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Abstract

A hole is an induced cycle with at least four vertices. A hole is even if
its number of vertices is even. Given a set L of graphs, a graph G is L-free
if G does not contain any graph in L as an induced subgraph. Currently, the
following two problems are unresolved: the complexity of coloring even hole-free
graphs, and the complexity of coloring {4K1, C4}-free graphs. The intersection
of these two problems is the problem of coloring {4K1, C4, C6}-free graphs. In
this paper we present partial results on this problem.
Keywords: Graph coloring, perfect graphs

1 Introduction

There has been recently keen interest in finding polynomial-time algorithms to op-
timally color graphs G that do not contain any graph in a list L as an induced
subgraphs. Particular attention is focused on graphs whose forbidden list L con-
tains graphs with four vertices, and recent papers of Lozin and Malyshev [15], and
of Fraser, Hamel, Hoàng, Holmes and LaMantia [10] discuss the state of the art on
this problem, identifying three outstanding classes: L = (4K1, claw), L = (4K1, claw,
co-diamond), and L = (4K1, C4). As a resolution of these cases is likely challenging, a
productive approach would be to consider increasing the number of graphs in L. But
it makes sense to ask, which L is an interesting one to consider? We are particularly
interested in cases that are slightly larger than the class L = (4K1, C4), which is one
of the unresolved cases. Before we introduce the problems we need some definitions:
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A hole is an induced cycle with at least four vertices. A hole is even if its number
of vertices is even. The problem of coloring even-hole-free graphs has been much
studied. A theorem of Addario-Berry, Chudnovsky, Havet, Reed, and Seymour [1]
shows that for an even-hole-free graph G, the chromatic number of G is at most two
times its clique number (the number of vertices in a largest clique of G). It is currently
not known whether even-hole-free graphs can be colored in polynomial time.

We offer the following four problems for consideration:

Problem 1.1 What is the complexity of coloring (4K1, C4)-free graphs?

This is the original problem, and is likely the most challenging.

Problem 1.2 What is the complexity of coloring even-hole-free graphs?

Problem 1.2 might even be NP-complete. Combining Problems 1.1 and 1.2, we get
the following problem:

Problem 1.3 What is the complexity of coloring (4K1, even hole)-free graphs?

This problem appears to be more tractable than the previous two. In this paper, we
study Problem 1.3. Since a 4K1-free graph does not contain a hole of length at least
8, Problem 1.3 is equivalent to the following:

Problem 1.4 What is the complexity of coloring (4K1, C4, C6)-free graphs?

Even though we have not been able to solve Problem 1.4, we have succeeded, in some
sense, in solving “half” of it, as follows. Consider a (4K1, C4, C6)-free graph G. We
may assume G is not perfect (there are known algorithms to color perfect graphs).
Thus G has to contain a C5 or C7. If G contains a C7, then our result shows that
G can be colored in polynomial time. The case where G contains a C5 but not a C7

is open. Investigation into this problem led us to a proof that there is a polynomial
time algorithm to color a (4K1, C4, C6, C5-twin)-free graph.

In Section 2, we discuss the background of the problem and state the main results.
In Section 3, we study (4K1, C4, C6)-free graphs that contain a C7 and show that
such graphs can be colored in polynomial time. In Section 4, we study (4K1, C4, C6)-
free graphs that contain a C5, but no C7. In Section 5, we give a polynomial time
algorithm to color a (4K1, C4, C6, C5-twin)-free graph. Finally, in Section 6, we dicuss
open problems related to our work.

2 Background and results

Before discussing our results in more detail, we need introduce a few definitions. Let
G be a graph. A colouring of a graph G = (V,E) is a mapping f : V → {1, . . . , k} for
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some nonnegative integer k such that f(u) 6= f(v) whenever uv ∈ E. The chromatic
number, denoted χ(G), is the minimum number of colors needed to colour a graph
G. VERTEX COLORING is the problem of determining the chromatic number of a
graph.

Consider the following operations to build a graph.

(i) Create a vertex u labeled by integer ℓ.

