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On the maximum diameter of path-pairable graphs

António Girão, Gábor Mészáros, Kamil Popielarz, and Richard Snyder

Abstract

A graph is path-pairable if for any pairing of its vertices there exist edge disjoint paths

joining the vertices in each pair. We obtain sharp bounds on the maximum possible

diameter of path-pairable graphs which either have a given number of edges, or are c-
degenerate. Along the way we show that a large family of graphs obtained by blowing up

a path is path-pairable, which may be of independent interest.

1 Introduction

Path-pairability is a graph theoretical notion that emerged from a practical networking problem
introduced by Csaba, Faudree, Gyárfás, Lehel, and Schelp [2], and further studied by Faudree,
Gyárfás, and Lehel [3, 4, 5] and by Kubicka, Kubicki and Lehel [6]. Given a fixed integer k
and a simple undirected graph G on at least 2k vertices, we say that G is k-path-pairable
if, for any pair of disjoint sets of distinct vertices {x1, . . . , xk} and {y1, . . . , yk} of G, there
exist k edge-disjoint paths P1, P2, . . . , Pk, such that Pi is a path from xi to yi, 1 ≤ i ≤ k.
The path-pairability number of a graph G is the largest positive integer k, for which G is
k-path-pairable, and it is denoted by pp(G). A k-path-pairable graph on 2k or 2k+1 vertices
is simply said to be path-pairable.

Path-pairability is related to the notion of linkedness. A graph is k-linked if for any choice of
2k vertices {s1, . . . , sk, t1, . . . , tk} (not necessarily distinct), there are internally vertex disjoint
paths P1, . . . , Pk with Pi joining si to ti for 1 ≤ i ≤ k. Bollobás and Thomason [1] showed that
any 2k-connected graph with a lower bound on its edge density is k-linked. On the other hand,
a graph being path-pairable imposes no constraint on the connectivity or edge-connectivity of
the graph. The most illustrative examples of this phenomenon are the stars K1,n−1. Indeed,
it is easy to see that stars are path-pairable, while they are neither 2-connected nor 2-edge-
connected. Note that, for any pairing of the vertices of K1,n−1, joining two vertices in a pair is
straightforward due to the presence of a vertex of high degree, and the fact that the diameter is
small. This example motivates the study of two natural questions about path-pairable graphs:
given a path-pairable graph G on n vertices, how small can its maximum degree ∆(G) be, and
how large can its diameter d(G) be? This note addresses some aspects of the second question.
To be precise, for a family of graphs G let us define d(n,G) as follows:

d(n,G) = max{d(G) : G ∈ G and G is path-pairable on n vertices}.

When G is the family of path-pairable graphs, we shall simply write d(n) instead of d(n,G).
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The maximum diameter of arbitrary path-pairable graphs was investigated by Mészáros
[7] who proved that d(n) ≤ 6

√
2
√
n. Our aim in this note is to investigate the maximum

diameter of path-pairable graphs when we impose restrictions on the number of edges and on
how the edges are distributed. To state our results, let us denote by Gm the family of graphs
with at most m edges. The following result determines d(n,Gm) for a certain range of m.

Theorem 1. If 2n ≤ m ≤ 1
4n

3/2 then

3

√

1

2
m− n ≤ d(n,Gm) ≤ 16 3

√
m.

We remark that the upper bound in the Theorem 1 holds for m in any range, but when
m ≥ 1

4n
3/2 the bound obtained by Mészáros [7] is sharper. Determining the behaviour of

the maximum diameter among path-pairable graphs on n vertices with fewer than 2n edges
remains an open problem. In particular, we do not know if the maximum diameter must be
bounded (see Section 5).

Following this line of research, it is very natural to consider the problem of determining the
maximum attainable diameter for other classes of graphs. For example, what is the behaviour
of the maximum diameter of path-pairable planar graphs? Although we could not give a
satisfactory answer to this particular question, we were able to do so for graphs which are c-
degenerate. As usual, we say that an n-vertex graph G is c-degenerate if there exists an ordering
v1, . . . , vn of its vertices such that |{vj : j > i, vivj ∈ E(G)}| ≤ c holds for all i = 1, 2, . . . , n.
We let Gc-deg denote the family of c-degenerate graphs. Clearly all c-degenerate graphs have
a linear number of edges, so Theorem 1 implies that d(n,Gc-deg) = O( 3

√
n). However, as the

next result shows, this bound is far from the truth.

