
On rigidity of unit-bar frameworks

József Solymosi Ethan White
Department of Mathematics

The University of British Columbia
Vancouver, BC

Canada V6T 1Z2

August 14, 2018

Abstract

We show the existence of infinitesimally rigid bipartite unit-bar frameworks in Rd.
We also construct unit-bar frameworks with girth up to 12 that are infinitesimally rigid
in the plane. This answers problems proposed by Maehara.

1 Introduction

The unit distance problem was posed by Paul Erdős in 1946: how many pairs of n points in
the plane can be unit distance apart? [3] Erdős gave a construction that proved there are at
least n1+o(1) such pairs, and he conjectured that this is the true order of magnitude. This is
one of the central open problems in discrete geometry. Understanding point configurations
with many unit distances is an important problem.

A framework in Rd is a graph with vertices that are distinct points in Rd, and edges that
are line segments between vertices. We refer to the vertices of a framework as joints and
edges as bars. A framework is flexible if there is a continuous motion of its joints, keeping
bar lengths constant, while changing the distance between two non-adjacent joints. If a
framework is not flexible, it is rigid. For example, in the plane a square can be deformed
into a family of rhombi, and so it is flexible. On the other hand, the shape of a triangle is
uniquely determined by the lengths of its three sides, and so it is rigid.

An infinitesimal motion of Rd is a vector field f : Rd → Rd such that for all pairs of
points x, y ∈ Rd:

(f(x)− f(y)) · (x− y) = 0. (1)

Let F be a framework in Rd with joints X. An infinitesimal motion of the framework
F is a vector field g : X → Rd that satisfies (1) for all bars xy in F . If every infinitesimal
motion g of the framework F is of the form f |X for some infinitesimal motion f of Rd, then
we say F is infinitesimally rigid, otherwise F is infinitesimally flexible.

1

ar
X

iv
:1

80
8.

04
00

5v
1

 [
m

at
h.

C
O

]
 1

2
A

ug
 2

01
8

A framework possessing a continuous motion also admits a smooth motion, see [1]. The
initial velocity of the joints in a framework undergoing a smooth continuous motion is an
infinitesimal motion. Hence flexible frameworks are infinitesimally flexible and infinitesimally
rigid frameworks are rigid.

A unit-bar framework has bars of only one length. Constructing rigid unit-bar frameworks
can be done by attaching equilateral triangles, but determining rigid triangle-free unit-bar
frameworks is harder. Maehara constructed a rigid bipartite unit-bar framework in [6] with
353 joints and 676 bars. His construction is rigid, but not infinitesimally rigid. In [8]
Maehara and Chinen find an infinitesimally rigid triangle-free unit-bar framework with 22
joints and 41 bars. Their framework contains pentagons. In [7] and [8] the authors propose
the following problems:

i. Find an infinitesimally rigid bipartite unit-bar framework in the plane

ii. Find a general method to construct a triangle-free, infinitesimally rigid unit-bar frame-
work in Rd.

In this paper we solve these problems. In Section 2 we show a method for constructing
infinitesimally rigid bipartite unit-bar frameworks in Rd. In Section 3 we construct infinites-
imally rigid bipartite unit-bar frameworks in the plane with girth up to 12. Our calculations
in Section 3 rely on computers. For sake of completeness we provide the computer code in
Appendix 2. The python files of our programs have been uploaded alongside this paper.

2 Infinitesimally rigid unit-bar frameworks in Rd

In our constructions we use variants of the knight’s graph. The knight’s graph has a vertex
for each square on a chessboard and edges that represent legal moves the knight.

Definition 1. The m × n knight’s framework in R2 has a joint at all integer coordinates
(x, y) where 0 ≤ x ≤ m − 1 and 0 ≤ y ≤ n − 1. Two joints (x1, y1), (x2, y2) have a bar
between them if |x1 − x2| = 1 and |y1 − y2| = 2, or if |x1 − x2| = 2 and |y1 − y2| = 1. We
will denote the m×m knight’s framework by Nm.

The knight’s framework is a unit-bar framework. Two joints (x1, y1), (x2, y2) are adjacent
only if x1 + y1 and x2 + y2 have different parity, and so the framework is bipartite. An
infinitesimally rigid framework in the plane on v joints must have at least 2v − 3 bars [4].
The m × n knight’s framework has 2(m − 1)(n − 2) + 2(m − 2)(n − 1) bars. It is easy to
check that the smallest m× n knight’s framework with enough edges to be rigid is the 5× 5
framework.

