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On the sizes of vertex-k-maximal r-uniform hypergraphs ∗
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Abstract Let H = (V,E) be a hypergraph, where V is a set of vertices and E is a set
of non-empty subsets of V called edges. If all edges of H have the same cardinality r, then
H is a r-uniform hypergraph; if E consists of all r-subsets of V , then H is a complete r-
uniform hypergraph, denoted by Kr

n, where n = |V |. A hypergraph H ′ = (V ′, E′) is called a
subhypergraph of H = (V,E) if V ′ ⊆ V and E′ ⊆ E. A r-uniform hypergraph H = (V,E) is
vertex-k-maximal if every subhypergraph of H has vertex-connectivity at most k, but for any
edge e ∈ E(Kr

n) \E(H), H + e contains at least one subhypergraph with vertex-connectivity at
least k+1. In this paper, we first prove that for given integers n, k, r with k, r ≥ 2 and n ≥ k+1,
every vertex-k-maximal r-uniform hypergraph H of order n satisfies |E(H)| ≥ (nr )− (n−k

r ), and
this lower bound is best possible. Next, we conjecture that for sufficiently large n, every vertex-
k-maximal r-uniform hypergraph H on n vertices satisfies |E(H)| ≤ (nr ) − (n−k

r ) + (n
k
− 2)(kr ),

where k, r ≥ 2 are integers. And the conjecture is verified for the case r > k.
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1 Introduction

In this paper, we consider finite simple graphs. For graph-theoretical terminologies and notation
not defined here, we follow [4]. For a graph G, we use κ(G) to denote the vertex-connectivity
of G. The complement of a graph G is denoted by Gc. For X ⊆ E(Gc), G + X is the graph
with vertex set V (G) and edge set E(G)∪X. We will use G+ e for G+{e}. The floor of a real
number x, denoted by ⌊x⌋, is the greatest integer not larger than x; the ceil of a real number
x, denoted by ⌈x⌉, is the least integer greater than or equal to x. For two integers n and k, we
define (nk) =

n!
k!(n−k)! when k ≤ n and (nk) = 0 when k > n.

Matula [14] first explicitly studied the quantity κ(G) = max{κ(G′) : G′ ⊆ G}. For a
positive integer k, the graph G is vertex-k-maximal if κ(G) ≤ k but for any edge e ∈ E(Gc),
κ(G+ e) > k. Because κ(Kn) = n− 1, a vertex-k-maximal graph G with at most k+1 vertices
must be a complete graph.

The union of two graphs G1 and G2, denoted by G1 ∪ G2, is the graph with vertex set
V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). The join of two graphs G1 and G2, denoted

∗The research is supported by NSFC (Nos. 11531011, 11771039, 11771443).
†Corresponding author. E-mail: tianyzhxj@163.com (Y. Tian), hjlai@math.wvu.edu (H. Lai), mjx@xju.edu.cn

(J. Meng).
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by G1 ∨ G2, is the graph obtained from the union of G1 and G2 by adding all the edges that
connect the vertices of G1 with G2. Let Gn,k = ((p − 1)Kk ∪Kq) ∨Kc

k, where n = pk + q ≥ 2k
(1 ≤ q ≤ k) and (p − 1)Kk is the union of p − 1 complete graphs on k vertices. Then Gn,k is
vertex-k-maximal and |E(Gn,k)| ≤

3
2 (k−

1
3 )(n−k), where the equality holds if n is a multiple of

k. Mader [11] conjectured that, for large order of graphs, the graph Gn,k would in fact present
the best possible upper bound for the sizes of a vertex-k-maximal graph.

Conjecture 1. (Mader [11]) Let k ≥ 2 be an integer. Then for sufficiently large n, every
vertex-k-maximal graph on n vertices satisfies |E(G)| ≤ 3

2(k − 1
3)(n− k).

Some progresses towards Conjecture 1 are listed in the following.

Theorem 1.1. Let k ≥ 2 be an integer.

(i) (Mader [10], see also [11]) Conjecture 1 holds for k ≤ 6.

