On the sizes of vertex- k-maximal r-uniform hypergraphs *

Yingzhi Tian ${ }^{a} \dagger$ Hong-Jian Lai ${ }^{b}$, Jixiang Meng ${ }^{a}$
${ }^{a}$ College of Mathematics and System Sciences, Xinjiang University, Urumqi, Xinjiang 830046, PR China
${ }^{b}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

Abstract

Let $H=(V, E)$ be a hypergraph, where V is a set of vertices and E is a set of non-empty subsets of V called edges. If all edges of H have the same cardinality r, then H is a r-uniform hypergraph; if E consists of all r-subsets of V, then H is a complete r uniform hypergraph, denoted by K_{n}^{r}, where $n=|V|$. A hypergraph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is called a subhypergraph of $H=(V, E)$ if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. A r-uniform hypergraph $H=(V, E)$ is vertex- k-maximal if every subhypergraph of H has vertex-connectivity at most k, but for any edge $e \in E\left(K_{n}^{r}\right) \backslash E(H), H+e$ contains at least one subhypergraph with vertex-connectivity at least $k+1$. In this paper, we first prove that for given integers n, k, r with $k, r \geq 2$ and $n \geq k+1$, every vertex- k-maximal r-uniform hypergraph H of order n satisfies $|E(H)| \geq\binom{ n}{r}-\binom{n-k}{r}$, and this lower bound is best possible. Next, we conjecture that for sufficiently large n, every vertex-k-maximal r-uniform hypergraph H on n vertices satisfies $|E(H)| \leq\binom{ n}{r}-\binom{n-k}{r}+\left(\frac{n}{k}-2\right)\binom{k}{r}$, where $k, r \geq 2$ are integers. And the conjecture is verified for the case $r>k$.

Keywords: Vertex-connectivity; Vertex- k-maximal hypergraphs; r-uniform hypergraphs

1 Introduction

In this paper, we consider finite simple graphs. For graph-theoretical terminologies and notation not defined here, we follow [4]. For a graph G, we use $\kappa(G)$ to denote the vertex-connectivity of G. The complement of a graph G is denoted by G^{c}. For $X \subseteq E\left(G^{c}\right), G+X$ is the graph with vertex set $V(G)$ and edge set $E(G) \cup X$. We will use $G+e$ for $G+\{e\}$. The floor of a real number x, denoted by $\lfloor x\rfloor$, is the greatest integer not larger than x; the ceil of a real number x, denoted by $\lceil x\rceil$, is the least integer greater than or equal to x. For two integers n and k, we define $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ when $k \leq n$ and $\binom{n}{k}=0$ when $k>n$.

Matula [14] first explicitly studied the quantity $\bar{\kappa}(G)=\max \left\{\kappa\left(G^{\prime}\right): G^{\prime} \subseteq G\right\}$. For a positive integer k, the graph G is vertex- k-maximal if $\bar{\kappa}(G) \leq k$ but for any edge $e \in E\left(G^{c}\right)$, $\bar{\kappa}(G+e)>k$. Because $\kappa\left(K_{n}\right)=n-1$, a vertex- k-maximal graph G with at most $k+1$ vertices must be a complete graph.

The union of two graphs G_{1} and G_{2}, denoted by $G_{1} \cup G_{2}$, is the graph with vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$. The join of two graphs G_{1} and G_{2}, denoted

[^0]by $G_{1} \vee G_{2}$, is the graph obtained from the union of G_{1} and G_{2} by adding all the edges that connect the vertices of G_{1} with G_{2}. Let $G_{n, k}=\left((p-1) K_{k} \cup K_{q}\right) \vee K_{k}^{c}$, where $n=p k+q \geq 2 k$ $(1 \leq q \leq k)$ and $(p-1) K_{k}$ is the union of $p-1$ complete graphs on k vertices. Then $G_{n, k}$ is vertex- k-maximal and $\left|E\left(G_{n, k}\right)\right| \leq \frac{3}{2}\left(k-\frac{1}{3}\right)(n-k)$, where the equality holds if n is a multiple of k. Mader [11] conjectured that, for large order of graphs, the graph $G_{n, k}$ would in fact present the best possible upper bound for the sizes of a vertex- k-maximal graph.

Conjecture 1. (Mader [11]) Let $k \geq 2$ be an integer. Then for sufficiently large n, every vertex-k-maximal graph on n vertices satisfies $|E(G)| \leq \frac{3}{2}\left(k-\frac{1}{3}\right)(n-k)$.

Some progresses towards Conjecture 1 are listed in the following.
Theorem 1.1. Let $k \geq 2$ be an integer.
(i) (Mader [10], see also [11]) Conjecture 1 holds for $k \leq 6$.
(ii) (Mader [10], see also [11]) For sufficiently large n, every vertex-k-maximal graph G on n vertices satisfies $|E(G)| \leq\left(1+\frac{1}{\sqrt{2}}\right) k(n-k)$.
(iii) (Yuster [18]) If $n \geq \frac{9 k}{4}$, then every vertex- k-maximal graph G on n vertices satisfies $|E(G)| \leq \frac{193}{120} k(n-k)$.
(iv) (Bernshteyn and Kostochka [3]) If $n \geq \frac{5 k}{2}$, then every vertex- k-maximal graph G on n vertices satisfies $|E(G)| \leq \frac{19}{12} k(n-k)$.

In [17], Xu , Lai and Tian obtained the lower bound of the sizes of vertex- k-maximal graphs.
Theorem 1.2. (Xu, Lai and Tian [17]) Let n, k be integers with $n \geq k+1 \geq 3$. If G is a vertex-k-maximal graph on n vertices, then $|E(G)| \geq(n-k) k+\frac{k(k-1)}{2}$. Furthermore, this bound is best possible.

The related studies on edge- k-maximal graphs have been conducted by quite a few researchers, as seen in $[7,9,12,13,15]$, among others. For corresponding digraph problems, see $[1,8]$, among others.

