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Abstract

We study the problem of deciding whether a crease pattern can be folded by simple folds
(folding along one line at a time) under the infinite all-layers model introduced by [ADK17],
in which each simple fold is defined by an infinite line and must fold all layers of paper that
intersect this line. This model is motivated by folding in manufacturing such as sheet-metal
bending. We improve on [ABD+04] by giving a deterministic O(n)-time algorithm to decide
simple foldability of 1D crease patterns in the all-layers model. Then we extend this 1D result
to 2D, showing that simple foldability in this model can be decided in linear time for unassigned
axis-aligned orthogonal crease patterns on axis-aligned 2D orthogonal paper. On the other
hand, we show that simple foldability is strongly NP-complete if a subset of the creases have a
mountain–valley assignment, even for an axis-aligned rectangle of paper.

1 Introduction

A classic problem in computational origami (indeed, the topic of the very first paper in the field
[BH96]) is flat foldability : given a crease pattern (planar straight-line graph) on a polygonal piece
of paper P , can P be folded flat isometrically without self-intersection while creasing at all creases
(edges) in the crease pattern? The decision problem is NP-hard [BH96], even if the paper P is an
axis-aligned rectangle and the creases are at multiples of 45◦ [ACD+15]. But even when a crease
pattern does fold flat, the motion to achieve that folding can be complicated [DM01], making the
process impractical in some physical settings.

Motivated by practical folding processes in manufacturing such as sheet-metal bending, Arkin
et al. [ABD+04] introduced the idea of simple foldability—flat foldability by a sequence of simple
folds. Informally, a simple fold is defined by a line segment and rotates a portion of the paper
around this line by ±180◦, while avoiding self-intersection; refer to Section 2 for formal definitions.
The problem also makes sense with 1D paper, where P is a line segment and creases are defined by
points in P . Arkin et al. defined several models of simple folds and, for many models, showed that
simple foldability is polynomial for 1D paper, polynomial for rectangular paper with axis-aligned
creases, weakly NP-complete for rectangular paper with creases at multiples of 45◦, and weakly NP-
complete for orthogonal paper with axis-aligned creases. In particular, they developed an algorithm
to determine simple foldability of a 1D mountain–valley pattern in O(n log n) deterministic time
and O(n) randomized time in the all-layers model, requiring that a simple fold through one crease,
also folds through all layers overlapping that crease.
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Algorithmic results. In Section 3, we improve on [ABD+04] by giving a deterministic O(n)-
time algorithm to decide simple foldability of 1D crease patterns in the all-layers model. This result
removes the logarithmic factor from the best previous deterministic algorithm, or equivalently,
removes the randomization from the best previous O(n) algorithm.

In a recent followup to Arkin et al. [ABD+04], Akitaya et al. [ADK17] extended the list of simple
folding models, and for many models, showed strong NP-hardness for 2D paper. In particular, they
introduced the infinite all-layers model of simple folds, studied here, which requires that each
simple fold is defined by an infinite line, and that all layers of paper intersecting this line must
be folded. This model is probably the most practical of all simple folding models; for example,
Balkcom’s robotic folding system [BM08] is restricted to this model. For an axis-aligned rectangle
paper with axis-aligned creases (and for 1D paper), infinite and non-infinite simple fold models are
equivalent [ADK17].

Hardness results. In this paper, we study the complexity of one of the few remaining open
problems in this area [ADK17]: infinite all-layers simple foldability on axis-aligned orthogonal paper
with axis-aligned creases (henceforth referred to as orthogonal crease patterns). In Section 4, we
prove that, when the creases are unassigned (can freely fold mountain or valley), this problem can
be solved in polynomial (indeed, linear) time. On the other hand, we prove in Section 5 that, when
the creases are partially assigned (some creases must fold mountain, some creases must fold valley,
while others can freely fold mountain or valley), the problem becomes strongly NP-complete, even
for an axis-aligned rectangle of paper (and thus also for the regular all-layers simple fold model
[ADK17]). Remaining open problems are summarized in Section 6.

2 Definitions

We base our definitions on those from [ADK17], specializing to the infinite all-layers model. Define
the folding plane P be a copy of R2, and define a piece of paper P to be a connected polygon in
P possibly with holes. A crease pattern is defined by (P,Σ) where Σ is the edge set of a planar
straight-line graph embedded in P . Members of Σ are interior disjoint line segments contained
in P called creases. A facet is a connected open set in P \ Σ. A crease pattern (P,Σ) can have
an assignment α : Σ → {M,V }, where M = 1 (mountain) and V = −1 (valley). A function
α : Σ− → {M,V },Σ− ⊂ Σ is called a partial assignment of (P,Σ).