(ii) (Mader [10], see also [11]) For sufficiently large n, every vertex-k-maximal graph G on
n vertices satisfies |E(G)| ≤ (1 + 1√

2
)k(n− k).

(iii) (Yuster [18]) If n ≥ 9k
4 , then every vertex-k-maximal graph G on n vertices satisfies

|E(G)| ≤ 193
120k(n− k).

(iv) (Bernshteyn and Kostochka [3]) If n ≥ 5k
2 , then every vertex-k-maximal graph G on n

vertices satisfies |E(G)| ≤ 19
12k(n− k).

In [17], Xu, Lai and Tian obtained the lower bound of the sizes of vertex-k-maximal graphs.

Theorem 1.2. (Xu, Lai and Tian [17]) Let n, k be integers with n ≥ k + 1 ≥ 3. If G is a

vertex-k-maximal graph on n vertices, then |E(G)| ≥ (n−k)k+ k(k−1)
2 . Furthermore, this bound

is best possible.

The related studies on edge-k-maximal graphs have been conducted by quite a few re-
searchers, as seen in [7,9,12,13,15], among others. For corresponding digraph problems, see
[1,8], among others.

Let H = (V,E) be a hypergraph, where V is a finite set and E is a set of non-empty subsets
of V , called edges. An edge of cardinality 2 is just a graph edge. For a vertex u ∈ V and an edge
e ∈ E, we say u is incident with e or e is incident with u if u ∈ e. If all edges of H have the same
cardinality r, then H is a r-uniform hypergraph; if E consists of all r-subsets of V , then H is
a complete r-uniform hypergraph, denoted by Kr

n, where n = |V |. For n < r, the complete
r-uniform hypergraph Kr

n is just the hypergraph with n vertices and no edges. The complement
of a r-uniform hypergraph H = (V,E), denoted by Hc, is the r-uniform hypergraph with vertex
set V and edge set consisting of all r-subsets of V not in E. A hypergraph H ′ = (V ′, E′) is called
a subhypergraph of H = (V,E), denoted by H ′ ⊆ H, if V ′ ⊆ V and E′ ⊆ E. For X ⊆ E(Hc),
H +X is the hypergraph with vertex set V (H) and edge set E(H)∪X; for X ′ ⊆ E(H), H −X ′

is the hypergraph with vertex set V (H) and edge set E(H) \X ′. We use H + e for H + {e} and
H − e′ for H −{e′} when e ∈ E(Hc) and e′ ∈ E(H). For Y ⊆ V (H), we use H[Y ] to denote the
hypergraph induced by Y , where V (H[Y ]) = Y and E(H[Y ]) = {e ∈ E(H) : e ⊆ Y }. H − Y is
the hypergraph induced by V (H) \ Y .
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Let H be a hypergraph and V1, V2, · · · , Vl be subsets of V (H). An edge e ∈ E(H) is
(V1, V2, · · · , Vl)-crossing if e ∩ Vi 6= ∅ for 1 ≤ i ≤ l. If in addition, e ⊆ ∪l

i=1Vi, then e is
exact-(V1, V2, · · · , Vl)-crossing. The set of all (V1, V2, · · · , Vl)-crossing edges of H is denoted
by EH [V1, V2, · · · , Vl]; the set of all exact-(V1, V2, · · · , Vl)-crossing edges of H is denoted by
EH[V1∪V2∪···∪Vl][V1, V2, · · · , Vl]. Let dH(V1, V2, · · · , Vl) = |EH [V1, V2, · · · , Vl]| and dH[V1∪V2∪···∪Vl]

(V1, V2, · · · , Vl) = |EH[V1∪V2∪···∪Vl][V1, V2, · · · , Vl]|. For a vertex u ∈ V (H), we call dH(u) :=
dH({u}, V (H) \ {u}) the degree of u in H. The minimum degree δ(H) of H is defined as
min{dH(u) : u ∈ V }; the maximum degree ∆(H) of H is defined as max{dH(u) : u ∈ V }.
When δ(H) = ∆(H) = k, we call H k-regular.