The infinitesimal motions of Rd arise from the initial velocities of smooth rigid motions,
i.e. rotations and translations. As a result, the space of infinitesimal motions of Rd has
dimension

(
d+1
2

)
. A framework F is infinitesimally rigid if and only the space of infinitesimal

motions of F has dimension
(
d+1
2

)
.

2

Figure 1: 5× 5 knight framework

Theorem 2. The 5× 5 knight’s framework is infinitesimally rigid.

The reader can skip the proof and refer to the program of Appendix 2, where the rigidity of
N5 is verified using the rigidity matrix. The rank of the rigidity matrix can also be computed
without computer aid; however, it is a system of 50 variables. The following lemma reduces
the number of variables and facilitates a shorter by-hand proof of Theorem 2.

Lemma 3. (Rhombus Lemma) Let p1p2p3p4 be a framework of a non-degenerate rhombus
in the plane. If v1, v2, v3, v4 are the velocity vectors associated with any infinitesimal motion
of the rhombus, then v1 + v3 = v2 + v4.

Proof. Put x = p2 − p1 = p3 − p4 and y = p3 − p2 = p4 − p1. We have:

(v2 − v1) · x = 0,

(v3 − v2) · y = 0,

(v4 − v3) · x = 0,

(v1 − v4) · y = 0.

The first and third equation give (v1 + v3) · x = (v2 + v4) · x, while the second and fourth
give (v1 + v3) · y = (v2 + v4) · y. Since x and y are linearly independent, we have the desired
result.

If f : Rd → Rd is a function, let fk(x) denote the value in the kth coordinate of f(x).

Proof of Theorem 2. Let the joints of N5 from left to right, top to bottom be p1, p2, . . . , p25.
Consider all infinitesimal motions f of N5 such that

f(p13) = f1(p2) = 0. (2)

This specifies three degrees of freedom of f , so the dimension of the space of infinitesimal
motions of N5 that satisfy (2) is at most three less than the dimension of the space of

3

all infinitesimal motions of N5. Since the space of infinitesimal motions of the plane has
dimension three, if all infinitesimal motions f of N5 that satisfy (2) are identically zero then
N5 is infinitesimally rigid. Let f be an infinitesimal motion of N5 satisfying (2) and put
f(pi) = vi for all i. Since p2p13 is a bar we have that v2 = 0. Using Lemma 3, we are able
to determine all velocities vi homogenously in terms of the velocities v4, v6, v10, v20, and v22.
The first equation in every line below follows from an application of Lemma 3 to a rhombus
in N5, a second equation in any line is a substitution of a previous equation. We have:

v3 = v6 + v10

v11 = v22

v15 = v4 + v24

v23 = v16 + v20

v7 = v4 + v16

v9 = v20

v17 = v6 + v24

v19 = v10 + v22

v8 = v11 + v19 − v22 = v10 + v22 (3)

v8 = v15 + v17 − v24 = v4 + v6 + v24 (4)

v12 = v9 + v23 − v20 = v16 + v20 (5)

v12 = v3 + v19 − v10 = v6 + v10 + v22 (6)

v14 = v3 + v17 − v6 = v6 + v10 + v24 (7)

v14 = v7 + v23 − v16 = v4 + v16 + v20 (8)

v18 = v7 + v15 − v4 = v4 + v16 + v24 (9)

v18 = v9 + v11 − v2 = v20 + v22 (10)

v1 = v8 + v12 − v19 = v16 + v20

v5 = v8 + v14 − v17 = 2v10 + v22

v21 = v12 + v18 − v9 = v4 + 2v16 + v24

v25 = v14 + v18 − v7 = v6 + v10 + 2v24

v11 + v15 = v8 + v18 ⇒ v16 = −v10
v3 + v23 = v12 + v14 ⇒ v24 = 0.

Equating equations (3),(4) and (9),(10) gives

v10 + v22 = v4 + v6 + v24 (11)

v4 + v16 + v24 = v20 + v22.

Adding the above equations gives v6 + v20 = v10 + v16 = 0. Equating equations (5),(6) and
(7),(8) gives

v16 + v20 = v6 + v10 + v22 (12)

v6 + v10 + v24 = v4 + v16 + v20.

