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THE EULERIAN DISTRIBUTION ON THE INVOLUTIONS OF THE

HYPEROCTAHEDRAL GROUP IS UNIMODAL

VASSILIS-DIONYSSIS P. MOUSTAKAS

Abstract. The Eulerian distribution on the involutions of the symmetric group is unimodal, as shown
by Guo and Zeng. In this paper we prove that the Eulerian distribution on the involutions of the
hyperoctahedral group, when viewed as a colored permutation group, is unimodal in a similar way and
we compute its generating function, using signed quasisymmetric functions.

1. Introduction and results

An involution is a permutation w ∈ Sn such that w−1 = w. When written in cycle notation, such
a permutation consists only of one-cycles and two-cycles. Let In be the set of all involutions in the
symmetric group Sn and let

In(x) =
∑

w∈In

xdes(w),

where des(w) is the number of descents (see Section 2 for missing definitions) of w ∈ Sn. For the first
few values of n we have:

In(x) =







































1, if n = 1

1 + x, if n = 2

1 + 2x+ x2, if n = 3

1 + 4x+ 4x2 + x3, if n = 4

1 + 6x+ 12x2 + 6x3 + x4, if n = 5

1 + 9x+ 28x2 + 28x3 + 9x4 + x5, if n = 6.

Strehl [17] proved that In(x) is symmetric with center of symmetry at (n − 1)/2 (conjectured by D.
Dumont). Dukes [6] proved partially that In(x) is unimodal, which was later fully established by Guo
and Zeng [9].

We will be concerned with a natural analogue of In(x) for the hyperoctahedral group Bn of signed
permutations. It is defined by the formula

IBn (x) =
∑

w∈IBn

xdesB(w)

where desB(w) is the number of descents of w ∈ Bn, when viewed as a colored permutation (see Section
2.3 for the definition) and IBn is the set of involutions in Bn. For the first few values of n we have:
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IBn (x) =







































1 + x, if n = 1

1 + 4x+ x2, if n = 2

1 + 9x+ 9x2 + x3, if n = 3

1 + 17x+ 40x2 + 17x3 + x4, if n = 4

1 + 28x+ 127x2 + 127x3 + 28x4 + x5, if n = 5

1 + 43x+ 331x2 + 632x3 + 331x4 + 43x5 + x6, if n = 6.

Désarménien and Foata [5] and later, using different methods, Gessel and Reutenauer [8] computed the
generating function

(1)
∑

n≥0

In(x)

(1− x)n+1
tn =

∑

m≥0

xm

(1− t)m+1(1− t2)
m(m+1)

2

of In(x). Our first result computes the generating function of IBn (x), using methods similar to those of
[8].

Theorem 1.1.

(2)
∑

n≥0

IBn (x)

(1− x)n+1
tn =

∑

m≥0

xm

(1− t)2m+1(1− t2)m2 .

One key ingredient of the proof of Theorem 1.1 is a Bn-analogue of the well known expansion of the
Schur symmetric functions in terms of fundamental quasisymmetric functions, obtained by Adin et al.
in [1] (discussed in Subsection 2.3).

Using the generating function obtained in Theorem 1.1 we derive a linear recurrence formula for
the sequence of coefficients of IBn (x), which we use to prove the main result of this paper, namely the
unimodality of IBn (x). It is noted that a consequence of this formula is the palindromicity of IBn (x),
which can also be proved combinatorially using the natural Bn-analogue of the Robinson-Schensted
correspondence (discussed in Subsection 2.3).

The structure of the paper is as follows. Section 2 fixes notation and reviews background material.
Section 3 proves Theorem 1.1 and obtains a linear recurrence formula for the coefficients of IBn (x).
Section 4 proves the unimodality of In(x). Section 5 discusses some remarks and open problems.

2. Background and notation

This section fixes notation and briefly reviews background material regarding the combinatorics of
(signed) permutations and Young (bi)tableaux, symmetric and unimodal polynomials and the theory
of symmetric and quasisymmetric functions which will be needed in the sequel. More information on
these topics can be found in [1], [14] and [15, Chapter 7].