Theorem 2. Let c ≥ 5 be an integer. Then

(2 + o(1))
log(n)

log( c
c−2)

≤ d(n,Gc-deg) ≤ (12 + o(1))
log(n)

log( c
c−2)

as n → ∞.

We remark that we have not made an effort to optimize the constants appearing in the
upper and lower bounds of Theorems 1 and 2.

1.1 The Cut-Condition

While path-pairable graphs need not be highly connected or edge-connected, they must satisfy
certain ‘connectivity-like’ conditions that we shall need in the remainder of the paper. We
say a graph G on n vertices satisfies the cut-condition if for every X ⊂ V (G), |X| ≤ n/2,
there are at least |X| edges between X and V (G) \X. Clearly, a path-pairable graph has to
satisfy the cut-condition. On the other hand, satisfying the cut-condition is not sufficient to
guarantee path-pairability in a graph; see [8] for additional details.

1.2 Organization and Notation

The proofs of the lower bounds in Theorems 1 and 2 require constructions of path-pairable
graphs with large diameter. In Section 2, we show how to obtain such graphs by proving
that a more general class of graphs is path-pairable. In Sections 3 and 4 we shall complete

2



the proofs of Theorems 1 and 2, respectively. Finally, we mention some open problems in
Section 5.

Our notation is standard. Thus, for a (simple, undirected) graph G we shall denote by
V (G) and E(G) the vertex set and edge set of G, respectively. We also let |G| and d(G) denote
the number of vertices and diameter of G, respectively. For a vertex x ∈ V (G) we let NG(x)
denote the neighbourhood of x in G, and we shall omit the subscript ‘G’ when no ambiguity
arises.

2 Path-pairable graphs from blowing up paths

In this section, we will show how to construct a quite general class of graphs which have high
diameter and are path-pairable. Let G be a graph with vertex set V (G) = {v1, . . . , vk}, and
let G1, . . . , Gk be graphs. We define the blown-up graph G(G1, . . . , Gk) as follows: replace
every vertex vi in G by the corresponding graph Gi, and for every edge vivj ∈ E(G) insert a
complete bipartite graph between the vertex sets of Gi and Gj .

Let Pk denote the path on k vertices. The following lemma asserts that if we blow-up a
path with graphs G1, . . . , Gk, such that Gi is path-pairable for i ≤ k−1, and certain properties
inherited from the cut-condition hold, then the resulting blow-up is path-pairable.

Lemma 3. Suppose that G1, . . . , Gk are graphs on n1, . . . , nk vertices, respectively, where Gi

is path-pairable for i ≤ k − 1. Let n =
∑k

i=1 ni and let ui =
∑i

j=1 nj for i = 1, . . . , k − 1.
Then Pk(G1, . . . , Gk) is path-pairable if and only if

ni · ni+1 ≥ min(ui, n − ui) (1)

holds for i = 1, . . . , k − 1.

Proof. For each i = 1, . . . , k, let Ui =
⋃i

j=1 V (Gj) so that ui = |Ui|. Now, if Pk(G1, . . . , Gk) is
path-pairable, then we may apply the cut-condition to the cut {Ui, V (G) \ Ui}. This implies
ni · ni+1 ≥ min(ui, n− ui) must hold for i = 1, . . . , k− 1. In the remainder, we show that this
simple condition is enough to yield the path-pairability of G := Pk(G1, . . . , Gk). Assume that
a pairing P of the vertices of G is given. If {u, v} ∈ P we shall say that u is a sibling of v (and
vice-versa). We shall define an algorithm that sweeps through the classes G1, G2, . . . , Gk and
joins each pair of siblings via edge-disjoint paths.

