 vertices must be a complete graph.

The union of two graphs G_1 and G_2 , denoted by $G_1 \cup G_2$, is the graph with vertex set $V(G_1) \cup V(G_2)$ and edge set $E(G_1) \cup E(G_2)$. The join of two graphs G_1 and G_2 , denoted

^{*}The research is supported by NSFC (Nos. 11531011, 11771039, 11771443).

[†]Corresponding author. E-mail: tianyzhxj@163.com (Y. Tian), hjlai@math.wvu.edu (H. Lai), mjx@xju.edu.cn (J. Meng).

by $G_1 \vee G_2$, is the graph obtained from the union of G_1 and G_2 by adding all the edges that connect the vertices of G_1 with G_2 . Let $G_{n,k} = ((p-1)K_k \cup K_q) \vee K_k^c$, where $n = pk + q \ge 2k$ $(1 \le q \le k)$ and $(p-1)K_k$ is the union of p-1 complete graphs on k vertices. Then $G_{n,k}$ is vertex-k-maximal and $|E(G_{n,k})| \le \frac{3}{2}(k-\frac{1}{3})(n-k)$, where the equality holds if n is a multiple of k. Mader [11] conjectured that, for large order of graphs, the graph $G_{n,k}$ would in fact present the best possible upper bound for the sizes of a vertex-k-maximal graph.

Conjecture 1. (Mader [11]) Let $k \ge 2$ be an integer. Then for sufficiently large n, every vertex-k-maximal graph on n vertices satisfies $|E(G)| \le \frac{3}{2}(k - \frac{1}{3})(n - k)$.

Some progresses towards Conjecture 1 are listed in the following.

Theorem 1.1. Let $k \ge 2$ be an integer.

(i) (Mader [10], see also [11]) Conjecture 1 holds for $k \leq 6$.

(ii) (Mader [10], see also [11]) For sufficiently large n, every vertex-k-maximal graph G on n vertices satisfies $|E(G)| \leq (1 + \frac{1}{\sqrt{2}})k(n-k)$.

(iii) (Yuster [18]) If $n \ge \frac{9k}{4}$, then every vertex-k-maximal graph G on n vertices satisfies $|E(G)| \le \frac{193}{120}k(n-k)$.

(iv) (Bernshteyn and Kostochka [3]) If $n \geq \frac{5k}{2}$, then every vertex-k-maximal graph G on n vertices satisfies $|E(G)| \leq \frac{19}{12}k(n-k)$.

In [17], Xu, Lai and Tian obtained the lower bound of the sizes of vertex-k-maximal graphs.

Theorem 1.2. (Xu, Lai and Tian [17]) Let n, k be integers with $n \ge k + 1 \ge 3$. If G is a vertex-k-maximal graph on n vertices, then $|E(G)| \ge (n-k)k + \frac{k(k-1)}{2}$. Furthermore, this bound is best possible.

The related studies on edge-k-maximal graphs have been conducted by quite a few researchers, as seen in [7,9,12,13,15], among others. For corresponding digraph problems, see [1,8], among others.

Let H = (V, E) be a hypergraph, where V is a finite set and E is a set of non-empty subsets of V, called edges. An edge of cardinality 2 is just a graph edge. For a vertex $u \in V$ and an edge $e \in E$, we say u is *incident with* e or e is *incident with* u if $u \in e$. If all edges of H have the same cardinality r, then H is a r-uniform hypergraph; if E consists of all r-subsets of V, then H is a *complete* r-uniform hypergraph, denoted by K_n^r , where n = |V|. For n < r, the complete r-uniform hypergraph H = (V, E), denoted by H^c , is the r-uniform hypergraph with vertex set V and edge set consisting of all r-subsets of V not in E. A hypergraph H' = (V', E') is called a *subhypergraph* of H = (V, E), denoted by $H' \subseteq H$, if $V' \subseteq V$ and $E' \subseteq E$. For $X \subseteq E(H^c)$, H + X is the hypergraph with vertex set V(H) and edge set $E(H) \cup X$; for $X' \subseteq E(H)$, H - X'is the hypergraph with vertex set V(H) and edge set $E(H) \setminus X'$. We use H + e for $H + \{e\}$ and H - e' for $H - \{e'\}$ when $e \in E(H^c)$ and $e' \in E(H)$. For $Y \subseteq V(H)$, we use H[Y] to denote the hypergraph induced by Y, where V(H[Y]) = Y and $E(H[Y]) = \{e \in E(H) : e \subseteq Y\}$. H - Y is the hypergraph induced by $V(H) \setminus Y$. Let H be a hypergraph and V_1, V_2, \dots, V_l be subsets of V(H). An edge $e \in E(H)$ is (V_1, V_2, \dots, V_l) -crossing if $e \cap V_i \neq \emptyset$ for $1 \leq i \leq l$. If in addition, $e \subseteq \bigcup_{i=1}^l V_i$, then e is exact- (V_1, V_2, \dots, V_l) -crossing. The set of all (V_1, V_2, \dots, V_l) -crossing edges of H is denoted by $E_H[V_1, V_2, \dots, V_l]$; the set of all exact- (V_1, V_2, \dots, V_l) -crossing edges of H is denoted by $E_{H[V_1 \cup V_2 \cup \dots \cup V_l]}[V_1, V_2, \dots, V_l]$. Let $d_H(V_1, V_2, \dots, V_l) = |E_H[V_1, V_2, \dots, V_l]|$ and $d_{H[V_1 \cup V_2 \cup \dots \cup V_l]}(V_1, V_2, \dots, V_l) = |E_{H[V_1 \cup V_2 \cup \dots \cup V_l]}[V_1, V_2, \dots, V_l]$. For a vertex $u \in V(H)$, we call $d_H(u) := d_H(\{u\}, V(H) \setminus \{u\})$ the degree of u in H. The minimum degree $\delta(H)$ of H is defined as $min\{d_H(u) : u \in V\}$; the maximum degree $\Delta(H)$ of H is defined as $max\{d_H(u) : u \in V\}$. When $\delta(H) = \Delta(H) = k$, we call H k-regular.