For positive integer n we set [n] := {1, 2, . . . , n} and Ωn := {1,−1, 2,−2, . . . , n,−n}. We denote by
|S| the cardinality of a finite set S.
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2.1. Permutations, tableaux and unimodal polynomials. We will denote by Sn the symmetric
group of all permutations of the set [n], i.e. bijective maps w : [n] → [n]. If w = w1w2 · · ·wn ∈ Sn

and 1 ≤ i ≤ n − 1, then i is a descent of w, if wi > wi+1 (otherwise, it is an ascent). Let Des(w) be
the set of descents of w ∈ Sn and set des(w) = |Des(w)|. A statistic on Sn is called Eulerian, if it
is equidistributed with the descent number statistic. The nth Eulerian polynomial [14, Section 1.4] is
defined by the formula

An(x) =
∑

w∈Sn

xdes(w)

for every positive integer n.

Let p(x) =
∑d

k=0 akx
k be a polynomial with real coefficients. We recall that p(x) is unimodal (and has

unimodal coefficients) if there exists an index 0 ≤ j ≤ d such that a0 ≤ a1 ≤ · · · ≤ aj ≥ aj+1 ≥ · · · ≥ ad.
The polynomial p(x) is said to be log-concave (and has log-concave coefficients) if a2i ≥ ai−1ai+1 for
1 ≤ i ≤ d− 1. We will say that p(x) is symmetric (and that it has symmetric coefficients) if there exists
an integer n ≥ d such that ai = an−i for 0 ≤ i ≤ n, where ak = 0 for n > d. The center of symmetry of
p(x) is then defined to be n/2 (provided p(x) in nonzero). We say that p(x) is γ-positive if

p(x) =

⌊n/2⌋
∑

i=0

γix
i(1 + x)n−2i

for some n ∈ N and nonnegative reals γ0, γ1, . . . , γ⌊n/2⌋. Every γ-positive polynomial is symmetric and
unimodal, as a sum of symmetric and unimodal polynomials with a common center of symmetry. The nth
Eulerian polynomial is an example of a γ-positive polynomial (hence unimodal) as proved by Foata and
Schützenberger [7] (see [2, Theorem 2.1] for several combinatorial interpretations of the corresponding γ-
coefficients). Unimodal polynomials arise often in combinatorics, geometry, and algebra, see for example
[4] and [13]. The γ-positivity of p(x) often provides a more elementary proof of the unimodality of p(x).
For a comprehensive survey of γ-positivity in combinatorics and geometry we refer the reader to [2].

Given a partition of n, written as λ ⊢ n, we will denote by SYT(λ) the set of all standard Young
tableaux of shape λ. The descent set Des(Q) of a standard Young tableau Q ∈ SYT(λ), where λ ⊢ n,
is the set of all i ∈ [n − 1] for which i+ 1 appears in a lower row in Q than i does. We recall that the
Robinson-Schensted correspondence [15, Theorem 7.13.5] is a bijection from Sn to the set of pairs (P,Q)
of standard Young tableaux of the same shape and size n with the property [15, Lemma 7.23.1] that
Des(w) = Des(Q(w)) and P (w−1) = Q(w), for all w ∈ Sn. So, restricting ourselves to In the Robinson-
Schensted correspondence is a bijection from In to the set SYTn of all standard Young tableaux of size
n which preserves the descent set. Strehl [17] noticed that the map Q 7→ Qt, where Qt is the transpose
tableau of Q, i.e. the tableau whose rows coincide with the columns of Q, is a bijection from the set of
Q ∈ SYTn with des(Q) = k to the set of Q ∈ SYTn with des(Q) = n − 1 − k, thus proving that the
polynomial In(x) is symmetric with center of symmetry at (n− 1)/2.

2.2. Symmetric and quasisymmetric functions. Our notation concerning these topics follows that
of [15, Chapter 7] . Any unexplained terminology can be found there. Let x = (x1, x2, . . . ) and
y = (y1, y2, . . . ) be sequences of pairwise commuting indeterminates. We will denote by Λn (respec-
tively, QSymn) the C-vector space of homogeneous symmetric (respectively, quasisymmetric) functions
of degree n in x. The fundamental quasisymmetric function associated to S ⊆ [n− 1] is defined as

Fn,S(x) =
∑

i1≤i2≤···≤in
j∈S⇒ij<ij+1

xi1xi2 · · · xin .
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The set {Fn,S(x) : S ⊆ [n− 1]} is known to be a basis of QSymn. The following well-known proposition
expresses the Schur function sλ(x) associated to λ ⊢ n in terms of fundamental quasisymmetric functions.