4

Adding the above equations gives v4 + v22 = v24 = 0. Substituting into (11) and (12) we
obtain:

v10 − v4 = v4 + v6

−v10 − v6 = v6 + v10 − v4.

The above system gives v4 = 4
5
v10 and v6 = −3

5
v10. Now we see that all velocities are scalar

multiples of v10. Since p10p13 is a bar we have that v10 · (p10 − p13) = 0. Since p3p10 is a bar
we have that (v3 − v10) · (p3 − p10) = v6 · (p3 − p10) = −3

5
v10 · (p3 − p10) = 0. The directions

of the bars p10p13 and p3p10 are linearly independent, and so v10 = 0. It follows that all
velocities are zero and N5 is infinitesimally rigid.

The framework obtained by deleting the corner joints and one degree three joint from the
5 × 5 knight’s framework is also infinitesimally rigid. This framework has 20 joints and 37
edges. The rigidity of this framework can be verified using a similar approach to the above,
or by calculating the rank of its rigidity matrix. Every joint in the 5× 6 knight’s framework
that is not in the 5×5 framework has two bars in linearly independent directions connecting
it to the 5× 5 framework, and so the 5× 6 framework is infinitesimally rigid. Inductively we
see that the m× n knight’s framework is infinitesimally rigid for all m,n ≥ 5. The knight’s
framework can be extended to higher dimensions.

Definition 4. An n-lattice framework in Rd has joints of the form (x1, . . . , xd), where xi ∈
{0, 1, . . . , n− 1}. Let F be an n-lattice framework in Rd. Define Fi,c to be the subframework
of F induced by all joints in F of the form (x1, . . . , xi−1, c, xi+1, . . . , xd). The framework
Fi,c can be embedded in Rd−1 by contracting the ith coordinate of all joints. The resulting
framework is an n-lattice framework in Rd−1, call it F ′i,c.

The frameworks Fi,c are slices of the framework F . In Figure 2, the slice F1,1 is infinites-
imally flexible, but F ′1,1 is infinitesimally rigid.

(1, 1, 0)

(1, 0, 1)

(a) A 2-lattice framework F in R3 (b) The slice F1,1

Figure 2

5

Lemma 5. Let y, x1, x2, . . . , xn be joints of a framework F such that yxi is a bar for all i.
Let f be an infinitesimal motion of F such that f(xi) = 0 for all i. If z is in the span of
{y − x1, . . . , y − xn}, then f(y) · z = 0.

Proof. Let z = a1(y−x1)+ · · ·+an(y−xn) with ai ∈ R. Since yxi is an edge, (f(y)− f(xi)) ·
(y − xi) = f(y) · (y − xi) = 0 for all i. Hence

f(y) · z = a1f(y) · (y − x1) + · · ·+ anf(y) · (y − xn) = 0.

When the dimension is unambiguous, we will use the notation ek to represent the standard
basis vector consisting of a 1 in the kth entry and zeroes elsewhere. The vector ek will
represent both the direction, and the joint with the corresponding coordinates. The context
will make the use clear.

Theorem 6. Let F be an n-lattice framework in Rd, d ≥ 3, and n ≥ 2. If for all 1 ≤ i ≤ d
and 0 ≤ c ≤ n − 1, the framework Fi,c has bars between all pairs of joints, then F is
infinitesimally rigid.

Proof. Consider all infinitesimal motions f of F such that

f(0) = 0, and fi(ek) = 0 for 1 ≤ k ≤ d− 1 and k + 1 ≤ i ≤ d. (13)

The restrictions of (13) specify d+(d−1)+ . . .+1 =
(
d+1
2

)
degrees of freedom of f . Hence the

space of infinitesimal motions of F that satisfy (13) is at most
(
d+1
2

)
less than the dimension

of the space of all infinitesimal motions of F . It follows that if the only infinitesimal motions
of F that satisfy (13) are identically zero, then F is infinitesimally rigid.