Given a hypergraphH, we define a walk in H to be an alternating sequence v1, e1, v2, · · · , es,
vs+1 of vertices and edges of H such that: vi ∈ V (H) for i = 1, · · · , s + 1; ei ∈ E(H) for
i = 1, · · · , s; and vi, vi+1 ∈ ei for i = 1, · · · , s. A path is a walk with additional restrictions
that the vertices are all distinct and the edges are all distinct. A hypergraph H is connected
if for every pair of vertices u, v ∈ V (H), there is a path connecting u and v; otherwise H is
disconnected. A component of a hypergraph H is a maximal connected subhypergraph of H.
A subset X ⊆ V is called a vertex-cut of H if H −X is disconnected. We define the vertex-
connectivity of H, denoted by κ(H), as follows: if H had at least one vertex-cut, then κ(H)
is the cardinality of a minimum vertex-cut of H; otherwise κ(H) = |V (H)| − 1. We call a
hypergraph H k-vertex-connected if κ(H) ≥ k. Let κ(H) = max{κ(H ′) : H ′ ⊆ H}. For a
positive integer k, the r-uniform hypergraph H is vertex-k-maximal if κ(H) ≤ k but for any
edge e ∈ E(Hc), κ(H + e) > k. Since κ(Kr

n) = n − r + 1, we note that H is complete if H is
a vertex-k-maximal r-uniform hypergraph with n − r + 1 ≤ k, where n = |V (H)|. The edge-k-
maximal hypergraph can be defined similarly. For results on the connectivity of hypergraphs,
see [2,5,6] for references.

In [16], we determined, for given integers n, k and r, the extremal sizes of an edge-k-maximal
r-uniform hypergraph on n vertices.

Theorem 1.3. (Tian, Xu, Lai and Meng [16]) Let k and r be integers with k, r ≥ 2, and
let t = t(k, r) be the largest integer such that (t−1

r−1) ≤ k. That is, t is the integer satisfying

(t−1
r−1) ≤ k < (tr−1). If H is an edge-k-maximal r-uniform hypergraph with n = |V (H)| ≥ t, then

(i) |E(H)| ≤ (tr) + (n− t)k, and this bound is best possible;

(ii) |E(H)| ≥ (n− 1)k − ((t− 1)k − (tr))⌊
n
t
⌋, and this bound is best possible.

The main goal of this research is to investigate, for given integers n, k and r, the extremal
sizes of a vertex-k-maximal r-uniform hypergraph on n vertices. Section 2 below is devoted
to the study of some properties of vertex-k-maximal r-uniform hypergraphs. In Section 3, we
give the best possible lower bound of the sizes of vertex-k-maximal r-uniform hypergraphs. We
propose a conjecture on the upper bound of the sizes of vertex-k-maximal r-uniform hypergraphs
and verify the conjecture for the case r > k in Section 4.

2 Properties of vertex-k-maximal r-uniform hypergraphs

Combining the definition of vertex-k-maximal r-uniform hypergraph with κ(Kr
n) = n − r + 1,

we obtain that H is isomorphic to Kr
n if H is a vertex-k-maximal r-uniform hypergraph with

3



n = |V (H)| ≤ k + r − 1.

Lemma 2.1. Let n, k, r be integers with k, r ≥ 2 and n ≥ k+ r− 1. If H is a vertex-k-maximal
r-uniform hypergraph on n vertices, then κ(H) = κ(H) = k.

Proof. Since H is vertex-k-maximal, we have κ(H) ≤ κ(H) ≤ k. In order to complete the
proof, we only need to show that κ(H) ≥ k.

If n = k+ r−1, then H is complete and κ(H) = n− r+1 = k. Thus, assume n ≥ k+ r, and
so H is not complete. On the contrary, assume κ(H) < k. Since H is not complete, H has a
vertex-cut S with |S| = κ(H) < k. Let C1 be a component of H −S and C2 = H− (S ∪V (C1)).
By |V (C1)∪V (C2)| = n−|S| ≥ k+r−(k−1) = r+1, we can choose a r-subset e ⊆ V (C1)∪V (V2)
such that e ∩ V (Ci) 6= ∅ for i = 1, 2. Then e ∈ E(Hc).