Proposition 2.1. ([15, Theorem 7.19.7]) For every λ ⊢ n,

(3) sλ(x) =
∑

Q∈SYT(λ)

Fn,Des(Q)(x).

A consequence of the symmetry of the Robinson-Schensted correspondence is the following Cauchy-
type identity for Schur functions, which will be useful in Section 3.

Proposition 2.2. ([15, Corollary 7.13.9]) Let Par := ∪n≥0Par(n), where Par(n) consists of all partitions
of n. Then

(4)
∑

λ∈Par

sλ(x) =
1

∏

i≥1(1− xi)
∏

1≤i<j(1− xixj)
.

2.3. Signed permutations, bitableaux and signed quasisymmetric functions. Our notation
concerning these topics mostly follows that of [1, Section 2].

The hyperoctahedral group Bn consists of all signed permutations of length n, i.e. bijective maps
w : Ωn → Ωn such that w(a) = b implies w(−a) = −b for every a ∈ Ωn. In this paper we view the
hyperoctahedral group as a colored permutation group and it is convenient to use the total order

−1 <r −2 <r · · · <r 0 <r 1 <r 2 <r · · ·

on Z. For w ∈ Bn, we define

desB(w) = |{i ∈ {0, 1, . . . , n − 1} : w(i) >r w(i+ 1)}|

and

desB(w) = |{i ∈ {0, 1, . . . , n− 1} : w(i) > w(i + 1)}|,

where w(0) := 0 . Such an index is called a descent of w. In the first case, desB coincides with the
notion of descent for colored permutations [16, Section 2] and in the second case, desB coincides with
the notion of descent in Coxeter groups [10, Section 13.1]. The Bn-Eulerian polynomial is defined by
the formula

Bn(x) =
∑

w∈Bn

xdesB(w) =
∑

w∈Bn

xdes
B(x)

for every positive integer n. Bn-Eulerian polynomials share similar properties with the classic Eulerian
polynomials. In fact, they are γ-positive (thus unimodal) (see [2, Theorem 2.10] for combinatorial
interpretations of the corresponding γ-coefficients).

The signed descent set of w ∈ Bn, denoted sDes(w), is defined as the pair (Des(w), ǫ), where ǫ =
(ǫ1, ǫ2, . . . , ǫn) ∈ {−,+}n is the sign vector with ith coordinate equal to the sign of w(i) and Des(w)
consists of the indices i ∈ [n−1] for which either ǫi = + and ǫi+1 = −, or ǫi = ǫi+1 and |w(i)| > |w(i+1)|.
For w ∈ Bn we have desB(w) = |Des(w)|, if ǫ1 = + and desB(w) = |Des(w)|+ 1, if ǫ1 = −.

A bipartition of a positive integer n, written (λ, µ) ⊢ n, is any pair (λ, µ) of integer partitions of total
sum n. A standard Young bitableau of shape (λ, µ) ⊢ n and size n is any pair Q = (Q+, Q−) of tableaux
which are strictly increasing along rows and columns, such that Q+ has shape λ, Q− has shape µ and
every element of [n] appears exactly once as an entry of Q+ or Q−. The tableaux Q+ and Q− are called
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the parts of Q. We will denote by SYT(λ, µ) the set of all standard Young bitableaux of shape (λ, µ).
The signed descent set of Q ∈ SYT(λ, µ), denoted sDes(Q), is defined as the pair (Des(Q), ǫ), where
ǫ = (ǫ1, ǫ2, . . . , ǫn) ∈ {−,+}n is the sign vector with ith coordinate equal to the sign of the part of Q in
which i appears and Des(Q) is the set of indices i ∈ [n − 1] for which either ǫi = + and ǫi+1 = −, or
ǫi = ǫi+1 and i+ 1 appears in Q in a lower row than i. For Q ∈ SYT(λ, µ) we let desB(Q) = |Des(Q)|,
if ǫ1 = + and desB(Q) = |Des(Q)|+ 1, if ǫ1 = −.