Let $H=(V, E)$ be a hypergraph, where V is a finite set and E is a set of non-empty subsets of V, called edges. An edge of cardinality 2 is just a graph edge. For a vertex $u \in V$ and an edge $e \in E$, we say u is incident with e or e is incident with u if $u \in e$. If all edges of H have the same cardinality r, then H is a r-uniform hypergraph; if E consists of all r-subsets of V, then H is a complete r-uniform hypergraph, denoted by K_{n}^{r}, where $n=|V|$. For $n<r$, the complete r-uniform hypergraph K_{n}^{r} is just the hypergraph with n vertices and no edges. The complement of a r-uniform hypergraph $H=(V, E)$, denoted by H^{c}, is the r-uniform hypergraph with vertex set V and edge set consisting of all r-subsets of V not in E. A hypergraph $H^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ is called a subhypergraph of $H=(V, E)$, denoted by $H^{\prime} \subseteq H$, if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$. For $X \subseteq E\left(H^{c}\right)$, $H+X$ is the hypergraph with vertex set $V(H)$ and edge set $E(H) \cup X$; for $X^{\prime} \subseteq E(H), H-X^{\prime}$ is the hypergraph with vertex set $V(H)$ and edge set $E(H) \backslash X^{\prime}$. We use $H+e$ for $H+\{e\}$ and $H-e^{\prime}$ for $H-\left\{e^{\prime}\right\}$ when $e \in E\left(H^{c}\right)$ and $e^{\prime} \in E(H)$. For $Y \subseteq V(H)$, we use $H[Y]$ to denote the hypergraph induced by Y, where $V(H[Y])=Y$ and $E(H[Y])=\{e \in E(H): e \subseteq Y\}$. $H-Y$ is the hypergraph induced by $V(H) \backslash Y$.

Let H be a hypergraph and $V_{1}, V_{2}, \cdots, V_{l}$ be subsets of $V(H)$. An edge $e \in E(H)$ is $\left(V_{1}, V_{2}, \cdots, V_{l}\right)$-crossing if $e \cap V_{i} \neq \emptyset$ for $1 \leq i \leq l$. If in addition, $e \subseteq \cup_{i=1}^{l} V_{i}$, then e is exact- $\left(V_{1}, V_{2}, \cdots, V_{l}\right)$-crossing. The set of all $\left(V_{1}, V_{2}, \cdots, V_{l}\right)$-crossing edges of H is denoted by $E_{H}\left[V_{1}, V_{2}, \cdots, V_{l}\right]$; the set of all exact- $\left(V_{1}, V_{2}, \cdots, V_{l}\right)$-crossing edges of H is denoted by $E_{H\left[V_{1} \cup V_{2} \cup \cdots \cup V_{l}\right]}\left[V_{1}, V_{2}, \cdots, V_{l}\right]$. Let $d_{H}\left(V_{1}, V_{2}, \cdots, V_{l}\right)=\left|E_{H}\left[V_{1}, V_{2}, \cdots, V_{l}\right]\right|$ and $d_{H\left[V_{1} \cup V_{2} \cup \ldots \cup V_{l}\right]}$ $\left(V_{1}, V_{2}, \cdots, V_{l}\right)=\left|E_{H\left[V_{1} \cup V_{2} \cup \cdots \cup V_{l}\right]}\left[V_{1}, V_{2}, \cdots, V_{l}\right]\right|$. For a vertex $u \in V(H)$, we call $d_{H}(u):=$ $d_{H}(\{u\}, V(H) \backslash\{u\})$ the degree of u in H. The minimum degree $\delta(H)$ of H is defined as $\min \left\{d_{H}(u): u \in V\right\}$; the maximum degree $\Delta(H)$ of H is defined as $\max \left\{d_{H}(u): u \in V\right\}$. When $\delta(H)=\Delta(H)=k$, we call H-regular.

Given a hypergraph H, we define a walk in H to be an alternating sequence $v_{1}, e_{1}, v_{2}, \cdots, e_{s}$, v_{s+1} of vertices and edges of H such that: $v_{i} \in V(H)$ for $i=1, \cdots, s+1 ; e_{i} \in E(H)$ for $i=1, \cdots, s$; and $v_{i}, v_{i+1} \in e_{i}$ for $i=1, \cdots, s$. A path is a walk with additional restrictions that the vertices are all distinct and the edges are all distinct. A hypergraph H is connected if for every pair of vertices $u, v \in V(H)$, there is a path connecting u and v; otherwise H is disconnected. A component of a hypergraph H is a maximal connected subhypergraph of H. A subset $X \subseteq V$ is called a vertex-cut of H if $H-X$ is disconnected. We define the vertexconnectivity of H, denoted by $\kappa(H)$, as follows: if H had at least one vertex-cut, then $\kappa(H)$ is the cardinality of a minimum vertex-cut of H; otherwise $\kappa(H)=|V(H)|-1$. We call a hypergraph $H k$-vertex-connected if $\kappa(H) \geq k$. Let $\bar{\kappa}(H)=\max \left\{\kappa\left(H^{\prime}\right): H^{\prime} \subseteq H\right\}$. For a positive integer k, the r-uniform hypergraph H is vertex- k-maximal if $\bar{\kappa}(H) \leq k$ but for any edge $e \in E\left(H^{c}\right), \bar{\kappa}(H+e)>k$. Since $\kappa\left(K_{n}^{r}\right)=n-r+1$, we note that H is complete if H is a vertex- k-maximal r-uniform hypergraph with $n-r+1 \leq k$, where $n=|V(H)|$. The edge- k maximal hypergraph can be defined similarly. For results on the connectivity of hypergraphs, see $[2,5,6]$ for references.

In [16], we determined, for given integers n, k and r, the extremal sizes of an edge- k-maximal r-uniform hypergraph on n vertices.