We define an infinite all-layers simple fold to be the operation that takes a crease pattern (P,Σ),
possibly with a (partial) assignment, and a directed infinite line ` in P, and returns a simpler crease
pattern (P ′,Σ′) (“using up” some creases, i.e., |Σ′| < |Σ|) or reports “illegal”, as defined below.
Let Pl (resp., Pr) be the subset of P in the left (resp., right) open half-plane defined by `. Let Σl

(resp., Σr) be the subset of Σ contained in Pl (resp., Pr). Reflect Pr and Σr about `, obtaining P ′r
and Σ′r. If a crease c ∈ Σr had an assignment, define α(c′) = −α(c) where c′ is the reflection of c.
Two creases overlap if their intersection is a non-degenerate line segment.

Definition 2.1 (Legal folds). An all-layers simple fold through ` is legal if it satisfies the following
conditions:

(1) Line ` does not contain any point of a facet of P , i.e., ` ∩ P ⊆ Σ ∪ ∂P , where ∂P represents
the boundary of P ;

(2) No crease in Σ′r (resp., Σl) contains any point of a facet in Pl (resp., P ′r).
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If a (partial) assignment is given we additionally require the following conditions:

(3) For every pair of assigned creases c1 and c2 in `, α(c1) = α(c2).

(4) For every pair of assigned creases (c1, c2) that are contained in the transitive closure of the
overlap relation, α(c1) = α(c2).

Otherwise we call the fold illegal.

We define the crease pattern (P ′,Σ′) obtained from a legal fold as follows. Let P ′ be the closure
of Pl ∪P ′r. Set Σ′ initially as Σl ∪Σ′r and successively merge all pairs of overlapping creases c1 and
c2. By (2), every interior-intersecting pair of creases overlap. If either c1 or c2 is assigned, define
the assignment of the new crease as α(c1) or α(c2). By (4), all creases can be consistently assigned
as above regardless of the order of the merges.

In the one-dimensional case, we define R1 as the folding plane, P as a line segment and Σ as
a set of points in P . A fold is defined by a point ` in P , which, by (1), must be also a crease.
(3) is vacuously true in the 1D setting. All the other definitions follow by the definitions of the
two-dimensional problem.

Finally we can define the problem at hand. The infinite all-layers simple foldability prob-
lem asks whether, given a crease pattern (P,Σ), there is a sequence of crease patterns S =
((P1,Σ1), . . . , (Pm,Σm)) such that (P,Σ) = (P1,Σ1), Σm = ∅, and (Pi,Σi) is the result of a le-
gal infinite all-layers simple fold of (Pi−1,Σi−1) for i ∈ {2, . . . , k}.

Difference between definitions. Akitaya et al. [ADK17] defines a flat folded state as an isom-
etry of P — an isometric embedding of P into P that preserves connectivity between facets and
creases which imposes the non-stretching restrictions on the paper — together with a non-crossing
layer ordering — a binary relation between overlapping facets in the isometry describing the
above/below relationship between them. Their “non-crossing” definition captures the fact that
the paper cannot penetrate itself. A simple fold is an operation that takes a flat folded state and
returns another, modeling the rotation of a portion of the paper through an axis while preserv-
ing the non-stretching and non-self-penetrating properties. P can also be defined as an orientable
surface with top and bottom sides for which a crease (which can be assigned mountain or, resp.,
valley) is the fold through it which brings together the bottom (resp., top) sides of adjacent facets.
However, because this paper focuses on only the infinite all-layers model, we propose a simplified
definition of simple folds, without defining a folded state. Our definition is equivalent in the sense
that it preserves simple foldability of input crease patterns and the sequence S of crease patterns
described above can be easily converted into a sequence of flat folded states by defining the isometry
based on the sequence of reflections. The layer ordering can be recovered from the assignment of
the creases on ` (choosing an arbitrary assignment if all creases are unassigned). This conversion
is possible because, in the infinite all-layers model, if two facets overlap in the isometry, they can
be considered as “glued together” because no simple folds in this model can separate them (in
particular, unfolding is not allowed).