Remark 2.3. Our definitions of the signed descent set of a signed permutation and a standard Young
bitableau are slightly different from, but equivalent to, the ones given in [1, Definitions 2.2 and 2.3].

The Robinson-Schensted correspondence has a natural Bn-analogue. The Robinson-Schensted corre-
spondence of type B, as described in [12, Section 6] and [1, Section 5], is a bijection from Bn to the set of
pairs (PB , QB) of standard Young bitableaux of the same shape and size n such that [1, Proposition 5.1]
PB(w−1) = QB(w) and sDes(w) = sDes(QB(w)), for all w ∈ Bn. So, restricting ourselves to signed
involutions, the Robinson-Schensted correspondence of type B is a bijection from IBn to the set SYBn

of all standard Young bitableaux of size n which preserves the signed descent set.

Proposition 2.4. The polynomial IBn (x) is symmetric with center of symmetry at n/2.

Proof. It suffices to describe a bijection from the set of all standard Young bitableaux Q with desB(Q) =
k to the set of all standard Young bitableaux Q with desB(Q) = n − k. Given a standard Young
bitableau Q = (Q+, Q−), we define its transpose Qt = ((Qt)+, (Qt)−) by setting (Qt)+ := (Q−)t and
(Qt)− := (Q+)t. We leave it to the reader to verify that the map Q 7→ Qt has the required properties. �

Different Bn-analogues of quasisymmetric functions have been suggested. The Bn-analogue of the
fundamental quasisymmetric functions that we use is the one introduced by Poirier [11, Section 3]. For
w ∈ Bn let

(5) Fw(x,y) =
∑

i1≤i2≤···≤in
j∈Des(w)⇒ij<ij+1

zi1zi2 · · · zin

where zij = xij if ǫj = + and zij = yij if ǫj = −. For a standard Young bitableau Q, we can similarly
define FQ(x,y) as in (5) with w replaced by Q. The following Bn-analogue of Proposition 2.1, proved
by Adin et al. [1, Proposition 4.2], plays a key role to the proof of Theorem 1.1.

Proposition 2.5. ([1, Proposition 4.2]) For all partitions λ, µ

(6) sλ(x)sµ(y) =
∑

Q∈SYB(λ,µ)

FQ(x,y).

3. Generating function for IBn (x)

This section provides a proof of (1) and proves Theorem 1.1. Then, using Theorem 1.1, it derives a
linear recurrence formula for the coefficients of IBn (x).

Proof of (1). For a power series f(x), m ∈ Z>0 and indeterminate t we write

f(tm) = f(x1 = x2 = · · · = xm = t, xm+1 = xm+2 = · · · = 0).
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For S ⊆ [n− 1] we have (see the discussion before Proposition 7.19.12 in [15])

∑

m≥1

Fn,S(1
m)xm−1 =

x|S|

(1− x)n+1
.

Thus, letting S = Des(w), we get

(7)
∑

m≥1

Fn,Des(w)(1
m)xm−1 =

xdes(w)

(1− x)n+1

for every w ∈ Sn. Taking the sum over all w ∈ In, (7) becomes

In(x)

(1− x)n+1
=
∑

w∈In

∑

m≥1

Fn,Des(w)(1
m)xm−1 =

∑

m≥1

∑

Q∈SYTn

Fn,Des(Q)(1
m)xm−1

which by (3) becomes
In(x)

(1− x)n+1
=
∑

m≥1

∑

λ⊢n

sλ(1
m)xm−1.

Then, using (4), we get

∑

n≥0

In(x)

(1− x)n+1
tn =

∑

m≥1

∑

λ∈Par

sλ(1
m)xm−1t|λ|

=
∑

m≥1

∑

λ∈Par

sλ(t
m)xm−1

=
∑

m≥1

xm−1

(1− t)m(1− t2)(
m

2 )
.

�

The following lemma, stated without proof as Equation (43) in [2], will be used in the proof of
Theorem 1.1. For a power series f(x,y), m ∈ Z>0 and indeterminates p, q we write f(pm, qm), where
x1 = x2 = · · · = xm = p, xm+1 = xm+2 = · · · = 0 and y1 = y2 = · · · = ym = q, ym+1 = ym+2 = · · · = 0.