Theorem 1.3. (Tian, Xu, Lai and Meng [16]) Let k and r be integers with $k, r \geq 2$, and let $t=t(k, r)$ be the largest integer such that $\binom{t-1}{r-1} \leq k$. That is, t is the integer satisfying $\binom{t-1}{r-1} \leq k<\binom{t}{r-1}$. If H is an edge-k-maximal r-uniform hypergraph with $n=|V(H)| \geq t$, then
(i) $|E(H)| \leq\binom{ t}{r}+(n-t) k$, and this bound is best possible;
(ii) $|E(H)| \geq(n-1) k-\left((t-1) k-\binom{t}{r}\right)\left\lfloor\frac{n}{t}\right\rfloor$, and this bound is best possible.

The main goal of this research is to investigate, for given integers n, k and r, the extremal sizes of a vertex- k-maximal r-uniform hypergraph on n vertices. Section 2 below is devoted to the study of some properties of vertex- k-maximal r-uniform hypergraphs. In Section 3, we give the best possible lower bound of the sizes of vertex-k-maximal r-uniform hypergraphs. We propose a conjecture on the upper bound of the sizes of vertex- k-maximal r-uniform hypergraphs and verify the conjecture for the case $r>k$ in Section 4.

2 Properties of vertex- k-maximal r-uniform hypergraphs

Combining the definition of vertex- k-maximal r-uniform hypergraph with $\kappa\left(K_{n}^{r}\right)=n-r+1$, we obtain that H is isomorphic to K_{n}^{r} if H is a vertex- k-maximal r-uniform hypergraph with
$n=|V(H)| \leq k+r-1$.
Lemma 2.1. Let n, k, r be integers with $k, r \geq 2$ and $n \geq k+r-1$. If H is a vertex- k-maximal r-uniform hypergraph on n vertices, then $\bar{\kappa}(H)=\kappa(H)=k$.

Proof. Since H is vertex- k-maximal, we have $\kappa(H) \leq \bar{\kappa}(H) \leq k$. In order to complete the proof, we only need to show that $\kappa(H) \geq k$.

If $n=k+r-1$, then H is complete and $\kappa(H)=n-r+1=k$. Thus, assume $n \geq k+r$, and so H is not complete. On the contrary, assume $\kappa(H)<k$. Since H is not complete, H has a vertex-cut S with $|S|=\kappa(H)<k$. Let C_{1} be a component of $H-S$ and $C_{2}=H-\left(S \cup V\left(C_{1}\right)\right)$. By $\left|V\left(C_{1}\right) \cup V\left(C_{2}\right)\right|=n-|S| \geq k+r-(k-1)=r+1$, we can choose a r-subset $e \subseteq V\left(C_{1}\right) \cup V\left(V_{2}\right)$ such that $e \cap V\left(C_{i}\right) \neq \emptyset$ for $i=1,2$. Then $e \in E\left(H^{c}\right)$.

Since H is vertex- k-maximal, we have $\bar{\kappa}(H+e) \geq k+1$. Hence $H+e$ contains a subhypergraph H^{\prime} with $\kappa\left(H^{\prime}\right)=\bar{\kappa}(H+e) \geq k+1$. Since $\bar{\kappa}(H) \leq k, H^{\prime}$ cannot be a subhypergraph of H, and so $e \in E\left(H^{\prime}\right)$. Since $V\left(H^{\prime}\right) \cap V\left(C_{i}\right) \neq \emptyset$ for $i=1,2$, it follows that $V\left(H^{\prime}\right) \cap S$ is a vertex-cut of $H^{\prime}-e$.

Since $\left|V\left(C_{1}\right) \cup V\left(C_{2}\right)\right|=n-|S| \geq k+r-(k-1)=r+1 \geq 3$, one of C_{i}, say C_{1}, contains at least two vertices. Let $u_{1} \in e \cap V\left(C_{1}\right)$. Then $S^{\prime}=\left(V\left(H^{\prime}\right) \cap S\right) \cup\left\{u_{1}\right\}$ is a vertex-cut of H^{\prime}, and so we obtain

$$
k+1>|S|+1 \geq\left|V\left(H^{\prime}\right) \cap S\right|+1=\left|S^{\prime}\right| \geq \kappa\left(H^{\prime}\right) \geq k+1,
$$

a contradiction.
Let H be a vertex- k-maximal r-uniform hypergraph with $|V(H)| \geq k+r$. By Lemma 2.1, $\bar{\kappa}(H)=\kappa(H)=k$. By $|V(H)| \geq k+r, H$ is not complete, thus H contains vertex-cuts. Let S be a minimum vertex-cut of H, C_{1} be a component of $H-S$ and $C_{2}=H-\left(S \cup V\left(C_{1}\right)\right)$. We call $\left(S, H_{1}, H_{2}\right)$ a separation triple of H, where $H_{1}=H\left[S \cup V\left(C_{1}\right)\right]$ and $H_{2}=H\left[S \cup V\left(C_{2}\right)\right]$.

Lemma 2.2. Let n, k, r be integers with $k, r \geq 2$ and $n \geq k+r$, and H be a vertex- k-maximal r-uniform hypergraph on n vertices. Assume $\left(S, H_{1}, H_{2}\right)$ is a separation triple of H. If $e \in$ $E\left(H_{1}^{c}\right) \cup E\left(H_{2}^{c}\right)$, then any subhypergraph H^{\prime} of $H+e$ with $\kappa\left(H^{\prime}\right) \geq k+1$ is either a subhypergraph of $H_{1}+e$ or a subhypergraph of $H_{2}+e$. Furthermore, if $e \subseteq E\left(H_{i}^{c}\right) \backslash E\left((H[S])^{c}\right)$, then H^{\prime} is a subhypergraph of $H_{i}+e$ for $i=1,2$.