Given a hypergraph H, we define a walk in H to be an alternating sequence $v_1, e_1, v_2, \dots, e_s$, v_{s+1} of vertices and edges of H such that: $v_i \in V(H)$ for $i = 1, \dots, s + 1$; $e_i \in E(H)$ for $i = 1, \dots, s$; and $v_i, v_{i+1} \in e_i$ for $i = 1, \dots, s$. A path is a walk with additional restrictions that the vertices are all distinct and the edges are all distinct. A hypergraph H is connected if for every pair of vertices $u, v \in V(H)$, there is a path connecting u and v; otherwise H is disconnected. A component of a hypergraph H is a maximal connected subhypergraph of H. A subset $X \subseteq V$ is called a vertex-cut of H if H - X is disconnected. We define the vertexconnectivity of H, denoted by $\kappa(H)$, as follows: if H had at least one vertex-cut, then $\kappa(H)$ is the cardinality of a minimum vertex-cut of H; otherwise $\kappa(H) = |V(H)| - 1$. We call a hypergraph H k-vertex-connected if $\kappa(H) \geq k$. Let $\overline{\kappa}(H) = max\{\kappa(H') : H' \subseteq H\}$. For a positive integer k, the r-uniform hypergraph H is vertex-k-maximal if $\overline{\kappa}(H) \leq k$ but for any edge $e \in E(H^c), \overline{\kappa}(H + e) > k$. Since $\kappa(K_n^r) = n - r + 1$, we note that H is complete if H is a vertex-k-maximal r-uniform hypergraph with $n - r + 1 \leq k$, where n = |V(H)|. The edge-kmaximal hypergraph can be defined similarly. For results on the connectivity of hypergraphs, see [2,5,6] for references.

In [16], we determined, for given integers n, k and r, the extremal sizes of an edge-k-maximal r-uniform hypergraph on n vertices.

Theorem 1.3. (Tian, Xu, Lai and Meng [16]) Let k and r be integers with $k, r \ge 2$, and let t = t(k,r) be the largest integer such that $\binom{t-1}{r-1} \le k$. That is, t is the integer satisfying $\binom{t-1}{r-1} \le k < \binom{t}{r-1}$. If H is an edge-k-maximal r-uniform hypergraph with $n = |V(H)| \ge t$, then

- (i) $|E(H)| \leq {t \choose r} + (n-t)k$, and this bound is best possible;
- (ii) $|E(H)| \ge (n-1)k ((t-1)k \binom{t}{r})\lfloor \frac{n}{t} \rfloor$, and this bound is best possible.

The main goal of this research is to investigate, for given integers n, k and r, the extremal sizes of a vertex-k-maximal r-uniform hypergraph on n vertices. Section 2 below is devoted to the study of some properties of vertex-k-maximal r-uniform hypergraphs. In Section 3, we give the best possible lower bound of the sizes of vertex-k-maximal r-uniform hypergraphs. We propose a conjecture on the upper bound of the sizes of vertex-k-maximal r-uniform hypergraphs and verify the conjecture for the case r > k in Section 4.