Lemma 3.1. For w ∈ Bn we have

(8)
∑

m≥1

Fw(1
m, 01m−1)xm−1 =

xdesB(w)

(1− x)n+1
.

Proof. Let w ∈ Bn. First suppose that w(1) > 0. Then

Fw(1
m, 01m−1) =

∑

1≤i1≤i2≤···≤in≤m
j∈Des(w)⇒ij<ij+1

1 =
∑

1≤i′1≤i′2≤···≤i′n≤m−|Des(w)|

1.

But, in this case desB(w) = |Des(w)|. So

Fw(1
m, 01m−1) =

∑

1≤i′1≤i′2≤···≤i′n≤m−desB(w)

1 = [xm−1]
xdesB(w)

(1− x)n+1
,
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where [xn]f(x) is the coefficient of xn in the formal power series f(x), and (8) follows. Now suppose
w(1) < 0. Then

Fw(1
m, 01m−1) =

∑

1<i1≤i2≤···≤in≤m
j∈Des(w)⇒ij<ij+1

1 =
∑

1≤i′1≤i′2≤···≤i′n≤m−|Des(w)|−1

1.

But, in this case, desB(w) = |Des(w)|+ 1 and so

Fw(1
m, 01m−1) =

∑

1≤i′1≤i′2≤···≤i′n≤m−desB(w)

1 = [xm−1]
xdesB(w)

(1− x)n+1

and (8) follows. �

Proof of Theorem 1.1. Taking the sum over all w ∈ IBn , (8) becomes

IBn (x)

(1− x)n+1
=
∑

w∈IBn

∑

m≥1

Fw(1
m, 01m−1)xm−1 =

∑

m≥1

∑

Q∈SYBn

FQ(1
m, 01m−1)xm−1.

By (6), we have

IBn (x)

(1− x)n+1
=
∑

m≥1

∑

(λ,µ)⊢n

sλ(1
m)sµ(1

m−1)xm−1

and using (4) twice we conclude that

∑

n≥0

IBn (x)

(1− x)n+1
tn =

∑

m≥1

∑

λ,µ∈Par

sλ(1
m)sµ(1

m−1)xm−1 t|λ|+|µ|

=
∑

m≥1

(

∑

λ∈Par

sλ(t
m)

)





∑

µ∈Par

sµ(t
m−1)





=
∑

m≥1

xm−1

(1− t)m(1− t2)(
m

2 )(1− t)m−1(1− t2)(
m−1

2 )

=
∑

m≥1

xm−1

(1− t)2m−1(1− t2)(m−1)2
.

�

Let IBn (x) =
∑n

k=0 I
B
n,kx

k. The following proposition provides a linear recurrence formula for the

sequence IBn,0, I
B
n,1, . . . , I

B
n,n for every n ∈ Z>0. For a similar formula regarding the coefficients of In(x),

see [9, Theorem 2.2].

Proposition 3.2. For n ≥ 3 and k ≥ 0, the numbers IBn,k satisfy the following recurrence formula:

nIBn,k = (2k + 1)IBn−1,k + (2n − 2k + 1)IBn−1,k−1 + (n− 1 + 2k(k + 1))IBn−2,k

+ (2(n − 1) + 4(n− k − 1)(k − 1))IBn−2,k−1

+ ((2n − 3)(n − 1) + 2(k − 2)(k − 2n+ 1))IBn−2,k−2(9)
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where IBn,k = 0 for every k < 0.

Proof. Extracting the coefficients of tn of both sides in (2) we get

(10)
IBn (x)

(1− x)n+1
=
∑

m≥0

⌊n/2⌋
∑

j=0

(

m2 + j − 1

j

)(

2m+ n− 2j

n− 2j

)

xm.

Let

r(n,m) =

⌊n/2⌋
∑

j=0

(

m2 + j − 1

j

)(

2m+ n− 2j

n− 2j

)

for all n,m ≥ 0. Clearly,
∑

n≥0 r(n,m)tn = (1−t)−(2m+1)(1−t2)−m2
and taking derivatives with respect

to t we have

∑

n≥1

nr(n,m)tn−1 =
(2m2 + 2m+ 1)t+ 2m+ 1

1− t2

∑

n≥0

r(n,m)tn.