3 1D Crease Patterns

In this section, we consider only assigned and unassigned crease patterns. We build on ideas
from [ABD+04], representing an instance with n creases as a string S of length 2n + 1, denoting
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by S[i], i ∈ {1, . . . , 2n + 1} the ith symbol in S. For even i, S[i] represents the assignment of
the (i/2)nd crease or 0 if unassigned. For odd i, S[i] represents the distance between the bi/2cth
and the (bi/2c + 1)th crease for odd i, considering the edges of the paper the 0th and (n + 1)st
crease. Let the complement of the symbols in the string S be defined as comp(S[i]) = S[i] (resp.,
comp(S[i]) = −S[i]) if i is odd (resp., even). This definition is motivated by the observation that,
if we consider what happens to the section of paper to the right of crease i when i is folded, we see
that the string S[i+ 1 . . . 2n+ 1] is converted to comp(S[2n+ 1 . . . i+ 1]). We show an algorithm
that finds the leftmost legal fold defined by the kth crease, if one exists, in time O(k). We then
show that successive applications of this algorithm will find a solution for the problem in O(n)
time.

The following algorithm finds the smallest prefix of length 2k + 1 ≤ 2n+ 1 of the input S such
that: (i) S[1] ≤ S[2k − 1]; (ii) for i ∈ [1, k − 2], then S[k − i] = comp(S[k + i]). Importantly,
if conditions (i) and (ii) are satisfied, then a fold through crease k is legal. Note, however, that
not every legal fold is necessarily such a satisfying prefix; some may be a satisfying prefix of the
reversed string SR (or equivalently, a suffix of S). Fortunately, it is easy to handle both cases
simultaneously as we will demonstrate in Theorem 1 below.

This algorithm is a minor variation of the algorithm in [Man75] that we show here for complete-
ness. We say that a position f > k fails a crease S[k] if S[k − (f − k)] 6= comp(S[f ]), i.e., (f − k)
violates (ii) for crease S[k]. The array F stores the failure number of creases. The failure number
F [k] of a crease S[k] is defined as the minimum f > k that fails S[k].

Algorithm A
Data: string S of length 2n+ 1.

1 k ← 2
2 for it← 3 to 2n+ 1 do
3 i← it− k
4 if i < 1 then
5 continue

/* Check condition (i) */

6 if k − i = 1 and S[1] ≤ (S[2k + 1]) then
7 return k

/* Check condition (ii) */

8 if S[k − i] 6= comp(S[k + i]) then
9 F [k]← i

10 k′ ← k + 2
11 while k′ < it do
12 if it− k′ 6= F [k − (k′ − k)] then
13 F [k′]← min{it− k′, F [k − (k′ − k)]}
14 else
15 k ← k′

16 go to 3

17 k′ ← k′ + 2

18 k ← k′

19 return 0.
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Figure 1: An instance S and the result S′ obtained by folding through S[6]. A fold though S[2] violates (i),
and attempting to fold through S[4] is failed by crease S[6] and, hence, violates (ii).

Lemma 1. Algorithm A either finds the leftmost legal all-layers simple fold at crease S[k], 1 < k ≤
n+ 1 in O(k) time or returns 0 if no such fold exists in O(n) time.

Proof. The Lemma follows from [Man75] and [ABD+04]. For completeness, we give here a summary
of the arguments. Conditions (i) and (ii) for odd (resp., even) indices i imply that a fold at crease
S[k] satisfies condition (2) (resp., (3)) from Definition 2.1. Hence, if a value k 6= 0 is returned, it
defines a legal fold. Similarly, every legal fold at S[k] satisfies conditions (i) and (ii). The integer
variables k and it only increase and are upper bounded by 2n+ 1. When a value of k is returned,
it = O(k) and, thus, the algorithm runs in O(k) (resp., O(n)) time for positive (resp., negative)
instances. The algorithm maintains the invariant that every crease to the left of k have been
assigned a failure number, i.e., there exists no legal fold to the left of k.

The algorithm reaches line 9 if position it fails S[k]. For all creases S[k′] where k < k′ < it, we
can determine in constant time if a position to the left of it fails S[k′] as follows. Let S[k′′] be the
crease symmetric to S[k′] about S[k], i.e., k′′ = k − (k′ − k). If F [k′′] < it − k′, then by (ii) with
respect to S[k] we have S[k′′+F [k′′]] = comp(S[k′−F [k′′]]) and S[k′′−F [k′′]] = comp(S[k′+F [k′′]]).
By the definition of failure number, F [k′′] is the smallest integer such that

comp(S[k′ − F [k′′]]) 6= comp(comp(S[k′ + F [k′′]])) = S[k′ + F [k′′]].