Proof. Let $e \in E\left(H_{1}^{c}\right) \cup E\left(H_{2}^{c}\right)$. Since H is vertex- k-maximal, we have $\bar{\kappa}(H+e) \geq k+1$. Let H^{\prime} be a subhypergraph of $H+e$ with $\kappa\left(H^{\prime}\right)=\bar{\kappa}(H+e) \geq k+1$. We assume, on the contrary, that $V\left(H^{\prime}\right) \cap\left(V\left(H_{1}\right)-S\right) \neq \emptyset$ and $V\left(H^{\prime}\right) \cap\left(V\left(H_{2}\right)-S\right) \neq \emptyset$. This, together with $e \in E\left(H_{1}^{c}\right) \cup E\left(H_{2}^{c}\right)$, implies that $S \cap V\left(H^{\prime}\right)$ is a vertex-cut of H^{\prime}. Hence $k=|S| \geq\left|S \cap V\left(H^{\prime}\right)\right| \geq$ $\kappa\left(H^{\prime}\right) \geq k+1$, a contradiction. Therefore, we cannot have both $V\left(H^{\prime}\right) \cap\left(V\left(H_{1}\right)-S\right) \neq \emptyset$ and $V\left(H^{\prime}\right) \cap\left(V\left(H_{2}\right)-S\right) \neq \emptyset$. If $V\left(H^{\prime}\right) \cap\left(V\left(H_{1}\right)-S\right)=\emptyset$, then H^{\prime} is a subhypergraph of $H_{2}+e$; if $V\left(H^{\prime}\right) \cap\left(V\left(H_{2}\right)-S\right)=\emptyset$, then H^{\prime} is a subhypergraph of $H_{1}+e$.

If $e \subseteq E\left(H_{1}^{c}\right) \backslash E\left((H[S])^{c}\right)$, then $V\left(H^{\prime}\right) \cap\left(V\left(H_{1}\right)-S\right) \neq \emptyset$ and $V\left(H^{\prime}\right) \cap\left(V\left(H_{2}\right)-S\right)=\emptyset$, thus H^{\prime} is a subhypergraph of $H_{1}+e$. Similarly, if $e \subseteq E\left(H_{2}^{c}\right) \backslash E\left((H[S])^{c}\right)$, then H^{\prime} is a subhypergraph of $H_{2}+e$.

Lemma 2.3. Let n, k, r be integers with $k, r \geq 2$ and $n \geq k+r$, and H be a vertex- k-maximal r-uniform hypergraph on n vertices. Assume $\left(S, H_{1}, H_{2}\right)$ is a separation triple of H and $n_{i}=$ $\left|V\left(H_{i}\right)\right|$ for $i=1,2$. Then
(i) $E_{H^{c}}\left[V\left(H_{1}\right)-S, S, V\left(H_{2}\right)-S\right]=\emptyset$, and
(ii) $d_{H}\left(V\left(H_{1}\right)-S, S, V\left(H_{2}\right)-S\right)=\binom{n}{r}-\binom{n_{1}}{r}-\binom{n_{2}}{r}+\binom{k}{r}-\binom{n-k}{r}+\binom{n_{1}-k}{r}+\binom{n_{2}-k}{r}$.

Proof. (i) By contradiction, assume $E_{H^{c}}\left[V\left(H_{1}\right)-S, S, V\left(H_{2}\right)-S\right] \neq \emptyset$. Let $e \in E_{H^{c}}\left[V\left(H_{1}\right)-\right.$ $\left.S, S, V\left(H_{2}\right)-S\right]$. Since H is vertex- k-maximal, there is a subhypergraph H^{\prime} of $H+e$ such that $\kappa\left(H^{\prime}\right)=\bar{\kappa}(H+e) \geq k+1$. By $\bar{\kappa}(H) \leq k, e \in E\left(H^{\prime}\right)$. This, together with $e \in E_{H^{c}}\left[V\left(H_{1}\right)-\right.$ $\left.S, S, V\left(H_{2}\right)-S\right]$, implies $V\left(H^{\prime}\right) \cap S \neq \emptyset$ and $V\left(H^{\prime}\right) \cap\left(V\left(H_{i}\right)-S\right) \neq \emptyset$ for $i=1,2$. Hence $S \cap V\left(H^{\prime}\right)$ is a vertex-cut of H^{\prime}. But then we obtain $k=|S| \geq\left|S \cap V\left(H^{\prime}\right)\right| \geq \kappa\left(H^{\prime}\right) \geq k+1$, a contradiction. It follows $E_{H^{c}}\left[V\left(H_{1}\right)-S, S, V\left(H_{2}\right)-S\right]=\emptyset$.
(ii) By $(i), E_{H^{c}}\left[V\left(H_{1}\right)-S, S, V\left(H_{2}\right)-S\right]=\emptyset$. This implies that if e is a r-subset such that $e \cap S \neq \emptyset$ and $e \cap\left(V\left(H_{i}\right)-S\right) \neq \emptyset$ for $i=1,2$, then $e \in E(H)$. Since the number of r-subsets contained in $V\left(H_{1}\right)$ or $V\left(H_{2}\right)$ is $\binom{n_{1}}{r}+\binom{n_{2}}{r}-\binom{k}{r}$, and the number of r-subsets exactly intersecting $V\left(H_{1}\right)-S$ and $V\left(H_{1}\right)-S$ is $\left(\begin{array}{l}n-k\end{array}\right)-\left(\begin{array}{l}n_{1}-k\end{array}\right)-\left(\begin{array}{l}n_{2}-k\end{array}\right)$, we have

$$
\begin{aligned}
& d_{H}\left(V\left(H_{1}\right)-S, S, V\left(H_{2}\right)-S\right) \\
& =\left|E_{H}\left[V\left(H_{1}\right)-S, S, V\left(H_{2}\right)-S\right]\right| \\
& =\binom{n}{r}-\left(\binom{n_{1}}{r}+\binom{n_{2}}{r}-\binom{k}{r}\right)-\left(\binom{n-k}{r}-\binom{n_{1}-k}{r}-\binom{n_{2}-k}{r}\right) \\
& =\binom{n}{r}-\binom{n_{1}}{r}-\binom{n_{2}}{r}+\binom{k}{r}-\binom{n-k}{r}+\binom{n_{1}-k}{r}+\binom{n_{2}-k}{r} .
\end{aligned}
$$

This completes the proof.