2 Properties of vertex-k-maximal r-uniform hypergraphs

Combining the definition of vertex-k-maximal r-uniform hypergraph with $\kappa(K_n^r) = n - r + 1$, we obtain that H is isomorphic to K_n^r if H is a vertex-k-maximal r-uniform hypergraph with $n = |V(H)| \le k + r - 1.$

Lemma 2.1. Let n, k, r be integers with $k, r \ge 2$ and $n \ge k + r - 1$. If H is a vertex-k-maximal r-uniform hypergraph on n vertices, then $\overline{\kappa}(H) = \kappa(H) = k$.

Proof. Since H is vertex-k-maximal, we have $\kappa(H) \leq \overline{\kappa}(H) \leq k$. In order to complete the proof, we only need to show that $\kappa(H) \geq k$.

If n = k + r - 1, then H is complete and $\kappa(H) = n - r + 1 = k$. Thus, assume $n \ge k + r$, and so H is not complete. On the contrary, assume $\kappa(H) < k$. Since H is not complete, H has a vertex-cut S with $|S| = \kappa(H) < k$. Let C_1 be a component of H - S and $C_2 = H - (S \cup V(C_1))$. By $|V(C_1) \cup V(C_2)| = n - |S| \ge k + r - (k - 1) = r + 1$, we can choose a r-subset $e \subseteq V(C_1) \cup V(V_2)$ such that $e \cap V(C_i) \neq \emptyset$ for i = 1, 2. Then $e \in E(H^c)$.

Since H is vertex-k-maximal, we have $\overline{\kappa}(H+e) \ge k+1$. Hence H+e contains a subhypergraph H' with $\kappa(H') = \overline{\kappa}(H+e) \ge k+1$. Since $\overline{\kappa}(H) \le k$, H' cannot be a subhypergraph of H, and so $e \in E(H')$. Since $V(H') \cap V(C_i) \ne \emptyset$ for i = 1, 2, it follows that $V(H') \cap S$ is a vertex-cut of H' - e.

Since $|V(C_1) \cup V(C_2)| = n - |S| \ge k + r - (k - 1) = r + 1 \ge 3$, one of C_i , say C_1 , contains at least two vertices. Let $u_1 \in e \cap V(C_1)$. Then $S' = (V(H') \cap S) \cup \{u_1\}$ is a vertex-cut of H', and so we obtain

$$k+1 > |S|+1 \ge |V(H') \cap S|+1 = |S'| \ge \kappa(H') \ge k+1,$$

a contradiction. \Box

Let *H* be a vertex-*k*-maximal *r*-uniform hypergraph with $|V(H)| \ge k + r$. By Lemma 2.1, $\overline{\kappa}(H) = \kappa(H) = k$. By $|V(H)| \ge k + r$, *H* is not complete, thus *H* contains vertex-cuts. Let *S* be a minimum vertex-cut of *H*, *C*₁ be a component of *H* - *S* and *C*₂ = *H* - (*S* \cup *V*(*C*₁)). We call (*S*, *H*₁, *H*₂) a separation triple of *H*, where *H*₁ = *H*[*S* \cup *V*(*C*₁)] and *H*₂ = *H*[*S* \cup *V*(*C*₂)].

Lemma 2.2. Let n, k, r be integers with $k, r \ge 2$ and $n \ge k + r$, and H be a vertex-k-maximal r-uniform hypergraph on n vertices. Assume (S, H_1, H_2) is a separation triple of H. If $e \in E(H_1^c) \cup E(H_2^c)$, then any subhypergraph H' of H + e with $\kappa(H') \ge k+1$ is either a subhypergraph of $H_1 + e$ or a subhypergraph of $H_2 + e$. Furthermore, if $e \subseteq E(H_i^c) \setminus E((H[S])^c)$, then H' is a subhypergraph of $H_i + e$ for i = 1, 2.

Proof. Let $e \in E(H_1^c) \cup E(H_2^c)$. Since H is vertex-k-maximal, we have $\overline{\kappa}(H+e) \geq k+1$. Let H' be a subhypergraph of H + e with $\kappa(H') = \overline{\kappa}(H+e) \geq k+1$. We assume, on the contrary, that $V(H') \cap (V(H_1) - S) \neq \emptyset$ and $V(H') \cap (V(H_2) - S) \neq \emptyset$. This, together with $e \in E(H_1^c) \cup E(H_2^c)$, implies that $S \cap V(H')$ is a vertex-cut of H'. Hence $k = |S| \geq |S \cap V(H')| \geq \kappa(H') \geq k+1$, a contradiction. Therefore, we cannot have both $V(H') \cap (V(H_1) - S) \neq \emptyset$ and $V(H') \cap (V(H_2) - S) \neq \emptyset$. If $V(H') \cap (V(H_1) - S) = \emptyset$, then H' is a subhypergraph of $H_2 + e$; if $V(H') \cap (V(H_2) - S) = \emptyset$, then H' is a subhypergraph of $H_1 + e$.