SinceH is vertex-k-maximal, we have κ(H+e) ≥ k+1. HenceH+e contains a subhypergraph
H ′ with κ(H ′) = κ(H + e) ≥ k + 1. Since κ(H) ≤ k, H ′ cannot be a subhypergraph of H, and
so e ∈ E(H ′). Since V (H ′) ∩ V (Ci) 6= ∅ for i = 1, 2, it follows that V (H ′) ∩ S is a vertex-cut of
H ′ − e.

Since |V (C1) ∪ V (C2)| = n− |S| ≥ k + r − (k − 1) = r + 1 ≥ 3, one of Ci, say C1, contains
at least two vertices. Let u1 ∈ e ∩ V (C1). Then S′ = (V (H ′) ∩ S) ∪ {u1} is a vertex-cut of H ′,
and so we obtain

k + 1 > |S|+ 1 ≥ |V (H ′) ∩ S|+ 1 = |S′| ≥ κ(H ′) ≥ k + 1,

a contradiction. �

Let H be a vertex-k-maximal r-uniform hypergraph with |V (H)| ≥ k + r. By Lemma 2.1,
κ(H) = κ(H) = k. By |V (H)| ≥ k + r, H is not complete, thus H contains vertex-cuts. Let S
be a minimum vertex-cut of H, C1 be a component of H − S and C2 = H − (S ∪ V (C1)). We
call (S,H1,H2) a separation triple of H, where H1 = H[S ∪ V (C1)] and H2 = H[S ∪ V (C2)].

Lemma 2.2. Let n, k, r be integers with k, r ≥ 2 and n ≥ k + r, and H be a vertex-k-maximal
r-uniform hypergraph on n vertices. Assume (S,H1,H2) is a separation triple of H. If e ∈
E(Hc

1)∪E(Hc
2), then any subhypergraph H ′ of H+e with κ(H ′) ≥ k+1 is either a subhypergraph

of H1 + e or a subhypergraph of H2 + e. Furthermore, if e ⊆ E(Hc
i ) \ E((H[S])c), then H ′ is a

subhypergraph of Hi + e for i = 1, 2.

Proof. Let e ∈ E(Hc
1) ∪ E(Hc

2). Since H is vertex-k-maximal, we have κ(H + e) ≥ k + 1.
Let H ′ be a subhypergraph of H + e with κ(H ′) = κ(H + e) ≥ k + 1. We assume, on the
contrary, that V (H ′) ∩ (V (H1) − S) 6= ∅ and V (H ′) ∩ (V (H2) − S) 6= ∅. This, together with
e ∈ E(Hc

1)∪E(Hc
2), implies that S∩V (H ′) is a vertex-cut of H ′. Hence k = |S| ≥ |S∩V (H ′)| ≥

κ(H ′) ≥ k + 1, a contradiction. Therefore, we cannot have both V (H ′) ∩ (V (H1)− S) 6= ∅ and
V (H ′) ∩ (V (H2)− S) 6= ∅. If V (H ′) ∩ (V (H1)− S) = ∅, then H ′ is a subhypergraph of H2 + e;
if V (H ′) ∩ (V (H2)− S) = ∅, then H ′ is a subhypergraph of H1 + e.

If e ⊆ E(Hc
1) \ E((H[S])c), then V (H ′) ∩ (V (H1) − S) 6= ∅ and V (H ′) ∩ (V (H2) − S) = ∅,

thus H ′ is a subhypergraph of H1 + e. Similarly, if e ⊆ E(Hc
2) \ E((H[S])c), then H ′ is a

subhypergraph of H2 + e. �
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Lemma 2.3. Let n, k, r be integers with k, r ≥ 2 and n ≥ k + r, and H be a vertex-k-maximal
r-uniform hypergraph on n vertices. Assume (S,H1,H2) is a separation triple of H and ni =
|V (Hi)| for i = 1, 2. Then

(i) EHc [V (H1)− S, S, V (H2)− S] = ∅, and

(ii) dH(V (H1)− S, S, V (H2)− S) = (nr )− (n1

r )− (n2

r ) + (kr )− (n−k
r ) + (n1−k

r ) + (n2−k
r ).