3 The lower bound of the sizes of vertex- k-maximal r-uniform hypergraphs

The union of two hypergraphs H_{1} and H_{2}, denoted by $H_{1} \cup H_{2}$, is the hypergraph with vertex set $V\left(H_{1}\right) \cup V\left(H_{2}\right)$ and edge set $E\left(H_{1}\right) \cup E\left(H_{2}\right)$. The r-join of two hypergraphs H_{1} and H_{2}, denoted by $H_{1} \vee_{r} H_{2}$, is the hypergraph obtained from the union of H_{1} and H_{2} by adding all the edges with cardinality r that connect the vertices of H_{1} with H_{2}.

Definition 1. Let n, k, r be integers such that $k, r \geq 2$ and $n \geq k+1$. We define $H_{L}(n ; k, r)$ to be $K_{k}^{r} \vee_{r}\left(K_{n-k}^{r}\right)^{c}$.

Lemma 3.1. Let n, k, r be integers such that $k, r \geq 2$ and $n \geq k+1$. If $H=H_{L}(n ; k, r)$, then
(i) H is vertex- k-maximal, and
(ii) $|E(H)|=\binom{n}{r}-\binom{n-k}{r}$.

Proof. (i) By Definition 1, H is obtained from the union of K_{k}^{r} and $\left(K_{n-k}^{r}\right)^{c}$ by adding all edges with cardinality r connecting $V\left(K_{k}^{r}\right)$ with $V\left(\left(K_{n-k}^{r}\right)^{c}\right)$.

Since $V\left(K_{k}^{r}\right)$ is a vertex-cut of H and $H-V\left(K_{k}^{r}\right)=\left(K_{n-k}^{r}\right)^{c}$, there is no subhypergraph with vertex-connectivity at least $k+1$, and so $\bar{\kappa}(H) \leq k$. If $E\left(H^{c}\right)=\emptyset$, then H is vertex- k-maximal
by the definition of vertex- k-maximal hypergraph. If $E\left(H^{c}\right) \neq \emptyset$, then for any $e \in E\left(H^{c}\right)$, e must be contained in $V\left(\left(K_{n-k}^{r}\right)^{c}\right)$, and so $(H+e)\left[V\left(K_{k}^{r}\right) \cup e\right]$ is isomorphic to K_{k+r}^{r} and $\kappa\left((H+e)\left[V\left(K_{k}^{r}\right) \cup e\right]\right)=k+1$. That is $\bar{\kappa}(H+e) \geq k+1$. Thus H is vertex- k-maximal.
(ii) holds by a direct calculation.

Theorem 3.2. Let n, k, r be integers such that $k, r \geq 2$ and $n \geq k+1$. If H is vertex- k-maximal, then $|E(H)| \geq\binom{ n}{r}-\binom{n-k}{r}$.

Proof. We will prove the theorem by induction on n. If $n \leq k+r-1$, then by H is vertex- k maximal, we have $H \cong K_{n}^{r}$. Thus $|E(H)|=\binom{n}{r}=\binom{n}{r}-\binom{n-k}{r}$ by $n-k \leq r-1$.

Now we assume that $n \geq k+r$, and that the theorem holds for smaller value of n. Since H is vertex- k-maximal and $n \geq k+r$, we have H is not complete. By Lemma 2.1, $\bar{\kappa}(H)=\kappa(H)=k$, and so H has a separation triple $\left(S, H_{1}, H_{2}\right)$ with $|S|=k$. Let $n_{1}=\left|V\left(H_{1}\right)\right|$ and $n_{2}=\left|V\left(H_{2}\right)\right|$. Then $n_{1}, n_{2} \geq k+1$ and $n=n_{1}+n_{2}-k$.

Since H is vertex- k-maximal, for any $e \in E\left((H[S])^{c}\right)$, there is a $(k+1)$-vertex-connected subhypergraph H^{\prime} of $H+e$. By Lemma 2.2, H^{\prime} is either a subhypergraph of $H_{1}+e$ or a subhypergraph $H_{2}+e$. Define

$$
\begin{aligned}
& E_{1}=\left\{e: e \in E\left((H[S])^{c}\right) \text { and } \bar{\kappa}\left(H_{1}+e\right)=k\right\} \\
& E_{2}=\left\{e: e \in E\left((H[S])^{c}\right) \text { and } \bar{\kappa}\left(H_{2}+e\right)=k\right\}
\end{aligned}
$$

Claim. Each of the following holds.
(i) $E_{1} \cap E_{2}=\emptyset$ and $E_{1} \cup E_{2} \subseteq E\left((H[S])^{c}\right)$.
(ii) There is a subset $E_{1}^{\prime} \subseteq E_{1}$ such that $H_{1}+E_{1}^{\prime}$ is vertex- k-maximal.
(iii) There is a subset $E_{2}^{\prime} \subseteq E_{2}$ such that $H_{2}+E_{2}^{\prime}$ is vertex- k-maximal.

By the definition, $E_{1} \cup E_{2} \subseteq E\left((H[S])^{c}\right)$. Since H is vertex- k-maximal, we have $E_{1} \cap E_{2}=\emptyset$, and so Claim (i) holds.