Notice that a = comp(comp(a)) and a 6= comp(b) → comp(a) 6= b for all a and b. Hence,
F [k′] = F [k′′] and a fold through S[k′] is illegal. If F [k′′] > it − k′, then S[k′′ + (it − k′)] =
comp(S[k′′ − (it− k′)]) = S[k′ − (it− k′)]. Because the position it fails S[k],

S[k′ + (it− k′)] 6= comp(S[k′′ − (it− k′)]) = comp(S[k′ − (it− k′)]).

Therefore, F [k′] = it− k′ and a fold through S[k′] is illegal. Then, the algorithm finds the leftmost
crease k for which no position between k and it fails S[k]. Therefore, the algorithm returns the
leftmost legal crease on the left half of S.

Theorem 1. All-layers simple foldability of a 1D assigned or unassigned crease patterns can be
decided in deterministic linear time.

Proof. We provide a constructive proof. Run Algorithm A on inputs S and SR, a reversed copy
of S, in parallel. If both return 0, then by Lemma 1, S is not all-layers simple foldable. Else,
let k be the first value returned. Without loss of generality, k was returned by Algorithm A on
S. Using our definitions for folding at S[k], the resulting crease pattern S′ is represented by the
substring of S from k + 1 to 2n + 1. Hence we generated a smaller subproblem of size 2n − k in
O(k) time. By Lemma 4.1 of [ABD+04], if any legal fold can be done in S, the resulting crease
pattern S′ is all-layers simple foldable if and only if S also is. Then, by successively applying the
above algorithm in the resulting smaller subproblems we arrive at a crease pattern (Pm, ∅) in O(n)
time if and only if S is all-layers simple foldable.
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4 Unassigned Orthogonal 2D Crease Patterns

Let (P,Σ) be the input for our problem, where P is an orthogonal polygon and Σ contains
axis-aligned creases. We first show a necessary condition that any crease pattern of a solution
((P1,Σ1), . . . , (Pk, ∅)) must satisfy.

Lemma 2. Given a crease pattern (P,Σ) with orthogonal paper P and orthogonal creases Σ, if a
line `∗ in P contains a crease in Σ, then every point in P ∩ `∗ must be on a crease in Σ or else
(P,Σ) is not infinite all-layers simple foldable.

Proof. Recall that, by condition (1), a simple fold through a line ` does not contain any point of a
facet. By contradiction, let `∗ be a line containing a crease such that P ∩ `∗ \ ∂P is not covered by
creases in Σ. We prove by induction that (P,Σ) is not simple foldable. Trivially, `∗ cannot be an
axis of a simple fold by (1). The base case is when all creases in Σ 6= ∅ are on an axis that define
illegal simple folds, hence, no legal fold is possible. Else, a legal fold through some axis ` is possible.
By (2), a simple fold maps points on creases to creases and facet points to facet points. If `∗ is
parallel to `, the creases and facet points on `∗ will be mapped to a creases and interior points on
a line `′ (`′ = `∗ if ` is to the left of ` or `′ is the reflection of `∗ about `). Else, `∗ is perpendicular
to ` and `∗ will also contain a crease and a facet point of (P ′,Σ′) after the fold. Because |Σ′| < |Σ|,
we are done.

We now describe the encoding of the input (P,Σ). Let nP be the number of vertices in P . Let
L = {`1, . . . , `nL} be the set of lines in P that contain creases in Σ. By Lemma 2, it is enough to
store L because Σ can be inferred by L and P or else (P,Σ) is a negative instance. Our algorithm
uses (P,L) as the input and define its size as nP + nL. First, we provide an algorithm for when P
is a rectangle.

Lemma 3. Let (P,L) be an unassigned crease pattern where P is a rectangle and lines in L are
axis-aligned. Infinite all-layers simple foldability of (P,L) can be determined in linear time.