If $e \subseteq E(H_1^c) \setminus E((H[S])^c)$, then $V(H') \cap (V(H_1) - S) \neq \emptyset$ and $V(H') \cap (V(H_2) - S) = \emptyset$, thus H' is a subhypergraph of $H_1 + e$. Similarly, if $e \subseteq E(H_2^c) \setminus E((H[S])^c)$, then H' is a subhypergraph of $H_2 + e$. \Box **Lemma 2.3.** Let n, k, r be integers with $k, r \ge 2$ and $n \ge k + r$, and H be a vertex-k-maximal r-uniform hypergraph on n vertices. Assume (S, H_1, H_2) is a separation triple of H and $n_i = |V(H_i)|$ for i = 1, 2. Then

(i)
$$E_{H^c}[V(H_1) - S, S, V(H_2) - S] = \emptyset$$
, and
(ii) $d_H(V(H_1) - S, S, V(H_2) - S) = \binom{n}{r} - \binom{n_1}{r} - \binom{n_2}{r} + \binom{k}{r} - \binom{n-k}{r} + \binom{n_1-k}{r} + \binom{n_2-k}{r}$.

Proof. (i) By contradiction, assume $E_{H^c}[V(H_1) - S, S, V(H_2) - S] \neq \emptyset$. Let $e \in E_{H^c}[V(H_1) - S, S, V(H_2) - S]$. Since H is vertex-k-maximal, there is a subhypergraph H' of H + e such that $\kappa(H') = \overline{\kappa}(H + e) \geq k + 1$. By $\overline{\kappa}(H) \leq k$, $e \in E(H')$. This, together with $e \in E_{H^c}[V(H_1) - S, S, V(H_2) - S]$, implies $V(H') \cap S \neq \emptyset$ and $V(H') \cap (V(H_i) - S) \neq \emptyset$ for i = 1, 2. Hence $S \cap V(H')$ is a vertex-cut of H'. But then we obtain $k = |S| \geq |S \cap V(H')| \geq \kappa(H') \geq k + 1$, a contradiction. It follows $E_{H^c}[V(H_1) - S, S, V(H_2) - S] = \emptyset$.

(*ii*) By (*i*), $E_{H^c}[V(H_1) - S, S, V(H_2) - S] = \emptyset$. This implies that if e is a r-subset such that $e \cap S \neq \emptyset$ and $e \cap (V(H_i) - S) \neq \emptyset$ for i = 1, 2, then $e \in E(H)$. Since the number of r-subsets contained in $V(H_1)$ or $V(H_2)$ is $\binom{n_1}{r} + \binom{n_2}{r} - \binom{k}{r}$, and the number of r-subsets exactly intersecting $V(H_1) - S$ and $V(H_1) - S$ is $\binom{n-k}{r} - \binom{n_1-k}{r} - \binom{n_2-k}{r}$, we have

$$d_H(V(H_1) - S, S, V(H_2) - S)$$

= $|E_H[V(H_1) - S, S, V(H_2) - S]|$
= $\binom{n}{r} - \binom{n_1}{r} + \binom{n_2}{r} - \binom{k}{r} - \binom{n_{-k}}{r} - \binom{n_{1-k}}{r} - \binom{n_2-k}{r}$
= $\binom{n}{r} - \binom{n_1}{r} - \binom{n_2}{r} + \binom{k}{r} - \binom{n_{-k}}{r} + \binom{n_{1-k}}{r} + \binom{n_2-k}{r}.$

This completes the proof. \Box

3 The lower bound of the sizes of vertex-k-maximal r-uniform hypergraphs

The union of two hypergraphs H_1 and H_2 , denoted by $H_1 \cup H_2$, is the hypergraph with vertex set $V(H_1) \cup V(H_2)$ and edge set $E(H_1) \cup E(H_2)$. The *r*-join of two hypergraphs H_1 and H_2 , denoted by $H_1 \vee_r H_2$, is the hypergraph obtained from the union of H_1 and H_2 by adding all the edges with cardinality r that connect the vertices of H_1 with H_2 .

Definition 1. Let n, k, r be integers such that $k, r \ge 2$ and $n \ge k+1$. We define $H_L(n; k, r)$ to be $K_k^r \vee_r (K_{n-k}^r)^c$.

Lemma 3.1. Let n, k, r be integers such that $k, r \geq 2$ and $n \geq k+1$. If $H = H_L(n; k, r)$, then

- (i) H is vertex-k-maximal, and
- (*ii*) $|E(H)| = \binom{n}{r} \binom{n-k}{r}$.