Let f be an infinitesimal motion of F satisfying (13). Note that e10 is a bar of F and
e1 is in the span of {e1 − 0}. Since f(0) = 0, by Lemma 5 we see that f(e1) · e1 = 0 and
so f(e1) = 0. Notice ei0 is a bar for all 1 ≤ i ≤ d. For all j 6= i, since d ≥ 3, we have
that eiej is also a bar. A simple induction and Lemma 5 gives the result f(ei) = 0 for all
1 ≤ i ≤ d. For any joint x ∈ Fi,0 we have that x0 and xej are bars for all j 6= i. Lemma 5
gives fj(x) = 0 for all j 6= i. Hence if a joint x has a zero in two or more coordinates,
f(x) = 0. Let y = (y1, . . . , yd) be a joint of F such that yi 6= 0 for all i. Let y(i) be the
joint with yi in the ith coordinate and zeros in all other coordinates. Notice that yy(i) is a
bar for all 1 ≤ i ≤ d. Furthermore, since d ≥ 3, y(i) has a zero in at least two coordinates,
and so f(y(i)) = 0. It is easy to check that the span of {y − y(i)}1≤i≤d is all of Rd, and so
by Lemma 5, f(y) = 0. Finally, let x = (x1, . . . , xd) be a joint of F such that xi = 0 and
xj 6= 0 for j 6= i. Let z be the joint (x1, . . . , xi−1, 1, xi+1, . . . , xd). The existence of z follows
from n ≥ 2. Since xz is a bar:

(f(x)− f(z)) · (x− z) = (f(x)− f(z)) · ei = 0.

Since all coordinates of z are nonzero, f(z) = 0, and so fi(x) = 0. It follows that f ≡ 0, and
F is an infinitesimally rigid framework.

6

Corollary 7. Let F be an n-lattice framework in Rd, d ≥ 3 and n ≥ 2. If for all 1 ≤ i ≤ d,
and 0 ≤ c ≤ n− 1, the framework F ′i,c is infinitesimally rigid, then F is infinitesimally rigid.

Proof. Let 1 ≤ i ≤ d and 0 ≤ c ≤ ni − 1 be arbitrary. Any infinitesimal motion f of F
induces an infinitesimal motion fi,c of Fi,c in the following way. For any joint x ∈ F ′i,c let x̂
denote the corresponding joint in Fi,c, and put

fi,c(x) = [f1(x̂) . . . fi−1(x̂) fi+1(x̂) . . . fd(x̂)]t .

It is clear that this defines fi,c as a vector field in Rd−1. Furthermore, for any bar xy of F ′i,c,
since f is an infinitesimal motion:

(fi,c(x)− fi,c(y)) · (x− y) = (f(x̂)− f(ŷ)) · (x̂− ŷ) = 0. (14)

It follows that fi,c is an infinitesimal motion. Notice that the first equality in (14) holds for
all x, y ∈ F ′i,c, and not just bars. Since F ′i,c is infinitesimally rigid we see that both equalities
in (14) holds for all x, y ∈ Fi,c. Hence all infinitesimal motions of F are infinitesimal motions
of the framework described in Theorem 6, and so F is infinitesimally rigid.

Definition 8. The n×· · ·×n knight’s framework in Rd is the n-lattice framework with bars
between two joints x and y if the coordinates of x and y are equal except in two places where
they differ by 1 and 2.

All bars in the knight’s framework have length
√

5. The parity of the sum of the coor-
dinates of two adjacent joints is different, the same as in the two dimensional case. Hence
the knight’s framework in Rd is bipartite, and in particular, triangle free. A consequence of
Theorem 2 and Corollary 7 is the following.

Theorem 9. The 5× · · ·× 5 knight’s framework in Rd, for d ≥ 2, is an infinitesimally rigid
bipartite unit-bar framework.

Using a computer and the rigidity matrix we noticed that the 4×4×4 knight’s framework
is infinitesimally rigid. The computer code of this program can be found in Appendix 1. It
follows that the 4 × · · · × 4 knight’s framework in Rd for d ≥ 3 is also infinitesimally rigid
by Corollary 7.

3 Unit-bar bipartite frameworks with higher girth

Erdős’ construction of many unit distances motivated our approach to finding infinitesimally
rigid unit-bar frameworks with larger girth. We consider subframeworks of an n× n lattice
of joints with bars of length

√
m, where m can be written as the sum of two squares in

several ways. For odd m, two numbers summing to m have different parity. Hence the sum
of the coordinates of adjacent joints is different, and the framework is bipartite. One can
show that for even m a framework constructed in this way is also bipartite, see for example

7

[2]. The following algorithm gives an outline of how we construct our frameworks.

Algorithm:
Input: The size n of the square lattice, an integer m that can be written as the sum of two
squares in several ways, and the desired girth 2g.
Output: A bipartite unit-bar framework with girth at least 2g.