Proof. We reduce the problem to two 1D instances, each solvable in O(n′) time where n′ is the
number of creases in the 1D instance by Lemma 1. Let Lh (resp., Lv) be the subset of L containing
horizontal (resp., vertical) lines. Build a 1D instance with paper Pv (resp., Ph) being a line segment
congruent to the left (resp., bottom) edge of P . Add a crease in Pv (resp., Ph) at the intersections
between the lines in Lh (resp., Lv) and its correspondent edge. By definition, any legal fold though
a line in Lh (resp., Lv) is also a legal fold in its corresponding crease in Pv (resp., Ph), and its
resulting crease pattern (P ′, L′) can be converted into 1D problems P ′v and P ′h such that P ′v (resp.,
P ′h) is equal to the resulting crease patterns of the fold in Pv (resp., Ph), and Ph = P ′h (resp.,
Pv = P ′v). Therefore, any folding sequence of the instance (P,L) satisfying the problem can be
converted to two folding sequences of the 1D problems and vice versa.

Theorem 8 of [ADK17], which says that instances of simple foldability with rectangular paper
and orthogonal creases are equivalent in the all-layers model and infinite all-layers model, implies
that the reduction in Lemma 3 also applies to the all-layers model. Now, we prove our algorithmic
result.

Theorem 2. Determining whether an unassigned crease pattern on orthogonal paper with orthog-
onal creases has an infinite all-layers simple folding can be solved in linear time.
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Figure 2: (a) An instance (P,L) where P is an orthogonal polygon and (b) its corresponding instance (R,L)
where R is the bounding box of P and the boundary of P is shown with dotted line segments. The 1D
instances corresponding to (R,L) are also shown in (b).

Proof. We reduce to the rectangular paper/orthogonal creases problem solved in Lemma 3. Let
the instance with orthogonal paper and creases be represented by (P,L) of size n = n1 + n2 where
n1 and n2 are the sizes of P and L, respectively. We can obtain the bounding box R of P in O(n1)
time. Output the instance (R,L) that can be solved in O(n2) time by Lemma 3. We now show
that (R,L) admits an infinite all-layers simple folds sequence if and only if (P,L) also does.

The backward implication is straightforward. If (R,L) has a simple folding, then so must (P,L).
Notice that creases induced by L in P are a subset of the creases induced by L in R. Because P is
a subset of R, by definition, any fold made on R will also be possible on P , so P is infinite all-layers
simple foldable.

Now we show that, if ((P1, L1), . . . , (Pk, Lk)) is an infinite all-layers simple folding for (P,L),
then ((R1, L1), . . . , (Rk, Lk)) is an infinite all-layers simple folding for (R,L), where Ri is the bound-
ing box of Pi for i ∈ {1, 2, . . . , k}. We show that the axis of the simple fold from (Pi, Li) to
(Pi+1, Li+1) is also the axis of a simple fold that transforms (Ri, Li) into (Ri+1, Li+1). By defini-
tion, Pi and Ri share at least one each of bottom, left, top, and rightmost points, which we denote
by xb, xl, xt and xr respectively. Without loss of generality, take a vertical axis ` pointing up whose
supporting line is in Li that defines a legal fold. By definition, the simple fold through ` reflects
the right portion of Pi and Ri to the left of ` producing Pi+1 and R′i. Lemma 2 guarantees that
both originate the same set of new supporting lines Li+1. Additionally, in both cases, the rightmost
point of the paper after the fold will be on `. If the reflection of xr becomes the leftmost point in
Pi+1 it will also become the leftmost point of R′i. Because xt and xb don’t change y-coordinates,
R′i = Ri+1.

5 Partially Assigned Orthogonal Crease Patterns

We prove that, given a crease pattern with a subset of creases assigned mountain/valley, it is NP-
complete to decide infinite all-layers simple foldability, even if the crease pattern is a square grid
and the paper is rectangular.

Lemma 4. It is strongly NP-hard to decide infinite all-layers simple foldability of partially assigned
crease patterns, even if the paper is rectangular and the creases form a square grid.
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Figure 3: (a) Reduction from 3SAT to partially assigned simple foldability under the infinite all-layers model.
The instance shown corresponds to the boolean formula (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3). A satisfied clause
gadget can be folded using one of the folding sequences in (b)–(d).
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Proof. We provide a reduction from 3SAT. An instance of 3SAT is given by a set of n variables
{x1, . . . , xn} and a boolean formula in conjunctive normal form withm clauses of the form (l1∨l2∨l3)
where lk, k ∈ {1, 2, 3}, is the boolean value of a variable xi, i ∈ {1, . . . , n}, or its negated value
denoted by xi. The 3SAT problem asks whether there exists an assignment from the variables
to {true, false} such that the boolean formula evaluates to true. Given the 3SAT instance
described above, we construct a crease pattern on a 2n(5m+ 1)× (2n+m+ 3) rectangular paper
as shown in Figure 3 (a). Informally, a variable xi is represented by the section of paper between
rows fi and t′i inclusive. The yellow dots represent literals in a clause and folding a yellow dot onto
a green or red dot represents assignment as positive or negative respectively. Yellow dots (literals)
sharing a vertical line are in the same clause.