Proof. (i) By Definition 1, H is obtained from the union of K_k^r and $(K_{n-k}^r)^c$ by adding all edges with cardinality r connecting $V(K_k^r)$ with $V((K_{n-k}^r)^c)$.

Since $V(K_k^r)$ is a vertex-cut of H and $H - V(K_k^r) = (K_{n-k}^r)^c$, there is no subhypergraph with vertex-connectivity at least k + 1, and so $\overline{\kappa}(H) \leq k$. If $E(H^c) = \emptyset$, then H is vertex-k-maximal

by the definition of vertex-k-maximal hypergraph. If $E(H^c) \neq \emptyset$, then for any $e \in E(H^c)$, e must be contained in $V((K_{n-k}^r)^c)$, and so $(H+e)[V(K_k^r) \cup e]$ is isomorphic to K_{k+r}^r and $\kappa((H+e)[V(K_k^r) \cup e]) = k+1$. That is $\overline{\kappa}(H+e) \geq k+1$. Thus H is vertex-k-maximal.

(ii) holds by a direct calculation. \Box

Theorem 3.2. Let n, k, r be integers such that $k, r \ge 2$ and $n \ge k+1$. If H is vertex-k-maximal, then $|E(H)| \ge {n \choose r} - {n-k \choose r}$.

Proof. We will prove the theorem by induction on n. If $n \leq k + r - 1$, then by H is vertex-k-maximal, we have $H \cong K_n^r$. Thus $|E(H)| = \binom{n}{r} = \binom{n}{r} - \binom{n-k}{r}$ by $n - k \leq r - 1$.

Now we assume that $n \ge k+r$, and that the theorem holds for smaller value of n. Since H is vertex-k-maximal and $n \ge k+r$, we have H is not complete. By Lemma 2.1, $\overline{\kappa}(H) = \kappa(H) = k$, and so H has a separation triple (S, H_1, H_2) with |S| = k. Let $n_1 = |V(H_1)|$ and $n_2 = |V(H_2)|$. Then $n_1, n_2 \ge k+1$ and $n = n_1 + n_2 - k$.

Since H is vertex-k-maximal, for any $e \in E((H[S])^c)$, there is a (k + 1)-vertex-connected subhypergraph H' of H + e. By Lemma 2.2, H' is either a subhypergraph of $H_1 + e$ or a subhypergraph $H_2 + e$. Define

$$E_1 = \{e : e \in E((H[S])^c) \text{ and } \overline{\kappa}(H_1 + e) = k\}$$
$$E_2 = \{e : e \in E((H[S])^c) \text{ and } \overline{\kappa}(H_2 + e) = k\}$$

Claim. Each of the following holds.

- (i) $E_1 \cap E_2 = \emptyset$ and $E_1 \cup E_2 \subseteq E((H[S])^c)$.
- (*ii*) There is a subset $E'_1 \subseteq E_1$ such that $H_1 + E'_1$ is vertex-k-maximal.
- (*iii*) There is a subset $E'_2 \subseteq E_2$ such that $H_2 + E'_2$ is vertex-k-maximal.

By the definition, $E_1 \cup E_2 \subseteq E((H[S])^c)$. Since H is vertex-k-maximal, we have $E_1 \cap E_2 = \emptyset$, and so Claim (i) holds.

Assume first that $H_1 + E_1$ is complete. If $n_1 \leq k + r - 1$, then $\overline{\kappa}(H_1 + E_1) \leq k$, and so $H_1 + E_1$ is vertex-k-maximal by the definition of vertex-k-maximal hypergraphs. If $n_1 \geq k + r$, then by $\overline{\kappa}(H_1) \leq \overline{\kappa}(H) \leq k$ and $\overline{\kappa}(H_1 + E_1) \geq k + 1$, we can choose a maximum subset $E'_1 \subseteq E_1$ such that $\overline{\kappa}(H_1 + E'_1) \leq k$. It follows by the maximality of E'_1 and by the definition of vertex-k-maximal hypergraphs that $H_1 + E'_1$ is vertex-k-maximal. Next, we assume $H_1 + E_1$ is not complete. Take an arbitrary edge $e \in E((H_1 + E_1)^c)$. Then $e \in E(H^c)$, and so as H is vertex-k-maximal, H + econtains a (k + 1)-vertex-connected subhypergraph H' with $e \in E(H')$. If $e \cap (V(H_1) - S) \neq \emptyset$, then by Lemma 2.2, H' is a subhypergraph of $H_1 + e$. If $e \subseteq S$, then as $e \notin E_1$, we can choose H'such that H' is a subhypergraph of $H_1 + e$. That is, $\overline{\kappa}(H_1 + E_1 + e) \geq k + 1$. If $\overline{\kappa}(H_1 + E_1) \leq k$, then $H_1 + E_1$ is vertex-k-maximal. If $\overline{\kappa}(H_1 + E_1) \geq k + 1$, then by $\overline{\kappa}(H_1) \leq \overline{\kappa}(H) \leq k$, we can choose a maximum subset $E'_1 \subseteq E_1$ such that $\overline{\kappa}(H_1 + E'_1) \leq k$. It also follows by the maximality of E'_1 and by the definition of vertex-k-maximal hypergraphs that $H_1 + E'_1$ is vertexk-maximal. This verifies Claim (ii). By symmetry, Claim (iii) holds. Thus the proof of the Claim is complete.