Extracting the coefficients of tn in the expression above we obtain the following recurrence formula for
the numbers r(n,m):

(11) nr(n,m) = (2m+ 1)r(n − 1,m) + (2m2 + 2m+ n− 1)r(n − 2,m),

for every n ≥ 3. Substituting (11) to (10) we have

nIBn (x)

(1− x)n+1
= 2x

(

IBn (x)

(1− x)n+1

)′

+
IBn−1(x)

(1− x)n
+ 2x2

(

IBn−2(x)

(1− x)n−1

)′′

+ 4x

(

IBn−2(x)

(1− x)n−1

)′

+ (n− 2)
IBn−2(x)

(1− x)n−1

or

nIBn (x) = (2n− 1)xIBn−1(x) + IBn−1(x)− 2x2IB
′

n−1(x) + 2xIB
′

n−1(x)

+ (2n− 3)(n − 1)x2IBn−2(x) + 2(n − 1)xIBn−2(x) + (n− 1)IBn−2(x)

− 4(n− 2)x3IB
′

n−2(x) + 4(n − 3)x2IB
′

n−2(x) + 4xIB
′

n−2(x)

+ 2x4IB
′′

n−2(x)− 4x3IB
′′

n−2(x) + 2x2IB
′′

n−2(x).

Comparing the coefficients of xk in both sides of the above identity, we obtain the desired formula
(9). �

Remark 3.3. Another proof of Proposition 2.4 can be obtained from Proposition 3.2 as follows. The
right-hand side of (9) is invariant under the substitution k → n − k provided the sequences IBn−1,k and

IBn−2,k are symmetric. Thus, by induction the proof follows.
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4. Unimodality of IBn (x)

This section proves the main result of this paper, namely the unimodality of IBn (x) for every positive
integer n. The method is similar to that of Guo and Zeng [9] who proved the unimodality of In(x).
First, we recall the following observation of Guo and Zeng [9, Lemma 3.1].

Lemma 4.1. Let x0, x1, . . . , xn and a0, a1, . . . , an be real numbers such that x0 ≥ x1 ≥ · · · ≥ xn ≥ 0
and a0 + a1 + · · ·+ an ≥ 0 for all 0 ≤ k ≤ n. Then

a0x1 + a1x1 + · · ·+ anxn ≥ 0.

By Proposition 2.4 the sequence IBn,0, I
B
n,1, . . . , I

B
n,n is symmetric. So, to prove its unimodality, it

suffices to show that IBn,k ≥ IBn,k−1 for every 0 ≤ k ≤ ⌊n/2⌋.

Theorem 4.2. The sequence IBn,0, I
B
n,1, . . . , I

B
n,n is unimodal for every n ∈ Z>0.

Proof. We proceed by induction on n. For n ≤ 2 we saw in Section 1 that the statement is true. Suppose
that n > 2 and that the sequences IBn−1,k and IBn−2,k are unimodal. Substituting k → k − 1 in (9) we
obtain

nIBn,k−1 = (2k − 1)IBn−1,k−1 + (2n − 2k + 3)IBn−1,k−2 + (n− 1 + 2k(k − 1))IBn−2,k−1

+ (2(n − 1) + 4(n− k)(k − 2))IBn−2,k−2

+ ((2n − 3)(n − 1) + 2(k − 3)(k − 2n))IBn−2,k−3.(12)

Subtracting (12) from (9) we get

n(IBn,k − IBn,k−1) = A0I
B
n−1,k +A1I

B
n−1,k−1 +A2I

B
n−1,k−2

+D0I
B
n−2,k +D1I

B
n−2,k−1 +D2I

B
n−2,k−2 +D3I

B
n−2,k−3,(13)

where

A0 = 2k + 1 D1 = 4nk − 3n− 6k2 + 2k + 3

A1 = 2n − 4k + 2 D2 = 2n2 − 8nk + 9n+ 6k2 − 10k + 1

A2 = −2n+ 2k − 3 D3 = −2n2 + 4nk − 7n − 2k2 + 6k − 3.