An overview of the proof follows: because of (4), the partial assignment forces any sequence of
legal simple folds to choose between folding through t1 or f1, bringing them on top of a green or
red dot, respectively, which encodes the boolean assignment of the variable x1. After a vertical fold
on the right edge of the paper, the construction forces these yellow dots to coincide with the yellow
dot right above it by folding through t′1 or f ′1, which adds a valley assignment to a crease next to a
yellow dot of a corresponding clause if its literal of x1 evaluates to false. We apply induction on
the resulting crease pattern and, after choosing the assignment of all variables, the topmost set of
yellow points will have at least one crease that is not assigned valley if and only if the SAT instance
has a positive solution. If a vertex has all four incident valley-assigned creases, there is no legal
simple fold that folds through any of its creases.

Now, the complete proof: consider the bottom left corner as the origin. In the following, we
use the indices i ∈ {1, . . . , n} to refer to variables and j ∈ {1, . . . ,m} to refer to clauses. We first
define the position of some points that will serve as reference to the construction. For each clause
cj , define the points pj,i = (j+ 1, 10mi− 5j− 5m+ 2i) and a point pj,(n+1) using the same formula,
that represent n+1 copies of the clause. In Figure 3 (a), such points are represented as yellow dots.
Assign the crease right below each pj,i as valley. Also define rj,i = (j+1, 5j−10m+ i(10m+2)+6)
and gj,i = rj,i + (0, 2), represented in Figure 3 (a) as red and green dots respectively. If the first
(resp., second, resp., third) literal that cj contain is xi, assign the crease to the right (resp., bottom,
resp., left) of rj,i as mountain. If the literal is negated, i.e., xi, assign the crease to the right (resp.,
bottom, resp., left) of gj,k as mountain.

We now define some reference horizontal lines. Let fi be the horizontal line appearing at height
5m+ 2(i− 1)(5m+ 1), and ti, f

′
i and t′i the horizontal lines 1, 5m + 1 and 5m + 2 units above

fi respectively. Define fn+1 and tn+1 analogously. For each variable xi, we define the crease
assignment of two vertical lines vi and v′i, which are m+ 2n− 2i+ 2 and m+ 2n− 2i+ 3 units to
the right of the origin respectively. Also define v′n+1, which is m+ 1 units to the right of the origin.
Assign 5m creases bellow fk as valley for k ≤ i. Assign 5m − 2 creases bellow t′k as mountain for
k < i, skipping the first one. Assign mountain to 5m−1 creases below f ′i in vi and to all the creases
above ti in v′i. Assign valley to all the creases above t′i in vi. Finally, we describe the assignment
of creases in fn+1. Assign the m + 2 leftmost creases as valley and alternate between mountain
and valley until the end of the line. All other creases in the construction that do not have any
assignment remain unassigned.

We now show that, if the 3SAT instance has a positive solution, so does the constructed instance
of simple foldability. In order from 1 to n, if xi is assigned true (resp., false), valley fold through
ti (resp., fi), bringing the bottom part up and aligning all pj,i with gj,i (resp., rj,i); mountain fold
though v′i, bringing the right strip of paper to the left; valley fold through t′i (resp., f ′i), aligning
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all pj,i with pj,i+1; valley fold through vi. If xi appears as the first (resp., second, resp., third)
literal of cj which evaluates to false, then these folding sequence brings a valley-assigned crease
to the right (resp., top, resp., left) of pj,i+1. After all n steps, valley fold through fn+1, bringing
the top strip of paper down, and then through vn+1′ . This eliminates all assigned creases apart
from the ones adjacent to reference points. Notice that, for a clause cj , the corresponding assigned
creases (which are adjacent to a reference point with index j) are contained in a 2 × 5 bounding
box containing pj,n+1 in its (1, 2) relative coordinate (shown as a dotted orange box in Figure 3).
All boxes containing pk,n+1, k < j are below and to the right of the point (0,−2) relative to pj,n+1