By Claim (*ii*) and Claim (*iii*), there are $E'_1 \subseteq E_1$ and $E'_2 \subseteq E_2$ such that $H_1 + E'_1$ and $H_2 + E'_2$ are vertex-k-maximal. Since $n_1, n_2 \ge k + 1$, by induction assumption, we have $|E(H_1 + E'_1)| \ge k + 1$.

$$\begin{aligned} \binom{n_1}{r} - \binom{n_1 - k}{r} & \text{and } |E(H_2 + E'_2)| \ge \binom{n_2}{r} - \binom{n_2 - k}{r}. \text{ By Claim } (i) \text{ and the definition of } (H[S])^c, \text{ we} \\ & \text{have } |E'_1| + |E'_2| + |E(H[S])| \le |E_1| + |E_2| + |E(H[S])| \le |E((H[S])^c)| + |E(H[S])| = \binom{k}{r}. \text{ Thus } \\ & |E(H)| = |E(H_1)| + |E(H_2)| - |E(H[S])| + |E_H[V(H_1) - S, S, V(H_2) - S]| \\ & = |E(H_1 + E'_1)| - |E'_1| + |E(H_2 + E'_2)| - |E'_2| - |E(H[S])| + |E_H[V(H_1) - S, S, V(H_2) - S]| \\ & \ge \binom{n_1}{r} - \binom{n_1 - k}{r} + \binom{n_2}{r} - \binom{n_2 - k}{r} - \binom{k}{r} \\ & + \binom{n}{r} - \binom{n_1}{r} - \binom{n_2}{r} + \binom{k}{r} - \binom{n_1 - k}{r} + \binom{n_1 - k}{r} + \binom{n_2 - k}{r} \text{ (By Lemma 2.3)} \\ & = \binom{n}{r} - \binom{n - k}{r}. \end{aligned}$$

This proves Theorem 3.2. \Box

By Lemma 3.1, the lower bound of the sizes of vertex-k-maximal hypergraphs given in Theorem 3.2 is best possible. If r = 2, then a r-uniform hypergraph H is just a graph. Thus Theorem 1.2 is a corollary of Theorem 3.2.

Corollary 3.3. (Xu, Lai and Tian [17]) Let n, k be integers with $n \ge k+1 \ge 3$. If G is a vertexk-maximal graph on n vertices, then $|E(G)| \ge {\binom{n}{2}} - {\binom{n-k}{2}} = (n-k)k + \frac{k(k-1)}{2}$. Furthermore, this bound is best possible.

4 The upper bound of the sizes of vertex-k-maximal r-uniform hypergraphs

Definition 2. Let n, k, r be integers such that $k, r \ge 2$ and $n \ge 2k$. Assume n = pk + q, where p, q are integers and $1 \le q \le k$. We define $H_U(n; k, r)$ to be $((p-1)K_k^r \cup K_q^r) \lor_r (K_k^r)^c$, where $(p-1)K_k^r$ is the union of p-1 complete r-uniform hypergraphs on k vertices.

Lemma 4.1. Let n, k, r be integers such that $k, r \ge 2$ and $n \ge 2k$. If $H = H_U(n; k, r)$, then

- (i) H is vertex-k-maximal, and
- (ii) $|E(H)| \leq {n \choose r} {n-k \choose k} + (\frac{n}{k} 2){k \choose r}$, where the equality holds if n is a multiple of k.

Proof. (i) By Definition 2, $H = ((p-1)K_k^r \cup K_q^r) \vee_r (K_k^r)^c$. Denote the p-1 complete r-uniform hypergraphs on k vertices by $K_k^r(1), \cdots, K_k^r(p-1)$. Let $H_0 = H[V((K_k^r)^c)], H_p = H[V(K_q^r)]$ and $H_i = H[V(K_k^r(i))]$ for $1 \le i \le p-1$. Then $H = H_0 \vee_r (H_1 \cup \cdots \cup H_p)$.