Proof. (i) By contradiction, assume EHc [V (H1)− S, S, V (H2)− S] 6= ∅. Let e ∈ EHc [V (H1)−
S, S, V (H2)− S]. Since H is vertex-k-maximal, there is a subhypergraph H ′ of H + e such that
κ(H ′) = κ(H + e) ≥ k + 1. By κ(H) ≤ k, e ∈ E(H ′). This, together with e ∈ EHc [V (H1) −
S, S, V (H2) − S], implies V (H ′) ∩ S 6= ∅ and V (H ′) ∩ (V (Hi) − S) 6= ∅ for i = 1, 2. Hence
S ∩ V (H ′) is a vertex-cut of H ′. But then we obtain k = |S| ≥ |S ∩ V (H ′)| ≥ κ(H ′) ≥ k + 1, a
contradiction. It follows EHc [V (H1)− S, S, V (H2)− S] = ∅.

(ii) By (i), EHc [V (H1) − S, S, V (H2) − S] = ∅. This implies that if e is a r-subset such
that e ∩ S 6= ∅ and e ∩ (V (Hi) − S) 6= ∅ for i = 1, 2, then e ∈ E(H). Since the number of
r-subsets contained in V (H1) or V (H2) is (

n1

r )+ (n2

r )− (kr ), and the number of r-subsets exactly
intersecting V (H1)− S and V (H1)− S is (n−k

r )− (n1−k
r )− (n2−k

r ), we have

dH(V (H1)− S, S, V (H2)− S)

= |EH [V (H1)− S, S, V (H2)− S]|

= (nr )− ((n1

r ) + (n2

r )− (kr ))− ((n−k
r )− (n1−k

r )− (n2−k
r ))

= (nr )− (n1

r )− (n2

r ) + (kr )− (n−k
r ) + (n1−k

r ) + (n2−k
r ).

This completes the proof. �

3 The lower bound of the sizes of vertex-k-maximal r-uniform

hypergraphs

The union of two hypergraphs H1 and H2, denoted by H1 ∪H2, is the hypergraph with vertex
set V (H1) ∪ V (H2) and edge set E(H1) ∪ E(H2). The r-join of two hypergraphs H1 and H2,
denoted by H1 ∨r H2, is the hypergraph obtained from the union of H1 and H2 by adding all
the edges with cardinality r that connect the vertices of H1 with H2.

Definition 1. Let n, k, r be integers such that k, r ≥ 2 and n ≥ k+1. We define HL(n; k, r) to
be Kr

k ∨r (K
r
n−k)

c.

Lemma 3.1. Let n, k, r be integers such that k, r ≥ 2 and n ≥ k + 1. If H = HL(n; k, r), then

(i) H is vertex-k-maximal, and

(ii) |E(H)| = (nr )− (n−k
r ).

Proof. (i) By Definition 1, H is obtained from the union of Kr
k and (Kr

n−k)
c by adding all

edges with cardinality r connecting V (Kr
k) with V ((Kr

n−k)
c).

Since V (Kr
k) is a vertex-cut of H and H−V (Kr

k) = (Kr
n−k)

c, there is no subhypergraph with
vertex-connectivity at least k + 1, and so κ(H) ≤ k. If E(Hc) = ∅, then H is vertex-k-maximal

5



by the definition of vertex-k-maximal hypergraph. If E(Hc) 6= ∅, then for any e ∈ E(Hc),
e must be contained in V ((Kr

n−k)
c) , and so (H + e)[V (Kr

k) ∪ e] is isomorphic to Kr
k+r and

κ((H + e)[V (Kr
k) ∪ e]) = k + 1. That is κ(H + e) ≥ k + 1. Thus H is vertex-k-maximal.

(ii) holds by a direct calculation. �

Theorem 3.2. Let n, k, r be integers such that k, r ≥ 2 and n ≥ k+1. If H is vertex-k-maximal,
then |E(H)| ≥ (nr )− (n−k

r ).