First we give an overview of the algorithm. We proceed by first joining pairs {u, v} ∈ P
via edge-disjoint paths such that u and v belong to different Gi’s, and then afterwards joining
pairs that remain inside some Gj (using the path-pairability of Gj). Before round 1 we use
the path-pairability property of G1 to join those siblings which belong to G1. In round 1 we
assign to every vertex u of G1 a vertex v of G2. If {u, v} ∈ P are siblings, then we simply
choose the edge uv. Then we join the siblings which are in G2 again using the path-pairability
property of G2. For those paths uv that have not ended (because {u, v} /∈ P) we shall continue
by choosing a new vertex w in G3 and continue the path with edge vw, and so on. Paths
which have not finished joining a pair of siblings we shall call unfinished ; otherwise, we say
the path is finished. The last edge which completes a finished path we shall call a path-ending
edge. During round i we shall first choose those vertices in Gi+1 which, together with some
vertex of Gi, form path-ending edges. At the end of round i, in Gi+1 we will have endpoints of
unfinished paths and perhaps also some endpoints of finished paths. Note that the vertices of
Gi+1 might be endpoints of several unfinished paths. For x ∈ Gi+1 let w(x) denote the number
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of unfinished paths P ∪ {x} with P ⊂ Ui at the end of round i which are to be extended by
a vertex of Gi+2 (including the single-vertex path x in the case when x was not joined to its
sibling in the latest round). Note that every such path corresponds to a yet not joined vertex
in Ui+1 as well as to another vertex yet to be joined lying in V (G) \ Ui+1. It follows that

∑

x∈Gi+1

w(x) ≤ min(ui+1, n− ui+1). (2)

Let us now be more explicit in how we make choices in each round. We shall maintain
the following two simple conditions throughout our procedure (the first of which has been
mentioned above):

(a) During round i (1 ≤ i ≤ k − 1), if w ∈ Gi is the current endpoint of the path which
began at some vertex u ∈ Ui (possibly u = w), and {u, v} ∈ P for v ∈ Gi+1, then we
join w to v. Informally, we choose path-ending edges when we can.

(b) w(x) ≤ ni+1 for all x ∈ Gi, for i = 1, . . . , k − 1.

The second condition above is clearly necessary in order to proceed during round i, as
|N(x) ∩Gi+1| = ni+1 for every x ∈ Gi, and hence we cannot continue more than ni+1 un-
finished paths through x.

We claim that as long as both of the above conditions are maintained, the proposed
algorithm finds a collection of edge-disjoint paths joining every pair in P. Both conditions
are clearly satisfied for i = 1 as w(x) ≤ 1 ≤ n2 for all x ∈ G1. Let i ≥ 2 and suppose
both conditions hold for rounds 1, . . . , i − 1. Our aim is show that an appropriate selection
of edges between Gi and Gi+1 exists in round i to maintain the conditions. We start round i
by choosing all path-ending edges with endpoints in Gi and Gi+1; this can be done since, by
induction, w(x) ≤ ni+1 for every x ∈ Gi. Observe that if i = k − 1 then the only remaining
siblings are in Gk. Then for every {u, v} ∈ P such that u, v ∈ Gk we can find a vertex w
in Gk−1 and join u, v with the path uwv. When i < k − 1 then the remaining paths can be
continued by assigning arbitrary vertices from Gi+1 (without using any edge multiple times).
We choose an assignment that balances the ‘weights’ in Gi+1. More precisely, let us choose
an assignment of the vertices that minimizes

∑

a∈Gi+1

w(a)2.

If for every x ∈ Gi+1 we have that w(x) ≤ ni+2 we are basically done. It remains to find
edge-disjoint paths inside Gi+1 for those pairs {x, y} ∈ P whose vertices belong to Gi+1. But
this is possible because of the assumption that Gi+1 is path-pairable.

Suppose then that in the above assignment there exists x ∈ Gi+1 with w(x) ≥ ni+2 + 1.
We first claim that, under this assignment, no other vertex of Gi+1 has small weight.

Claim 4. Every vertex y ∈ Gi+1 satisfies w(y) ≥ ni+2 − 1.