(darkened region shown in Figure 3 (b)–(d)). We start by assuming that all folds relative to ck,
k < j are already folded and the top left corner of the paper coincides with a corner of the box
containing pj,n+1. If the second literal of cj evaluates to true, the assigned creases in the bounding
box of pj,n+1 are a subset of the leftmost crease pattern in Figure 3(b). If both the first and third
literal evaluate to true, then the assigned creases in the bounding box of pj,n+1 are a subset of
the pattern in Figure 3(c). We can fold through all creases in such box using the folding sequence
in Figure 3(b) (resp., (c)), which does not introduce any assignment in boxes of pl,n+1, l > j. Else,
the assigned creases are a subset of the leftmost crease pattern in Figure 3(d), where exactly one
of the cyan creases and one of the magenta creases are assigned valley. By following the folding
sequence in Figure 3(d), we eliminate all assigned creases in the box of pj,n+1 while not introducing
any assignment in boxes of pl,n+1, l > j. By induction, we can continue folding until there are no
assigned creases and the resulting crease pattern has a positive solution using the algorithm for
unassigned crease patterns.

Now, we show that if the produced crease pattern is foldable, the 3SAT instance has a positive
solution. By (4), no vertex can have 4 adjacent creases with the same assignment or else there is no
legal fold through such vertex. Initially, the only possible legal folds are through f1 or t1 due to (4).
First, assume that the solution folds through f1, bringing pj,1 onto rj,1. That assigns some creases
between f1 and t1 making it impossible to fold through t1. The only possible simple fold now is
through v′1. Then, folding through t′1 is illegal since it would bring a mountain-assigned crease in
v′2 right above f1 onto a mountain-assigned crease right above t2. Hence, the only possible fold is
through f ′1, followed by a valley fold through v1. The resulting folded state has a height-1 strip of
paper in the bottom that does not contain any assigned crease. If this is folded on top of any other
part of the construction, it will not create any other assignment. At this state, the solution can
either fold through the horizontal line right above t′1 and then fold through f2 or t2, or fold directly
through f2 or t2, which are the only available legal folds. In both scenarios, the resulting assigned
pattern and the boundary of the paper are the same. Therefore, after folding through v1, we obtain
a smaller version of the reduction with variables {x2, . . . , xn} and some extra assigned creases in
the vicinity of pj,2 if cj contained a literal of x1. In particular, if said literal is positive, there
exist one extra crease adjacent to pj,2 that is assigned valley. Now, assume that the solution folds
through t1. The next folds must be through v′1 followed by t′1, and v1 or else an assigned crease will
be mapped onto a crease of same assignment contradicting (4). We again obtain a smaller version
of the reduction and if cj contained the literal x1, there is one extra crease adjacent to pj,2 that is
assigned valley. By induction, the solution must fold in this manner (bringing pj,i onto pj,i+1) until
all of the yellow marked points are on top of a pj,n+1. Because the crease pattern in foldable, there
must exist at least one crease adjacent to pj,n+1 that is not assigned valley. That corresponds to
an assignment in which at least one literal in each clause evaluates to true.

Theorem 3. It is strongly NP-complete to decide simple foldability under the infinite all-layers
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model of a partially assigned crease pattern, even if the paper is rectangular and the creases form a
square grid.

Proof. Because unfolding is forbidden, a simple fold reduces the number of creases by at least one.
Therefore, a sequence of simple folds that folds through all creases of a crease pattern with n creases
can have O(n) folds. We can check in O(n) time whether a given axis define a legal simple fold.
The rest of the proof follows from Lemma 4.

6 Open Problems

Lemma 4.1 of [ABD+04], used in Theorem 1, only applies to assigned or unassigned 1D crease
patterns. Hence, we leave open the algorithmic complexity of deciding all-layers simple foldability
of partially assigned 1D crease patterns. Indeed, for this class of input, the problem has not been
studied in the other simple foldability models introduced in [ABD+04]. We conjecture that the
algorithm presented in Section 3 also finds a solution if one exists. The main remaining open
problem is whether infinite all-layers simple foldability can be solved in polynomial time, or is
NP-hard, in fully assigned crease patterns [ADK17]. This problem remains open in particular
when restricted to orthogonal crease patterns. We also leave open the complexity of infinite all-
layers simple foldability in unassigned nonorthogonal crease patterns, for example, axis-aligned
rectangular pieces of paper with unassigned creases at multiples of 45◦, or even general unassigned
crease patterns on general polygonal pieces of paper.
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