D0 = n+ 2k2 + 2k − 1

By the induction hypothesis we know that IBn−1,k ≥ IBn−1,k−1 ≥ IBn−1,k−2 for every 0 ≤ k ≤ ⌊n/2⌋.

Also, A0 = 2k + 1 ≥ 0, A0 + A1 = 2(n − k) + 3 ≥ 0 and A0 + A1 + A2 = 0. Thus, by Lemma 4.1, it
follows that

(14) A0I
B
n−1,k +A1I

B
n−1,k−1 +A2I

B
n−1,k−2 ≥ 0

for every 0 ≤ k ≤ ⌊n/2⌋. It remains to show that

(15) D0I
B
n−2,k +D1I

B
n−2,k−1 +D2I

B
n−2,k−2 +D3I

B
n−2,k−3 ≥ 0.

Indeed, combining (14) and (15) yields IBn,k − IBn,k−1 ≥ 0 for every 0 ≤ k ≤ ⌊n/2⌋ and the proof is
completed.
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We distinguish two cases. In the first case, we assume that 1 ≤ k ≤ ⌊n/2⌋ − 1. By the induction
hypothesis we know that IBn−2,k ≥ IBn−2,k−1 ≥ IBn−2,k−2 ≥ IBn−2,k−3. Also,

D0 = n+ 2k2 + 2k − 1 ≥ 0

D0 +D1 = 2(k − 1)(n − 2k) + 2 ≥ 0

D0 +D1 +D2 = 2n(n− 2k) + n+ 6(n− k) + 2k2 + 3 ≥ 0

D0 +D1 +D2 +D3 = 0.

Thus, by Lemma 4.1, (15) follows. For the second case, suppose that k = ⌊n/2⌋. If n is odd, then by
the induction hypothesis and symmetry we have

IBn−2,k = IBn−2,k−1 ≥ IBn−2,k−2 ≥ IBn−2,k−3

and from the previous calculations (15) follows. If n is even, then by the induction hypothesis and
symmetry we have

IBn−2,k ≥ IBn−2,k−1 = IBn−2,k−2 ≥ IBn−2,k−3.

In this case, we notice that D1 = 1
2(n

2 − 4n + 6) = 1
2 ((n− 2)2 + 2) > 0. Therefore, by Lemma 4.1 and

the previous calculations, (15) follows. �

5. Remarks and open problems

This section discusses further properties of IBn (x). Barnabei et al. [3, Theorem 7] proved that In(x)
is not log-concave, answering negatively a conjecture due to Brenti. The same holds for IBn (x).

Proposition 5.1. The sequence IBn,0, I
B
n,1, . . . , I

B
n,n is not log-concave in general.

Proof. It is known that the product of a unimodal and log-concave polynomial with a log-concave
polynomial is log-concave as well (see [3, Proposition 6]). Formula 10 shows that the polynomial

r(x) =
∑n

k=0 r(n, k)x
k is equal to the product of IBn (x) and q(x) =

∑n
k=0

(

n+k
k

)

xk. Clearly, q(x) is

log-concave. So, if IBn (x) was log-concave then r(x) has to be log-concave since IBn (x) is unimodal by
Theorem 4.2. But, r(x) is not log-concave in general. For instance,

r(89, 2)2 = 113789153706560010000 < 114890217312335629500 = r(89, 1)r(89, 3).

�

Guo and Zeng [9, Conjecture 4.1] conjectured that In(x) is γ-positive. The conjecture remains
unsolved as far as we know. We notice that

IBn (x) =







































1 + x, if n = 1

(1 + x)2 + 2x, if n = 2

(1 + x)3 + 6x(1 + x), if n = 3

(1 + x)4 + 13x(1 + x)2 + 8x2, if n = 4

(1 + x)5 + 23x(1 + x)3 + 48x2(1 + x), if n = 5

(1 + x)6 + 37x(1 + x)4 + 168x2(1 + x)2 + 56x3, if n = 6.

The above calculations and the similarity between In(x) and IBn (x) suggest that IBn (x) may be γ-positive
for every n (see also [2, Section 2.1.5]).
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Remark 5.2. As mentioned in [2, Section 2.1.5], the definition of IBn (x) is presumably but not obviously
unaffected when desB is replaced by desB . We have confirmed it for n ≤ 5.
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