Proof. Suppose there is y ∈ Gi+1 such that w(y) ≤ ni+2− 2. Then, as w(x) > w(y)+ 2, there
exist vertices v1, v2 ∈ Gi such that certain paths ending at v1 and v2 were joined in round i to
x (x was assigned as the next vertex of these paths) but no paths at v1 or v2 were assigned y
as their next vertex. Observe that at least one of the edges v1x and v2x is not a path ending
edge which could have been replaced by the appropriate v1y or v2y edge, respectively. That
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operation would result in a new assignment with a smaller square sum
∑

a∈Gi+1
w(a)2, which

is a contradiction.

Therefore, we may assume w(y) ≥ ni+2 − 1 for all y ∈ Gi+1. In this case, partition the
vertices of Gi+1 into three classes:

X = {v ∈ Gi+1 : w(v) ≥ ni+2 + 1}
Y = {v ∈ Gi+1 : w(v) = ni+2 − 1}
Z = {v ∈ Gi+1 : w(v) = ni+2}.

Observe first that 1 ≤ |X| ≤ |Y |, since otherwise using (2) we have

ni+1ni+2 + 1 ≤
∑

s∈Gi+1

w(s) ≤ min(ui+1, n− ui+1),

contradicting condition (1). Notice also that the same argument as in Claim 4 shows that
w(v) ≤ ni+2 + 1 for every v ∈ Gi+1, hence we can actually write

X = {v ∈ Gi+1 : w(v) = ni+2 + 1} .

We will need the following claim which asserts that if there are siblings in Gi+1 then they
must belong to Z.

Claim 5. If {u, v} ∈ P and u, v ∈ Gi+1, then u, v ∈ Z.

Proof. We first show that every y ∈ Y is incident to a path-ending edge. Suppose, to the
contrary, that there is y ∈ Y such that there is no path-ending edge which ends at y. It
follows that there are at most w(y) vertices in Gi which had been joined to y. Hence we
can take any x ∈ X and find z ∈ Gi which was not joined to y, and such that xz is not a
path-ending edge. Replacing zx by zy would result in a smaller square sum

∑

a∈Gi+1
w(a)2,

which gives a contradiction.
Now, let {u, v} ∈ P such that u, v ∈ Gi+1. Since every y ∈ Y is incident to a path-ending

edge, we have that u, v 6∈ Y . Suppose, for contradiction, that u ∈ X. Then u was joined to
w(u) = ni+2+1 vertices in Gi, and hence for every y ∈ Y , there is z ∈ Gi which was joined to
u but not y. Replacing zu by zy would result in a smaller square sum

∑

a∈Gi+1
w(a)2, which

again gives a contradiction.

Finally, we shall show that we can reduce the weights of the vertices in X (and pair the
siblings inside Gi+1) using the path-pairable property of Gi+1. For every x ∈ X pick a different
vertex yx ∈ Y (which we can do, since |Y | ≥ |X|) and let P ′ = {{u, v} ∈ P : u, v ∈ Gi+1} ∪
{{x, yx} : x ∈ X}. Since Gi+1 is path-pairable, we can find edge-disjoint paths joining the
siblings in P ′ (note that by Claim 5 none of the pairs {x, yx} interfere with any siblings
{u, v} ∈ P with u, v ∈ Gi+1). Observe now that for every x ∈ X one path has been channeled
to a vertex y ∈ Y , thus the number of unfinished path endpoints at x has dropped to ni+2

and so the condition is maintained.

We close the section by pointing out that the condition that the graphs Gi are path-
pairable is necessary. We do this by giving an example of a blown-up path Pk(Gn1

, . . . , Gnk
)
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that satisfies the cut-conditions of Lemma 3 yet it is not path-pairable unless some of Gi’s are
path-pairable as well. For the sake of simplicity we set k = 5 and prove that G3 has to be
path-pairable. Let n = 2t2+ t for some even t ∈ N and let n1 = n5 = t2− t, n2 = n3 = n4 = t.
Clearly P5(Gn1

, . . . , Gn5
) satisfies the Condition 1 of Lemma 3. Observe, that any pairing of

the vertices in G1 ∪G2 with the vertices in G4 ∪G5 has to use all the edges between G3 and
G2 ∪G4. Therefore if we additionally pair the vertices inside G3, then the paths joining those
vertices can only use the edges in G3, therefore G3 has to be path-pairable.