Proof. We will prove the theorem by induction on n. If n ≤ k + r − 1, then by H is vertex-k-
maximal, we have H ∼= Kr

n. Thus |E(H)| = (nr ) = (nr )− (n−k
r ) by n− k ≤ r − 1.

Now we assume that n ≥ k+r, and that the theorem holds for smaller value of n. Since H is
vertex-k-maximal and n ≥ k+ r, we have H is not complete. By Lemma 2.1, κ(H) = κ(H) = k,
and so H has a separation triple (S,H1,H2) with |S| = k. Let n1 = |V (H1)| and n2 = |V (H2)|.
Then n1, n2 ≥ k + 1 and n = n1 + n2 − k.

Since H is vertex-k-maximal, for any e ∈ E((H[S])c), there is a (k + 1)-vertex-connected
subhypergraph H ′ of H + e. By Lemma 2.2, H ′ is either a subhypergraph of H1 + e or a
subhypergraph H2 + e. Define

E1 = {e : e ∈ E((H[S])c) and κ(H1 + e) = k}

E2 = {e : e ∈ E((H[S])c) and κ(H2 + e) = k}

Claim. Each of the following holds.

(i) E1 ∩ E2 = ∅ and E1 ∪ E2 ⊆ E((H[S])c).

(ii) There is a subset E′
1 ⊆ E1 such that H1 + E′

1 is vertex-k-maximal.

(iii) There is a subset E′
2 ⊆ E2 such that H2 + E′

2 is vertex-k-maximal.

By the definition, E1∪E2 ⊆ E((H[S])c). Since H is vertex-k-maximal, we have E1∩E2 = ∅,
and so Claim (i) holds.

Assume first that H1+E1 is complete. If n1 ≤ k+r−1, then κ(H1+E1) ≤ k, and so H1+E1

is vertex-k-maximal by the definition of vertex-k-maximal hypergraphs. If n1 ≥ k + r, then by
κ(H1) ≤ κ(H) ≤ k and κ(H1+E1) ≥ k+1, we can choose a maximum subset E′

1 ⊆ E1 such that
κ(H1 + E′

1) ≤ k. It follows by the maximality of E′
1 and by the definition of vertex-k-maximal

hypergraphs that H1+E′
1 is vertex-k-maximal. Next, we assume H1+E1 is not complete. Take

an arbitrary edge e ∈ E((H1 +E1)
c). Then e ∈ E(Hc), and so as H is vertex-k-maximal, H + e

contains a (k + 1)-vertex-connected subhypergraph H ′ with e ∈ E(H ′). If e∩ (V (H1)− S) 6= ∅,
then by Lemma 2.2, H ′ is a subhypergraph of H1+e. If e ⊆ S, then as e /∈ E1, we can choose H ′

such that H ′ is a subhypergraph of H1+ e. That is, κ(H1+E1 + e) ≥ k+1. If κ(H1 +E1) ≤ k,
then H1 + E1 is vertex-k-maximal. If κ(H1 + E1) ≥ k + 1, then by κ(H1) ≤ κ(H) ≤ k, we
can choose a maximum subset E′

1 ⊆ E1 such that κ(H1 + E′
1) ≤ k. It also follows by the

maximality of E′
1 and by the definition of vertex-k-maximal hypergraphs that H1+E′

1 is vertex-
k-maximal. This verifies Claim (ii). By symmetry, Claim (iii) holds. Thus the proof of the
Claim is complete.

By Claim (ii) and Claim (iii), there are E′
1 ⊆ E1 and E′

2 ⊆ E2 such that H1+E′
1 and H2+E′

2

are vertex-k-maximal. Since n1, n2 ≥ k + 1, by induction assumption, we have |E(H1 + E′
1)| ≥

6



(n1

r )− (n1−k
r ) and |E(H2 + E′

2)| ≥ (n2

r )− (n2−k
r ). By Claim (i) and the definition of (H[S])c, we

have |E′
1|+ |E′

2|+ |E(H[S])| ≤ |E1|+ |E2|+ |E(H[S])| ≤ |E((H[S])c)|+ |E(H[S])| = (kr ). Thus

|E(H)| = |E(H1)|+ |E(H2)| − |E(H[S])| + |EH [V (H1)− S, S, V (H2)− S]|

= |E(H1+E′
1)|−|E′

1|+ |E(H2+E′
2)|−|E′

2|−|E(H[S])|+ |EH [V (H1)−S, S, V (H2)−S]|

≥ (n1

r )− (n1−k
r ) + (n2

r )− (n2−k
r )− (kr )