Assume first that $H_{1}+E_{1}$ is complete. If $n_{1} \leq k+r-1$, then $\bar{\kappa}\left(H_{1}+E_{1}\right) \leq k$, and so $H_{1}+E_{1}$ is vertex- k-maximal by the definition of vertex- k-maximal hypergraphs. If $n_{1} \geq k+r$, then by $\bar{\kappa}\left(H_{1}\right) \leq \bar{\kappa}(H) \leq k$ and $\bar{\kappa}\left(H_{1}+E_{1}\right) \geq k+1$, we can choose a maximum subset $E_{1}^{\prime} \subseteq E_{1}$ such that $\bar{\kappa}\left(H_{1}+E_{1}^{\prime}\right) \leq k$. It follows by the maximality of E_{1}^{\prime} and by the definition of vertex- k-maximal hypergraphs that $H_{1}+E_{1}^{\prime}$ is vertex- k-maximal. Next, we assume $H_{1}+E_{1}$ is not complete. Take an arbitrary edge $e \in E\left(\left(H_{1}+E_{1}\right)^{c}\right)$. Then $e \in E\left(H^{c}\right)$, and so as H is vertex- k-maximal, $H+e$ contains a $(k+1)$-vertex-connected subhypergraph H^{\prime} with $e \in E\left(H^{\prime}\right)$. If $e \cap\left(V\left(H_{1}\right)-S\right) \neq \emptyset$, then by Lemma 2.2, H^{\prime} is a subhypergraph of $H_{1}+e$. If $e \subseteq S$, then as $e \notin E_{1}$, we can choose H^{\prime} such that H^{\prime} is a subhypergraph of $H_{1}+e$. That is, $\bar{\kappa}\left(H_{1}+E_{1}+e\right) \geq k+1$. If $\bar{\kappa}\left(H_{1}+E_{1}\right) \leq k$, then $H_{1}+E_{1}$ is vertex- k-maximal. If $\bar{\kappa}\left(H_{1}+E_{1}\right) \geq k+1$, then by $\bar{\kappa}\left(H_{1}\right) \leq \bar{\kappa}(H) \leq k$, we can choose a maximum subset $E_{1}^{\prime} \subseteq E_{1}$ such that $\bar{\kappa}\left(H_{1}+E_{1}^{\prime}\right) \leq k$. It also follows by the maximality of E_{1}^{\prime} and by the definition of vertex- k-maximal hypergraphs that $H_{1}+E_{1}^{\prime}$ is vertex-k-maximal. This verifies Claim (ii). By symmetry, Claim (iii) holds. Thus the proof of the Claim is complete.

By Claim (ii) and Claim (iii), there are $E_{1}^{\prime} \subseteq E_{1}$ and $E_{2}^{\prime} \subseteq E_{2}$ such that $H_{1}+E_{1}^{\prime}$ and $H_{2}+E_{2}^{\prime}$ are vertex- k-maximal. Since $n_{1}, n_{2} \geq k+1$, by induction assumption, we have $\left|E\left(H_{1}+E_{1}^{\prime}\right)\right| \geq$
$\binom{n_{1}}{r}-\binom{n_{1}-k}{r}$ and $\left|E\left(H_{2}+E_{2}^{\prime}\right)\right| \geq\binom{ n_{2}}{r}-\binom{n_{2}-k}{r}$. By Claim (i) and the definition of $(H[S])^{c}$, we have $\left|E_{1}^{\prime}\right|+\left|E_{2}^{\prime}\right|+|E(H[S])| \leq\left|E_{1}\right|+\left|E_{2}\right|+|E(H[S])| \leq\left|E\left((H[S])^{c}\right)\right|+|E(H[S])|=\binom{k}{r}$. Thus

$$
\begin{aligned}
& |E(H)|=\left|E\left(H_{1}\right)\right|+\left|E\left(H_{2}\right)\right|-|E(H[S])|+\left|E_{H}\left[V\left(H_{1}\right)-S, S, V\left(H_{2}\right)-S\right]\right| \\
& =\left|E\left(H_{1}+E_{1}^{\prime}\right)\right|-\left|E_{1}^{\prime}\right|+\left|E\left(H_{2}+E_{2}^{\prime}\right)\right|-\left|E_{2}^{\prime}\right|-|E(H[S])|+\left|E_{H}\left[V\left(H_{1}\right)-S, S, V\left(H_{2}\right)-S\right]\right| \\
& \geq\left(\begin{array}{l}
n_{1}
\end{array}\right)-\left(\begin{array}{l}
n_{1}-k
\end{array}\right)+\binom{n_{2}}{r}-\binom{n_{2}-k}{r}-\binom{k}{r} \\
& +\binom{n}{r}-\binom{n_{1}}{r}-\binom{n_{2}}{r}+\binom{k}{r}-\binom{n-k}{r}+\binom{n_{1}-k}{r}+\binom{n_{2}-k}{r} \text { (By Lemma 2.3) } \\
& =\binom{n}{r}-\binom{n-k}{r} .
\end{aligned}
$$

This proves Theorem 3.2.
By Lemma 3.1, the lower bound of the sizes of vertex- k-maximal hypergraphs given in Theorem 3.2 is best possible. If $r=2$, then a r-uniform hypergraph H is just a graph. Thus Theorem 1.2 is a corollary of Theorem 3.2.
Corollary 3.3. (Xu, Lai and Tian [17]) Let n, k be integers with $n \geq k+1 \geq 3$. If G is a vertex-k-maximal graph on n vertices, then $|E(G)| \geq\binom{ n}{2}-\binom{n-k}{2}=(n-k) k+\frac{k(k-1)}{2}$. Furthermore, this bound is best possible.

4 The upper bound of the sizes of vertex- k-maximal r-uniform hypergraphs

Definition 2. Let n, k, r be integers such that $k, r \geq 2$ and $n \geq 2 k$. Assume $n=p k+q$, where p, q are integers and $1 \leq q \leq k$. We define $H_{U}(n ; k, r)$ to be $\left((p-1) K_{k}^{r} \cup K_{q}^{r}\right) \vee_{r}\left(K_{k}^{r}\right)^{c}$, where ($p-1$) K_{k}^{r} is the union of $p-1$ complete r-uniform hypergraphs on k vertices.
Lemma 4.1. Let n, k, r be integers such that $k, r \geq 2$ and $n \geq 2 k$. If $H=H_{U}(n ; k, r)$, then
(i) H is vertex- k-maximal, and
(ii) $|E(H)| \leq\binom{ n}{r}-\binom{n-k}{r}+\left(\frac{n}{k}-2\right)\binom{k}{r}$, where the equality holds if n is a multiple of k.