3 Proof of Theorem 1

Take x, y ∈ V (G) such that d(x, y) = d(G) and let Vi be the set of vertices at distance exactly
i from x, for every i. Observe that V0 = {x} and y ∈ Vd(G). For i ∈ {1, . . . , d(G)} define ni to

be the size of Vi and let ui =
∑i

j=0 nj.
We need the following claim.

Claim 6. u2k+1 ≥
(

k+2
2

)

as long as u2k+1 ≤ n
2 .

Proof. We shall use induction on k. For k = 0 it is clear. Assume that u2k−1 ≥
(k+1

2

)

.
By the cut-condition we have that the number of edges between V2k and V2k+1 is at least
u2k−1, hence n2k · n2k+1 ≥ u2k−1 ≥

(

k+1
2

)

. By the arithmetic-geometric mean inequality,

n2k+n2k+1 ≥ 2
√

(

k+1
2

)

≥ k+1. As u2k+1 = u2k−1+n2k+n2k+1, we have u2k+1 ≥
(

k+2
2

)

.

Now, let A =
⋃⌊d/3⌋

i=0 Vi, B =
⋃2d/3

i=⌊d/3⌋+1 Vi, C =
⋃d

i=⌊2d/3⌋+1 Vi. Observe, that |A|, |C| ≥
min

{

n
2 ,

d2

100

}

, so joining vertices in A with vertices in C requires at least min
{

n
2 ,

d2

100

}

· d
3

edges. Hence,

min

{

n

2
,
d2

100

}

· d
3
≤ m,

which implies

d ≤ max

{

6m

n
, 16 3

√
m

}

.

Notice that whenever m ≤ 4n3/2 we have d ≤ 16 3
√
m. Let us remark that if m ≥ 1

4n
3/2 then

the upper bound is trivially satisfied by the general upper bound obtained in [7].
For the lower bound, let n and 2n ≤ m ≤ 1

4n
3/2 be given. For any natural number ℓ we

shall denote by Sℓ the star K1,ℓ−1 on ℓ vertices. Consider the graph G = Pk(G1, . . . , Gk) on n
vertices, where k =

⌊

3
√

m
2 − n

⌋

and G1 = G2 = · · · = Gk = Sk, Gk+1 = Sk2 , Gk+2 = S2, and
Gk+3 is an empty graph on n− 2k2 − 2 vertices.

Straightforward calculation shows that ui = i·k, for i ≤ k, uk+1 = 2k2, and uk+2 = 2k2+2.
Also n1n2 = n2n3 = . . . = nk−1nk = k2, nknk+1 = k3, nk+1nk+2 = 2k2, and nk+2nk+3 =
2n − 4k2 − 4. Therefore, for i ∈ {1, . . . , k + 1} we have ni · ni+1 ≥ ui ≥ min(ui, n − ui)
and nk+2 · nk+3 ≥ nk+3 ≥ min(uk+2, n − uk+2). Hence it follows from Lemma 3 that G is
path-pairable.

It is easy to check that the number of edges in G is at most 2n + 2k3 ≤ m. On the other
hand, the diameter of G is k + 2 ≥ 3

√

m
2 − n.
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4 Proof of Theorem 2

In this section, we investigate the maximum diameter a path-pairable c-degenerate graph on
n vertices can have. We shall assume that c is an integer and c ≥ 5.

Let G be a c-degenerate graph on n vertices with diameter d. We shall show first that
d ≤ 4 log c+1

c

(n)+3. Let x ∈ G be such that there is y ∈ G with d(x, y) = d. For i ∈ {0, . . . , d},
write Vi for the set of vertices at distance i from x. Let ni = |Vi| and ui =

∑i
j=0 nj. Observe

that |Vi| ≥ 1 for every i ∈ {0, . . . , d}. We can assume that u⌊ d

2
⌋ ≤ n

2 (otherwise we repeat the

argument below with V ′
i = Vd−i).

The result will easily follow from the following claim.

Claim 7. u2k+1 ≥
(

c+1
c

)k
as long as u2k+1 ≤ n

2 .