(1) Determine all ordered pairs of integers (a, b) where a2 + b2 = m and either b > 0, or
b = 0 and a > 0. These are the bar directions, call the set D.

(2) Add the joints to the framework, they are at the integer coordinates (x, y) with 0 ≤
x, y ≤ n− 1.

(3) Find a permutation σ of the joints. For each joint x make a list D(x) = D of all possible
directions of bars.

(4) In the order described by σ visit each joint x and do the following.

i. Randomly select an untried bar direction d from D(x), let y = x+ d.

ii. If y is a joint in the framework then determine all joints within distance g − 1 of x
and distance g − 2 of y, call these sets Nx and Ny.

iii. If Nx and Ny are disjoint then add the bar xy to the framework.

iv. Remove d from D(x).

(5) Repeat (4) until D(x) is empty for all joints x, this will take |D| loops.

(6) Remove joints with degree less than three. Output the framework.

Implementation: We used Python to construct frameworks according to the above
algorithm. We tested the infinitesimal rigidity of the outputted framework using the rigidity
matrix. The infinitesimal motions of a framework F in Rd can be described by the nullspace of
the rigidity matrix of F . The rigidity matrix of a framework with v joints has vd columns. If
the nullspace of the rigidity matrix has dimension

(
d+1
2

)
then the framework is infinitesimally

rigid. Equivalently, if the rank of the rigidity matrix is vd −
(
d+1
2

)
, then the framework is

infinitesimally rigid. For more on the rigidity matrix see [4]. We used built-in functions
of Python and Matlab to determine the rank of the rigidity matrix. Not all frameworks
constructed according to our algorithm are rigid. For each girth, we experimented with
different m and n, and used many random trials. The following table describes the smallest
infinitesimally rigid framework of each girth we found.

8

Girth Size n m # of Joints # of Edges # of Trials

4 5 5 = 12 + 22 21 40 1
6 9 5 = 12 + 22 54 105 16000000

8 23
65 = 12 + 82

= 42 + 72 436 869 600000

10 53

1105 = 42 + 332

= 92 + 332

= 122 + 312

= 232 + 242

2467 4931 5000

12 147

5525 = 72 + 742

= 142 + 732

= 222 + 712

= 252 + 702

= 412 + 622

= 502 + 552

18924 37845 10

The Python script we used to construct frameworks and test rigidity is in Appendix 2.
For the frameworks with girth 4,6,8 and 10 we used Matlab’s rank function to double-check
the rank calculations of Python. The Matlab function ‘svds’ computed the smallest singular
value of the rigidity matrix of our girth 12 framework to be 0.0005. This value was repro-
duced upon decreasing the convergence tolerance and increasing the number of iterations of
the svd algorithm. This calculation indicates that all singular values of the rigidity matrix
are nonzero and the framework is infinitesimally rigid.

Below we draw the frameworks in the above table with girth 4,6, and 8. For these
frameworks we also record their adjacency matrices below by representing ones with black
squares and zeros with white squares. For the frameworks with girth 10 and 12 we record
their adjacency matrices using darker shading to represent higher density of edges.

(a) Framework (b) Adjacency matrix

Figure 3: Girth 4

9

(a) Framework (b) Adjacency matrix

Figure 4: Girth 6

(a) Framework (b) Adjacency matrix

Figure 5: Girth 8

(a) Girth 10 (b) Girth 12

Figure 6

10

4 Problems

We are limited by computational power in finding infinitesimally rigid frameworks of higher
girth. We expect they exist.

Problem 1. Construct an infinitesimally rigid unit-bar framework with arbitrarily large
girth.

The knight’s graph is one instance of an (a, b)-leaper graph. This graph has vertices for
each square of an m × n chessboard, and edges for squares with coordinates that differ by
a and by b. Knuth showed that if a + b and a − b are relatively prime, then for sufficiently
large chessboards, the (a, b)-leaper graph is connected [5]. The (a, b)-leaper framework can
be defined analogously to Definition 1. We have verified the following for 1 ≤ a, b ≤ 25.

Problem 2. Prove that the (a, b)-leaper framework on an m× n chessboard is infinites-
imally rigid if and only if a+ b is relatively prime to a− b and m,n ≥ 2(a+ b)− 1.

We expect that with more random trials smaller rigid frameworks can be found.

Problem 3. Determine the fewest number of joints in a infinitesimally rigid unit-bar
framework for each girth g ≥ 4.