+(nr )− (n1

r )− (n2

r ) + (kr )− (n−k
r ) + (n1−k

r ) + (n2−k
r ) (By Lemma 2.3)

= (nr )− (n−k
r ).

This proves Theorem 3.2. �

By Lemma 3.1, the lower bound of the sizes of vertex-k-maximal hypergraphs given in
Theorem 3.2 is best possible. If r = 2, then a r-uniform hypergraph H is just a graph. Thus
Theorem 1.2 is a corollary of Theorem 3.2.

Corollary 3.3. (Xu, Lai and Tian [17]) Let n, k be integers with n ≥ k+1 ≥ 3. If G is a vertex-

k-maximal graph on n vertices, then |E(G)| ≥ (n2 ) − (n−k
2 ) = (n − k)k + k(k−1)

2 . Furthermore,
this bound is best possible.

4 The upper bound of the sizes of vertex-k-maximal r-uniform

hypergraphs

Definition 2. Let n, k, r be integers such that k, r ≥ 2 and n ≥ 2k. Assume n = pk + q, where
p, q are integers and 1 ≤ q ≤ k. We define HU (n; k, r) to be ((p − 1)Kr

k ∪Kr
q ) ∨r (K

r
k)

c, where
(p− 1)Kr

k is the union of p− 1 complete r-uniform hypergraphs on k vertices.

Lemma 4.1. Let n, k, r be integers such that k, r ≥ 2 and n ≥ 2k. If H = HU (n; k, r), then

(i) H is vertex-k-maximal, and

(ii) |E(H)| ≤ (nr )− (n−k
r ) + (n

k
− 2)(kr ), where the equality holds if n is a multiple of k.

Proof. (i) By Definition 2, H = ((p−1)Kr
k ∪Kr

q )∨r (K
r
k)

c. Denote the p−1 complete r-uniform
hypergraphs on k vertices by Kr

k(1), · · · ,K
r
k(p − 1). Let H0 = H[V ((Kr

k)
c)], Hp = H[V (Kr

q )]
and Hi = H[V (Kr

k(i))] for 1 ≤ i ≤ p− 1. Then H = H0 ∨r (H1 ∪ · · · ∪Hp).

Since V (H0) is a vertex-cut of size k and every component of H − V (H0) has at most
k vertices. It follows that H contains no (k + 1)-vertex-connected subhypergraphs, and so
κ(H) ≤ k. If E(Hc) = ∅, then H is vertex-k-maximal by the definition of vertex-k-maximal
hypergraphs. Thus we assume E(Hc) 6= ∅ in the following. Let e ∈ E(Hc). If e ⊆ V (H0), then
H ′ = H[V (H1) ∪ e] is isomorphic to Kr

k+r, and so κ(H ′) = k + 1. If e ⊆ V (H1) ∪ · · · ∪ V (Hp),
let e be exact-(V (Hi1), · · · , V (His))-crossing. We will prove that H ′′ = H[V (H0) ∪ V (Hi1) ∪
· · · ∪ (His)] + e is (k + 1)-vertex-connected. It suffices to prove that H ′′ − S is connected for
any S ⊆ V (H ′′) with |S| = k. If S = V (H0), then, by e is exact-(V (Hi1), · · · , V (His))-crossing,
H ′′−S is connected. So assume V ′

0 = V (H0)\S 6= ∅. Let V ′
1 = (V (Hi1)∪· · ·∪V (His))\S. Then

H ′′−S is isomorphic toH[V ′
0 ]∨rH[V ′

1 ] if S∩e 6= ∅; and H ′′−S is isomorphic to H[V ′
0 ]∨rH[V ′

1 ]+e
if S ∩ e = ∅. Since V ′

0 , V
′
1 6= ∅ and |V ′

0 ∪ V ′
1 | ≥ r, we obtain that H ′′ − S is connected. Thus

κ(H + e) ≥ k + 1 for any e ∈ E(Hc), and so H is vertex-k-maximal.
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(ii) By a direct calculation, we have |E(H)| ≤ (nr )− (n−k
r ) + (n

k
− 2)(kr ), where the equality

holds if n is a multiple of k. �

Motivated by Conjecture 1, we propose the following conjecture for vertex-k-maximal r-
uniform hypergraphs.