Since $V(H_0)$ is a vertex-cut of size k and every component of $H - V(H_0)$ has at most k vertices. It follows that H contains no (k + 1)-vertex-connected subhypergraphs, and so $\overline{\kappa}(H) \leq k$. If $E(H^c) = \emptyset$, then H is vertex-k-maximal by the definition of vertex-k-maximal hypergraphs. Thus we assume $E(H^c) \neq \emptyset$ in the following. Let $e \in E(H^c)$. If $e \subseteq V(H_0)$, then $H' = H[V(H_1) \cup e]$ is isomorphic to K_{k+r}^r , and so $\kappa(H') = k + 1$. If $e \subseteq V(H_1) \cup \cdots \cup V(H_p)$, let e be exact- $(V(H_{i1}), \cdots, V(H_{is}))$ -crossing. We will prove that $H'' = H[V(H_0) \cup V(H_{i1}) \cup \cdots \cup (H_{is})] + e$ is (k + 1)-vertex-connected. It suffices to prove that H'' - S is connected for any $S \subseteq V(H'')$ with |S| = k. If $S = V(H_0)$, then, by e is exact- $(V(H_{i1}) \cup \cdots \cup V(H_{is}))$ -crossing, H'' - S is connected. So assume $V'_0 = V(H_0) \setminus S \neq \emptyset$. Let $V'_1 = (V(H_{i1}) \cup \cdots \cup V(H_{is})) \setminus S$. Then H'' - S is isomorphic to $H[V'_0] \lor_r H[V'_1]$ if $S \cap e \neq \emptyset$; and H'' - S is connected. Thus $\overline{\kappa}(H + e) \geq k + 1$ for any $e \in E(H^c)$, and so H is vertex-k-maximal.

(*ii*) By a direct calculation, we have $|E(H)| \leq {\binom{n}{r}} - {\binom{n-k}{r}} + {\binom{n}{k}} - 2){\binom{k}{r}}$, where the equality holds if n is a multiple of k. \Box

Motivated by Conjecture 1, we propose the following conjecture for vertex-k-maximal r-uniform hypergraphs.

Conjecture 2. Let k, r be integers with $k, r \ge 2$. Then for sufficiently large n, every vertex-k-maximal r-uniform hypergraph H on n vertices satisfies $|E(H)| \le {n \choose r} - {n-k \choose r} + {n \choose k} - 2){k \choose r}$.

The following theorem confirms Conjecture 2 for the case k < r.

Theorem 4.2. Let n, k, r be integers such that $k, r \ge 2$ and $n \ge 2k$. If k < r, then every vertexk-maximal r-uniform hypergraph H on n vertices satisfies $|E(H)| \le {n \choose r} - {n-k \choose r} + (\frac{n}{k} - 2){k \choose r} = {n \choose r} - {n-k \choose r}$.

Proof. We will prove the theorem by induction on n. If $n \leq k + r - 1$, then by H is vertex-k-maximal, we have $H \cong K_n^r$. Thus $|E(H)| = \binom{n}{r} = \binom{n}{r} - \binom{n-k}{r}$ by $n - k \leq r - 1$.

Now we assume that $n \ge k + r$, and that the theorem holds for smaller value of n. Since H is vertex-k-maximal and $n \ge k + r$, we have H is not complete. Let S be a minimum vertex-cut of H. By Lemma 2.1, |S| = k. Let C_1 be a minimum component of H - S and $C_2 = H - (V(C_1) \cup S)$. Assume $H_1 = H[V(C_1) \cup S]$ and $H_2 = H[V(C_2) \cup S]$. Since k < r, we have $E((H[S])^c) = \emptyset$, and so H_1 and H_2 are both vertex-k-maximal by Lemma 2.2. Let $n_1 = |V(H_1)|$ and $n_2 = |V(H_2)|$. Then $n = n_1 + n_2 - k$ and $k + 1 \le n_1 \le n_2$. We consider two cases in the following.

Case 1. $|V(C_1)| = 1$.

By $|V(C_1)| = 1$, we obtain that $n_2 = n - 1 \ge k + r - 1 \ge 2k$. Since H_2 is vertex-k-maximal, by induction assumption, we have $|E(H_2)| \le {\binom{n-1}{r}} - {\binom{n-k-1}{r}}$. Thus

$$|E(H)| = |E(H_1)| + |E(H_2)| - |E(H[S])| + |E_H[V(H_1) - S, S, V(H_2) - S]|$$

$$\leq \binom{k}{r-1} + \binom{n-1}{r} - \binom{n-k-1}{r-1} + \binom{n-1}{r-1} - \binom{k}{r-1} - \binom{n-k-1}{r-1}$$

$$= \binom{n}{r} - \binom{n-k}{r}.$$

Case 2. $|V(C_1)| \ge 2$.