5 Acknowledgements

The research of the second author was supported in part by an NSERC CGS M. The research
of the first author was supported in part by an NSERC Discovery grant and OTKA NK
grant. The work of the first author was also supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No. 741420, 617747, 648017).

References

[1] Asimow, L., & Roth, B. (1978). The Rigidity of Graphs. Transactions of the American
Mathematical Society, 245, 279-289. doi:10.2307/1998867

[2] Ball, D. (1973). The Constructibility of Regular and Equilateral Polygons on a Square
Pinboard. The Mathematical Gazette, 57(400), 119-122. doi:10.2307/3615349

[3] Erdos, P. (1946). On Sets of Distances of n Points. The American Mathematical Monthly,
53(5), 248-250. doi:10.2307/2305092

[4] Graver, J., Servatius, B., & Servatius, H. (1993). Combinatorial Rigidity (Vol. 2). Prov-
idence, RI: American Mathematical Society.

11

[5] Knuth, D. (1994). Leaper Graphs. The Mathematical Gazette, 78(483), 274-297.
doi:10.2307/3620202

[6] Maehara, H. (1991). A rigid unit-bar-framework without triangle. Mathematica Japonica,
36, 681-683.

[7] Maehara, H. (2004). Distance graphs and rigidity. Contemporary Mathematics, 342, 149-
168. doi:10.1090/conm/342/06139

[8] Maehara, H., & Chinen, K. (1995). An infinitesimally rigid unit-bar-framework in the
plane which contains no triangle. Ryuku Mathematical Journal, 8, 37-41.

6 Appendix 1

This python program is used to verify the rigidity of the knight’s framework in R3, in
particular the 4× 4× 4 knight’s framework.

#This program determines i f the knight graph
#in three dimensions i s r i g i d .
#L ,M,N are the dimensions o f the l a t t i c e
#a , b are the l eng th s o f the knight ’ s l e ap s

from numpy . l i n a l g import matr ix rank

#Spec i f y parameters

L=4
M=4
N=4
a=1
b=2

#Construct matrix o f z e r o s with dimensions o f r i g i d i t y matrix

numvert = L∗M∗N
numedges = (N∗ (2∗ (L−a)∗ (M−b)+2∗(L−b)∗ (M−a))+L∗ (2∗ (M−a)∗ (N−b)

+2∗(M−b)∗ (N−a))+M∗ (2∗ (N−a)∗ (L−b)+2∗(N−b)∗ (L−a)))

matrix = []

f o r r in range (numedges) :
matrix . append ([])
f o r c in range (3∗N∗∗3) :

matrix [r] . append (0)

12

#Create a l i s t o f the p o s s i b l e edge d i r e c t i o n s
edges = []
f o r twoplace in range (0 , 3) :

f o r onep lace in range (0 , 3) :
i f twoplace != oneplace :

edge = []
f o r i in range (3) :

edge . append (0)
edge [twoplace] = b
edge [onep lace] = a
edges . append (edge)

edge = []
f o r i in range (3) :

edge . append (0)
edge [twoplace] = −b
edge [onep lace] = a
edges . append (edge)

#This func t i on determines i f a coord inate i s
#i n s i d e the l a t t i c e

de f inrange (coor) :
good = 0

i f coor [0] not in l i s t (range (L)) :
good +=1

i f coor [1] not in l i s t (range (M)) :
good +=1

i f coor [2] not in l i s t (range (N)) :
good +=1

return good

#Place a l l edges in to the matrix ,
#entry i s p o s i t i o n o f cur rent row to be added
entry = 0

f o r y in range (0 ,N) :
f o r x in range (0 ,M) :

f o r w in range (0 ,L) :
f o r e in edges :

w2 = w + e [0]
x2 = x + e [1]
y2 = y + e [2]

13

#I f edge i s in l a t t i c e , then add to matrix
i f inrange ([w2 , x2 , y2])== 0 :

cw = (M∗L∗y+L∗x+w)∗3
cw2 = (M∗L∗y2+L∗x2+w2)∗3

matrix [entry] [cw] = (−1)∗ e [0]
matrix [entry] [cw+1] = (−1)∗ e [1]
matrix [entry] [cw+2] = (−1)∗ e [2]

matrix [entry] [cw2] = e [0]
matrix [entry] [cw2+1] = e [1]
matrix [entry] [cw2+2] = e [2]
entry+=1

pr in t (’ Required rank f o r r i g i d i t y : ’)
p r i n t (3∗L∗M∗N−6)
p r i n t (’ Rank o f r i g i d i t y matrix : ’)
p r i n t (matr ix rank (matrix))