Proof. (i) By Definition 2, $H=\left((p-1) K_{k}^{r} \cup K_{q}^{r}\right) \vee_{r}\left(K_{k}^{r}\right)^{c}$. Denote the $p-1$ complete r-uniform hypergraphs on k vertices by $K_{k}^{r}(1), \cdots, K_{k}^{r}(p-1)$. Let $H_{0}=H\left[V\left(\left(K_{k}^{r}\right)^{c}\right)\right], H_{p}=H\left[V\left(K_{q}^{r}\right)\right]$ and $H_{i}=H\left[V\left(K_{k}^{r}(i)\right)\right]$ for $1 \leq i \leq p-1$. Then $H=H_{0} \vee_{r}\left(H_{1} \cup \cdots \cup H_{p}\right)$.

Since $V\left(H_{0}\right)$ is a vertex-cut of size k and every component of $H-V\left(H_{0}\right)$ has at most k vertices. It follows that H contains no $(k+1)$-vertex-connected subhypergraphs, and so $\bar{\kappa}(H) \leq k$. If $E\left(H^{c}\right)=\emptyset$, then H is vertex- k-maximal by the definition of vertex- k-maximal hypergraphs. Thus we assume $E\left(H^{c}\right) \neq \emptyset$ in the following. Let $e \in E\left(H^{c}\right)$. If $e \subseteq V\left(H_{0}\right)$, then $H^{\prime}=H\left[V\left(H_{1}\right) \cup e\right]$ is isomorphic to K_{k+r}^{r}, and so $\kappa\left(H^{\prime}\right)=k+1$. If $e \subseteq V\left(H_{1}\right) \cup \cdots \cup V\left(H_{p}\right)$, let e be exact- $\left(V\left(H_{i 1}\right), \cdots, V\left(H_{i s}\right)\right)$-crossing. We will prove that $H^{\prime \prime}=H\left[V\left(H_{0}\right) \cup V\left(H_{i 1}\right) \cup\right.$ $\left.\cdots \cup\left(H_{i s}\right)\right]+e$ is $(k+1)$-vertex-connected. It suffices to prove that $H^{\prime \prime}-S$ is connected for any $S \subseteq V\left(H^{\prime \prime}\right)$ with $|S|=k$. If $S=V\left(H_{0}\right)$, then, by e is exact- $\left(V\left(H_{i 1}\right), \cdots, V\left(H_{i s}\right)\right)$-crossing, $H^{\prime \prime}-S$ is connected. So assume $V_{0}^{\prime}=V\left(H_{0}\right) \backslash S \neq \emptyset$. Let $V_{1}^{\prime}=\left(V\left(H_{i 1}\right) \cup \cdots \cup V\left(H_{i s}\right)\right) \backslash S$. Then $H^{\prime \prime}-S$ is isomorphic to $H\left[V_{0}^{\prime}\right] \vee_{r} H\left[V_{1}^{\prime}\right]$ if $S \cap e \neq \emptyset$; and $H^{\prime \prime}-S$ is isomorphic to $H\left[V_{0}^{\prime}\right] \vee_{r} H\left[V_{1}^{\prime}\right]+e$ if $S \cap e=\emptyset$. Since $V_{0}^{\prime}, V_{1}^{\prime} \neq \emptyset$ and $\left|V_{0}^{\prime} \cup V_{1}^{\prime}\right| \geq r$, we obtain that $H^{\prime \prime}-S$ is connected. Thus $\bar{\kappa}(H+e) \geq k+1$ for any $e \in E\left(H^{c}\right)$, and so H is vertex- k-maximal.
(ii) By a direct calculation, we have $|E(H)| \leq\binom{ n}{r}-\binom{n-k}{r}+\left(\frac{n}{k}-2\right)\binom{k}{r}$, where the equality holds if n is a multiple of k.

Motivated by Conjecture 1, we propose the following conjecture for vertex-k-maximal r uniform hypergraphs.

Conjecture 2. Let k, r be integers with $k, r \geq 2$. Then for sufficiently large n, every vertex- k maximal r-uniform hypergraph H on n vertices satisfies $|E(H)| \leq\binom{ n}{r}-\binom{n-k}{r}+\left(\begin{array}{l}n \\ k\end{array}-2\right)\binom{k}{r}$.

The following theorem confirms Conjecture 2 for the case $k<r$.
Theorem 4.2. Let n, k, r be integers such that $k, r \geq 2$ and $n \geq 2 k$. If $k<r$, then every vertex-k-maximal r-uniform hypergraph H on n vertices satisfies $|E(H)| \leq\binom{ n}{r}-\binom{n-k}{r}+\left(\begin{array}{l}n \\ k\end{array}-2\right)\binom{k}{r}=$ $\binom{n}{r}-\binom{n-k}{r}$.

Proof. We will prove the theorem by induction on n. If $n \leq k+r-1$, then by H is vertex- k maximal, we have $H \cong K_{n}^{r}$. Thus $|E(H)|=\binom{n}{r}=\binom{n}{r}-\binom{n-k}{r}$ by $n-k \leq r-1$.

Now we assume that $n \geq k+r$, and that the theorem holds for smaller value of n. Since H is vertex- k-maximal and $n \geq k+r$, we have H is not complete. Let S be a minimum vertex-cut of H. By Lemma 2.1, $|S|=k$. Let C_{1} be a minimum component of $H-S$ and $C_{2}=H-\left(V\left(C_{1}\right) \cup S\right)$. Assume $H_{1}=H\left[V\left(C_{1}\right) \cup S\right]$ and $H_{2}=H\left[V\left(C_{2}\right) \cup S\right]$. Since $k<r$, we have $E\left((H[S])^{c}\right)=\emptyset$, and so H_{1} and H_{2} are both vertex- k-maximal by Lemma 2.2. Let $n_{1}=\left|V\left(H_{1}\right)\right|$ and $n_{2}=\left|V\left(H_{2}\right)\right|$. Then $n=n_{1}+n_{2}-k$ and $k+1 \leq n_{1} \leq n_{2}$. We consider two cases in the following.