Conjecture 2. Let k, r be integers with k, r ≥ 2. Then for sufficiently large n, every vertex-k-
maximal r-uniform hypergraph H on n vertices satisfies |E(H)| ≤ (nr )− (n−k

r ) + (n
k
− 2)(kr ).

The following theorem confirms Conjecture 2 for the case k < r.

Theorem 4.2. Let n, k, r be integers such that k, r ≥ 2 and n ≥ 2k. If k < r, then every vertex-
k-maximal r-uniform hypergraph H on n vertices satisfies |E(H)| ≤ (nr )− (n−k

r ) + (n
k
− 2)(kr ) =

(nr )− (n−k
r ).

Proof. We will prove the theorem by induction on n. If n ≤ k + r − 1, then by H is vertex-k-
maximal, we have H ∼= Kr

n. Thus |E(H)| = (nr ) = (nr )− (n−k
r ) by n− k ≤ r − 1.

Now we assume that n ≥ k + r, and that the theorem holds for smaller value of n. Since
H is vertex-k-maximal and n ≥ k + r, we have H is not complete. Let S be a minimum
vertex-cut of H. By Lemma 2.1, |S| = k. Let C1 be a minimum component of H − S and
C2 = H − (V (C1) ∪ S). Assume H1 = H[V (C1) ∪ S] and H2 = H[V (C2) ∪ S]. Since k < r,
we have E((H[S])c) = ∅, and so H1 and H2 are both vertex-k-maximal by Lemma 2.2. Let
n1 = |V (H1)| and n2 = |V (H2)|. Then n = n1 + n2 − k and k + 1 ≤ n1 ≤ n2. We consider two
cases in the following.

Case 1. |V (C1)| = 1.

By |V (C1)| = 1, we obtain that n2 = n− 1 ≥ k+ r− 1 ≥ 2k. Since H2 is vertex-k-maximal,
by induction assumption, we have |E(H2)| ≤ (n−1

r )− (n−k−1
r ). Thus

|E(H)| = |E(H1)|+ |E(H2)| − |E(H[S])| + |EH [V (H1)− S, S, V (H2)− S]|

≤ (kr−1) + (n−1
r )− (n−k−1

r ) + (n−1
r−1 )− (kr−1)− (n−k−1

r−1 )

= (nr )− (n−k
r ).

Case 2. |V (C1)| ≥ 2.

By |V (C1)| ≥ 2, we obtain that C1 contains edges, and so |V (C1)| ≥ r. Thus n2 ≥ n1 ≥
k+ r ≥ 2k+1. Since both H1 and H2 are vertex-k-maximal, by induction assumption, we have
|E(Hi)| ≤ (ni

r )− (ni−k
r ) for i = 1, 2. Thus

|E(H)| = |E(H1)|+ |E(H2)| − |E(H[S])| + |EH [V (H1)− S, S, V (H2)− S]|

≤ (n1

r )− (n1−k
r ) + (n2

r )− (n2−k
r )

+(nr )− (n1

r )− (n2

r ) + (kr )− (n−k
r ) + (n1−k

r ) + (n2−k
r ) (By Lemma 2.3)

= (nr )− (n−k
r ).

This completes the proof. �

Combining Theorem 3.2 with Theorem 4.2, we have the following corollary.

Corollary 4.3. Let n, k, r be integers such that k, r ≥ 2 and n ≥ 2k. If k < r, then every
vertex-k-maximal r-uniform hypergraph H on n vertices satisfies |E(H)| = (nr )− (n−k

r ).
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