Let us assume the claim and prove the result. Letting k =
⌊ d

2
⌋−1

2 , we have that n/2 ≥

u2k+1 ≥
(

c+1
c

)

⌊d
2
⌋−1

2 . Hence d ≤ 4 log c+1

c

(n) + 3 = 4 log(n)

log( c+1

c
)
+ 3 ≤ 4 log(n)

log( c

c−2
)

log( c

c−2
)

log( c+1

c
)
+ 3 ≤

12 log(n)
log( c

c−2
) + 3, where the last inequality follows from the easy to check fact that

log( c

c−2
)

log( c+1

c
)
≤ 3,

for all c ≥ 5.

Proof of the Claim. We shall prove the claim by induction on k. The base case when k = 0
is trivial as u1 ≥ 2. Suppose the claim holds for every l ≤ k − 1. Since G is c-degenerate
we have that e(V2k, V2k+1) ≤ c (n2k + n2k+1). On the other hand, it follows from the cut-
condition that e(V2k, V2k+1) ≥ u2k = u2k−1 + n2k. Therefore, by the induction hypothesis,

we have n2k + n2k+1 ≥ 1
c (u2k−1 + n2k) ≥ 1

c

(

(

c+1
c

)k−1
+ n2k

)

≥ 1
c

(

c+1
c

)k−1
. Hence, u2k+1 =

u2k−1 +n2k +n2k+1 ≥
(

c+1
c

)k−1
+ 1

c

(

c+1
c

)k−1
=

(

1 + 1
c

) (

c+1
c

)k−1 ≥
(

c+1
c

)k
, which proves the

claim.

We shall prove the lower bound assuming c is an odd integer; when c is even we apply the
same argument for c− 1.

To do so, consider the graph G = P (G1, . . . , G2m′−1) for some m′ ∈ N, which we specify
later. Firstly, we shall define the sizes of Gi for i ∈ {1, . . . , 2m′ − 1}. To do so, let us define a
sequence {ni}i∈N where n2i =

c−1
2 and n2i+1 is defined recursively in the following way:

n2i+1 =









2

c− 1
·

2i
∑

j=1

nj









≤ 2

c− 1

2i
∑

j=1

nj + 1 (3)

Let m be the largest integer such that
∑m

j=1 nj ≤ n/2. We let m′ = m when m is odd

and m′ = m − 1 when m is even. Moreover, let |Gm′ | = n − 2
∑j=m′−1

j=1 nj and let |Gi| = ni

for 1 ≤ i < m′ and |Gm′+j| = |Gm′−j | for j ∈ {1, . . . ,m′ − 1}.
For all i ∈ {1, . . . 2m′ − 1} let Gi = Sni

be a star on ni vertices. It is easy to check
that the graph P2m′−1(G1, . . . , G2m′−1) is path-pairable by Lemma 3. It has diameter at least
2m − 4 and m ≥ log c+1

c−1

(n)(1 + o(1)). Again an easy verification shows that the graph G is

c-degenerate.
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5 Final remarks and open problems

We obtained tight bounds on the parameter d(n,Gm) when (2 + ǫ)n ≤ m ≤ 1
4n

3/2, for any
fixed ǫ > 0. It is an interesting open problem to investigate what happens when the number
of edges in a path-pairable graph on n vertices is around 2n. We ask the following:

Question 8. Is there a function f such that for every ǫ > 0 and for every path-pairable graph
G on n vertices with at most (2− ǫ)n edges, the diameter of G is bounded by f(ǫ)?

Another line of research concerns determining the behaviour of d(n,P), where P is the
family of planar graphs. Since planar graphs are 5-degenerate, it follows from Theorem 2
that the diameter of a path-pairable planar graph on n vertices cannot be larger than c log n.
This fact makes us wonder whether there are path-pairable planar graphs with unbounded
diameter.

Question 9. Is there a family of path-pairable planar graphs with arbitrarily large diameter?

The graph constructed in the proof of the lower bound in Theorem 2 when c = 5 is
not planar since it contains a copy of K3,3. Therefore, it cannot be used to show that the
diameter of a path-pairable planar graph can be arbitrarily large (note, however, that this
graph does not contain a K7-minor nor a K6,6-minor). We end by remarking that we were
able to construct an infinite family of path-pairable planar graphs with diameter 6, but not
larger.
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