7 Appendix 2

The following python program is our implementation of the algorithm outlined in Section 3.
We provide comments in the script that reference the steps described in the algorithm.

from c o l l e c t i o n s import deque
from numpy . random import permutation
import random
from numpy . l i n a l g import matr ix rank

#Input n the s i z e , m the square o f bar length , g the g i r t h

n = i n t (input (’ Dimension o f Grid (n) : ’))
m = i n t (input (’ Square l ength o f bars (m) : ’))
g = i n t (input (’ Girth o f Framework (g) : ’))
num tr i a l s = i n t (input (’ Number o f T r i a l s : ’))
use python rank =’y ’
#f o r l a r g e frameworks , we use func t i on ’ svds ’ in matlab
i f num tr i a l s ==1:

use python rank = input (’ Use python rank ? (y/n) : ’)

#determine g−1 and g−2
g1 = g//2 −1
g2 = g1−1

14

#Step 1 : Determine a l l bar d i r e c t i o n s
D = [[] , []]
f o r a in range (0 ,m+1):

f o r b in range (a ,m+1):
i f a∗∗2+b∗∗2 == m:

i f a==b :
D[0] . append (a)
D[1] . append (a)
D[0] . append(−a)
D[1] . append (a)

e l i f a==0:
D[0] . append (b)
D[1] . append (0)
D[0] . append (0)
D[1] . append (b)

e l s e :
D [0] . append (b)
D[1] . append (a)
D[0] . append (a)
D[1] . append (b)
D[0] . append(−a)
D[1] . append (b)
D[0] . append(−b)
D[1] . append (a)

num direc t ions = len (D[0])

de f makeframework () :
F = {}
checked = {}
#Step 2 : Add j o i n t s to framework as keys to a d i c t i o n a r y
#Values o f the d i c t i o n a r y are ne ighbours (empty)
f o r v in range (0 , n ∗∗2) :

F [v] = []
checked [v] = []
f o r d in range (num direc t ions) :

checked [v] . append (d)
#Step 3 get a permutation o f the j o i n t s
order = permutation (n∗∗2)
rounds = 0
#The below loop i s Step 5
whi l e rounds < num direc t ions :

#Step 4
f o r v1 in order :

#Get coo rd ina t e s o f j o i n t
y1 = v1//n

15

x1 = v1 − n∗y1
#Step 4 . i
t = random . cho i c e (checked [v1])
x2 = x1 + D[0] [t]
y2 = y1 + D[1] [t]
#Step 4 . i i
i f x2 <= n−1 and x2 >= 0 and y2 <= n−1 and y2 >= 0 :

v2 = x2 + y2∗n
N v1 = neighbourhood (v1 , g1 ,F)
N v2 = neighbourhood (v2 , g2 ,F)
#Step 4 . i i i
i f s e t (N v1) . i s d i s j o i n t (N v2) :

F [v1] . append (v2)
F [v2] . append (v1)

#Step 4 . i v
checked [v1] . remove (t)

rounds += 1

#Step 6
[minjo int , mindegree] = getmindegree (F)
whi l e mindegree <3:

f o r v in F :
i f min jo int in F [v] :

F [v] . remove (min jo int)
de l F [min jo int]
[minjo int , mindegree] = getmindegree (F)

re turn F

#This i s the func t i on used in Step 6
de f getmindegree (frame) :

min jo int = −1
mindegree = 3
f o r v in frame :

deg = len (frame [v])
i f deg< mindegree :

mindegree = deg
minjo int = v

return [minjo int , mindegree]

#This i s the func t i on used in Step 4 . i i
de f neighbourhood (i n i t i a l , d i s tance , frame) :

queue = deque ([i n i t i a l])
depth = { i n i t i a l : 0}

16

v i s i t e d = [i n i t i a l]
exp lored = []

whi l e queue :
cur r ent = queue . p o p l e f t ()
exp lored . append (cur rent)

i f depth [cur rent]< d i s t anc e :
f o r neighbour in frame [cur rent] :

i f neighbour not in v i s i t e d :
queue . append (neighbour)
v i s i t e d . append (neighbour)
depth [neighbour]=depth [cur rent]+1

return exp lored

#matrix c r e a t e s a matrix out o f the framework
#python can compute the rank o f i t
de f matrix (frame , num vert , num edges) :