Case 1. $\left|V\left(C_{1}\right)\right|=1$.
By $\left|V\left(C_{1}\right)\right|=1$, we obtain that $n_{2}=n-1 \geq k+r-1 \geq 2 k$. Since H_{2} is vertex- k-maximal, by induction assumption, we have $\left|E\left(H_{2}\right)\right| \leq\binom{ n-1}{r}-\left({ }_{r}^{n-k-1}\right)$. Thus

$$
\begin{aligned}
|E(H)| & =\left|E\left(H_{1}\right)\right|+\left|E\left(H_{2}\right)\right|-|E(H[S])|+\left|E_{H}\left[V\left(H_{1}\right)-S, S, V\left(H_{2}\right)-S\right]\right| \\
& \leq\binom{ k}{r-1}+\binom{n-1}{r}-\binom{n-k-1}{r}+\binom{n-1}{r-1}-\binom{k}{r-1}-\binom{n-k-1}{r-1} \\
& =\binom{n}{r}-\binom{n-k}{r} .
\end{aligned}
$$

Case 2. $\left|V\left(C_{1}\right)\right| \geq 2$.
By $\left|V\left(C_{1}\right)\right| \geq 2$, we obtain that C_{1} contains edges, and so $\left|V\left(C_{1}\right)\right| \geq r$. Thus $n_{2} \geq n_{1} \geq$ $k+r \geq 2 k+1$. Since both H_{1} and H_{2} are vertex- k-maximal, by induction assumption, we have $\left|E\left(H_{i}\right)\right| \leq\binom{ n_{i}}{r_{i}}-\binom{n_{r}-k}{n_{i}}$ for $i=1,2$. Thus

$$
\begin{aligned}
|E(H)|= & \left|E\left(H_{1}\right)\right|+\left|E\left(H_{2}\right)\right|-|E(H[S])|+\left|E_{H}\left[V\left(H_{1}\right)-S, S, V\left(H_{2}\right)-S\right]\right| \\
& \leq\binom{ n_{1}}{r}-\binom{n_{1}-k}{r}+\binom{n_{2}}{r}-\binom{n_{2}-k}{r} \\
& +\binom{n}{r}-\binom{n_{1}}{r}-\binom{n_{2}}{r}+\binom{k}{r}-\binom{n-k}{r}+\binom{n_{1}-k}{r}+\binom{n_{2}-k}{r}(\text { By Lemma 2.3) } \\
= & \binom{n}{r}-\binom{n-k}{r} .
\end{aligned}
$$

This completes the proof.
Combining Theorem 3.2 with Theorem 4.2, we have the following corollary.
Corollary 4.3. Let n, k, r be integers such that $k, r \geq 2$ and $n \geq 2 k$. If $k<r$, then every vertex-k-maximal r-uniform hypergraph H on n vertices satisfies $|E(H)|=\binom{n}{r}-\binom{n-k}{r}$.

References

[1] J. Anderson, H.-J. Lai, X. Lin, M. Xu, On k-maximal strength digraphs, J. Graph Theory 84 (2017) 17-25.
[2] M. A. Bahmanian, M. $\breve{\text { Sajna, Connection and separation in hypergraphs, Theory and Ap- }}$ plications of Graphs 2(2) (2015) 0-24.
[3] A. Bernshteyn, A. Kostochka, On the number of edges in a graph with no $(k+1)$-connected subgraphs, Discrete Mathematics 339 (2016) 682-688.
[4] J. A. Bondy, U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics 244, Springer, Berlin, 2008.
[5] C. Chekuri, C. Xu, Computing minimum cuts in hypergraphs, In Proceedings of the TwentyEighth Annual ACM-SIAM Symposium on Discrete Algorithms (Barcelona, 2017), SIAM (2017) 1085-1100.
[6] M. Dewar, D. Pike, J. Proos, Connectivity in Hypergraphs, arXiv:1611.07087v3.
[7] H.-J. Lai, The size of strength-maximal graphs, J. Graph Theory 14 (1990) 187-197.
[8] X. Lin, S. Fan, H.-J. Lai, M. Xu, On the lower bound of k-maximal digraphs, Discrete Math. 339 (2016) 2500-2510.
[9] W. Mader, Minimale n-fach kantenzusammenhngende graphen, Math. Ann. 191 (1971) 2128.
[10] W. Mader, Existenz n-fach zusammenhängender Teilgraphen in Graphen genügend gro β en Kantendichte, Abh. Math. Sem. Univ. Hamburg 37 (1972) 86-97.
[11] W. Mader, Connectivity and edge-connectivity in finite graphs, in: B. Bollobás (Ed.), Surveys in Combinatorics, Cambridge University Press, London, 1979, pp. 66-95.
[12] D. W. Matula, The cohesive strength of graphs, The Many Facets of Graph Theory, Lecture Notes in Mathematics, No. 110, G. Chartrand and S. F. Kapoor, eds., Springer-Verlag, Berlin, 1969, pp. 215-221.
[13] D. Matula, K-components, clusters, and slicings in graphs, SIAM J. Appl. Math. 22 (1972) 459-480.
[14] D. W. Matula, Subgraph connectivity numbers of a graph, Theory and Applications of Graphs, pp. 371-383 (Springer-Verlag, Berlin 1978).
[15] D. W. Matula, Ramsey theory for graph connectivity, J. Graph Theory 7 (1983) 95-105.
[16] Y. Z. Tian, L. Q. Xu, H.-J. Lai, J. X. Meng, On the sizes of k-edge-maximal r-uniform hypergraphs, arXiv:1802.08843v3.
[17] L. Q. Xu, H.-J. Lai, Y. Z. Tian, On the sizes of vertex- k-maximal graphs, submitted.
[18] R. Yuster, A note on graphs without k-connected subgraphs, Ars Combin. 67 (2003) 231235.

[^0]: *The research is supported by NSFC (Nos. 11531011, 11771039, 11771443).
 ${ }^{\dagger}$ Corresponding author. E-mail: tianyzhxj@163.com (Y. Tian), hjlai@math.wvu.edu (H. Lai), mjx@xju.edu.cn (J. Meng).