By $|V(C_1)| \ge 2$, we obtain that C_1 contains edges, and so $|V(C_1)| \ge r$. Thus $n_2 \ge n_1 \ge k+r \ge 2k+1$. Since both H_1 and H_2 are vertex-k-maximal, by induction assumption, we have $|E(H_i)| \le {n_i \choose r} - {n_i-k \choose r}$ for i = 1, 2. Thus

$$\begin{aligned} |E(H)| &= |E(H_1)| + |E(H_2)| - |E(H[S])| + |E_H[V(H_1) - S, S, V(H_2) - S]| \\ &\leq \binom{n_1}{r} - \binom{n_1 - k}{r} + \binom{n_2}{r} - \binom{n_2 - k}{r^2} \\ &+ \binom{n}{r} - \binom{n_1}{r} - \binom{n_2}{r} + \binom{k}{r} - \binom{n-k}{r} + \binom{n_1 - k}{r} + \binom{n_2 - k}{r^2}$$
(By Lemma 2.3)
$$&= \binom{n}{r} - \binom{n-k}{r}. \end{aligned}$$

This completes the proof. \Box

Combining Theorem 3.2 with Theorem 4.2, we have the following corollary.

Corollary 4.3. Let n, k, r be integers such that $k, r \ge 2$ and $n \ge 2k$. If k < r, then every vertex-k-maximal r-uniform hypergraph H on n vertices satisfies $|E(H)| = \binom{n}{r} - \binom{n-k}{r}$.

References

- J. Anderson, H.-J. Lai, X. Lin, M. Xu, On k-maximal strength digraphs, J. Graph Theory 84 (2017) 17-25.
- [2] M. A. Bahmanian, M. Sajna, Connection and separation in hypergraphs, Theory and Applications of Graphs 2(2) (2015) 0-24.
- [3] A. Bernshteyn, A. Kostochka, On the number of edges in a graph with no (k + 1)-connected subgraphs, Discrete Mathematics 339 (2016) 682-688.
- [4] J. A. Bondy, U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics 244, Springer, Berlin, 2008.
- [5] C. Chekuri, C. Xu, Computing minimum cuts in hypergraphs, In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (Barcelona, 2017), SIAM (2017) 1085-1100.
- [6] M. Dewar, D. Pike, J. Proos, Connectivity in Hypergraphs, arXiv:1611.07087v3.
- [7] H.-J. Lai, The size of strength-maximal graphs, J. Graph Theory 14 (1990) 187-197.
- [8] X. Lin, S. Fan, H.-J. Lai, M. Xu, On the lower bound of k-maximal digraphs, Discrete Math. 339 (2016) 2500-2510.
- [9] W. Mader, Minimale n-fach kantenzusammenhngende graphen, Math. Ann. 191 (1971) 21-28.
- [10] W. Mader, Existenz n-fach zusammenhängender Teilgraphen in Graphen genügend groβen Kantendichte, Abh. Math. Sem. Univ. Hamburg 37 (1972) 86-97.
- [11] W. Mader, Connectivity and edge-connectivity in finite graphs, in: B. Bollobás (Ed.), Surveys in Combinatorics, Cambridge University Press, London, 1979, pp. 66-95.
- [12] D. W. Matula, The cohesive strength of graphs, The Many Facets of Graph Theory, Lecture Notes in Mathematics, No. 110, G. Chartrand and S. F. Kapoor, eds., Springer-Verlag, Berlin, 1969, pp. 215-221.
- [13] D. Matula, K-components, clusters, and slicings in graphs, SIAM J. Appl. Math. 22 (1972) 459-480.
- [14] D. W. Matula, Subgraph connectivity numbers of a graph, Theory and Applications of Graphs, pp. 371-383 (Springer-Verlag, Berlin 1978).
- [15] D. W. Matula, Ramsey theory for graph connectivity, J. Graph Theory 7 (1983) 95-105.
- [16] Y. Z. Tian, L. Q. Xu, H.-J. Lai, J. X. Meng, On the sizes of k-edge-maximal r-uniform hypergraphs, arXiv:1802.08843v3.
- [17] L. Q. Xu, H.-J. Lai, Y. Z. Tian, On the sizes of vertex-k-maximal graphs, submitted.
- [18] R. Yuster, A note on graphs without k-connected subgraphs, Ars Combin. 67 (2003) 231-235.