R = []
f o r r in range (num edges) :

R. append ([])
f o r c in range (2∗n ∗∗2) :

R[r] . append (0)
currentrow = 0
f o r v1 in frame :

f o r v2 in frame [v1] :
i f v1<v2 :

v1y = v1//n
v1x = v1−v1y∗n
v2y = v2//n
v2x = v2−v2y∗n

R[currentrow] [v1 ∗2] = v1x−v2x
R[currentrow] [v1∗2+1] = v1y−v2y
R[currentrow] [v2 ∗2] = v2x−v1x
R[currentrow] [v2∗2+1] = v2y−v1y
currentrow+=1

return R

#’ sparsematr ix ’ w r i t e s r i g i d i t y matrix data to a f i l e
#we used t h i s output in matlab
de f sparsematr ix (frame) :

p l a c e s = {}

17

count = 1
f o r v in frame :

p l a c e s [v] = count
count +=1

s p a r s e f i l e = open (’ sparsematr ix . txt ’ , ’w’)
f o r v1 in frame :

f o r v2 in frame [v1] :
i f v1<v2 :

v1y = v1//n
v1x = v1 − v1y∗n
v2y = v2//n
v2x = v2 − v2y∗n
c1 = 2∗ p l a c e s [v1]−1
c2 = 2∗ p l a c e s [v2]−1
s p a r s e f i l e . wr i t e (s t r (c1)+ ’ , ’+ s t r (c2)+ ’ , ’+ s t r (v1x−v2x)+ ’ , ’
+s t r (v1y−v2y)+ ’ , ’+ s t r (v2x−v1x)+ ’ , ’+ s t r (v2y−v1y)+ ’\n ’)

s p a r s e f i l e . c l o s e ()

#’saveframe ’
de f saveframe (frame) :

f r a m e f i l e = open (’ f r a m e f i l e . txt ’ , ’w’)

f o r v1 in frame :
f o r v2 in frame [v1] :

i f v1<v2 :
f r a m e f i l e . wr i t e (s t r (v1)+ ’ , ’+ s t r (v2)+ ’\n ’)

f r a m e f i l e . c l o s e ()

num found = 0
de f d o t r i a l s () :

s m a l l e s t s i z e = n∗∗2
s m a l l e s t e d g e s = 0
sma l l e s t f r ame = {}

f o r t r i a l in range (num tr i a l s) :
aframe = makeframework ()
num vert = len (aframe)
num edges = 0
f o r v in aframe :

num edges += len (aframe [v])
num edges = num edges //2
i f num edges >= 2∗num vert−3:

amatrix = matrix (aframe , num vert , num edges)

18

rank = matr ix rank (amatrix)
i f 2∗num vert −3 == rank :

num found+=1
i f num vert<s m a l l e s t s i z e :

s m a l l e s t s i z e = num vert
s m a l l e s t e d g e s = num edges
sma l l e s t f r ame = aframe

return [sma l l e s t f rame , s m a l l e s t s i z e , s m a l l e s t e d g e s]

de f main () :
i f use python rank == ’y ’ :

[frame , s i z e , edges] = d o t r i a l s ()
i f num found == 0 :

p r i n t (’No r i g i d frameworks found ’)
e l s e :

p r i n t (’ The s m a l l e s t r i g i d framework found has ’ , s i z e , ’ j o i n t s ’)
p r i n t (’ and ’ , edges , ’ edges ’)

e l s e :
frame = makeframework ()
s i z e = len (frame)
edges = 0
f o r v in frame :

edges += len (frame [v])
edges = edges //2
p r in t (’ The framework found has ’ , s i z e , ’ j o i n t s ’)
p r i n t (’ and ’ , edges , ’ edges ’)

i f num found >0:
p r i n t (’ Saving spar s e matrix to f i l e . . . ’)
sparsematr ix (frame)
p r i n t (’ Completed ’)
p r i n t (’ Saving framework to f i l e . . . ’)
saveframe (frame)
p r in t (’ Completed ’)

main ()

19

	1 Introduction
	2 Infinitesimally rigid unit-bar frameworks in Rd
	3 Unit-bar bipartite frameworks with higher girth
	4 Problems
	5 Acknowledgements
	6 Appendix 1
	7 Appendix 2