(ii) Disjoint union (i.e., co-join)

(iii) Join between all vertices with label i and all vertices with label j for i 6= j,
denoted by ηi,j (that is, add all edges between vertices of label i and label j).

(iv) Relabeling all vertices of label i by label j, denoted by ρi→j

The clique width of a graph G, denoted by cwd(G), is the minimum number of labels
needed to build the graph with the above four operations. It is well-known [8] that
if the clique width of a graph is bounded then so is that of its complement. Clique
widths have been intensively studied. In Rao [17], the following result is established.

Theorem 2.1 VERTEX COLORING is polynomial time solvable for graphs with
bounded clique width. ✷

We will need the folowing well known observation that is easy to establish (for exam-
ple, see [6]).

Observation 2.2 Let G be a graph and G′ be the graph obtained from G by removing
a constant number of vertices. Then G has bounded clique width if and only if G′ does.
✷

The symbol ω(G) denotes the number of vertices in a largest clique of G. A graph
G is perfect if for each induced subgraph H of G, we have χ(H) = ω(H). A hole is an
induced cycle of length at least 4, i.e. Ck for k ≥ 4. A hole is even or odd depending
on the parity of the vertices in the hole. An anti-hole is the complement of a hole.

Two important results are known about perfect graphs. The Perfect Graph Theo-
rem, proved by Lovász [14], states that a graph is perfect if and only if its complement
is. The Strong Perfect Graph Theorem, proved by Chudnovsky, Robertson, Seymour,
and Thomas [7], states that a graph is perfect if and only if it is odd-hole-free and
odd-anti-hole-free. Both of the above results were long standing open problems pro-
posed by Berge [3]. Grötschel, Lovász and Schrijver [12] designed a polynomial-time
algorithm for finding a largest clique and a minimum coloring of a perfect graph.

Suppose we want to color a (4K1, C4, C6)-free graph G. Note that G contains no
Cℓ for ℓ ≥ 8 because G is 4K1-free. By the result of Grötschel et al, we may assume
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C5 − Twin

Figure 1: The C5-twin

G is not perfect. The result of Chudnovsky et al implies G contains a C5 or C7 as an
induced subgraph (note that the anti-hole of length at least six contains a C4 and the
C5 is self-complementary.) If G contains a C7, then we will show that G has bounded
clique-width.

Theorem 2.3 Let G be (4K1, C4, C6)-free graph that contains a C7. Then G has
bounded clique width.

We will use Theorem 2.3 to prove the following theorem that is the main result
of this paper.

Theorem 2.4 VERTEX COLORING can be solved in polynomial time for the class
of (4K1, C4, C6)-free graphs that contain a C7.

Two adjacent vertices x, y of a graph G are twins if for any vertex z different from x
and y, xz is an edge if and only if yz is an edge. A hole-twin is the graph obtained from
a hole by adding a vertex that form twins with some vertex of the hole. Figure 1
shows the C5-twin. Hole-twins play an interesting role in graph theory. They are
among the forbidden induced subgraphs for line-graphs (Beineke [2]).

By adding the C5-twin to the list of forbidden induced subgraphs for our graph
class, we obtain the following theorem.

Theorem 2.5 VERTEX COLORING can be solved in polynomial time for the class
of (4K1, C4, C6, C5-twin)-free graphs.

We will rely on a theorem of Fraser et al [10]. To explain this theorem, we will

need to introduce a few definitions. Given sets of vertices X, Y , we write X 0 Y to
mean there is no edge between any vertex in X and any vertex in Y (also called a

co-join). Given sets of vertices X, Y , we write X 1 Y to mean there are all edges
between X and Y (also called a join).

Consider a partition P of the vertices of G into sets S1, S2, . . . , Sk such that each
Si induces a clique. A set Si is uniform to a set Sj if Si 0 Sj or Si 1 Sj . The
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set Si is uniform in P if every set Sj , i 6= j, is uniform to it. The partition P is
uniform if every set Si is uniform in P. A set Si is near-uniform if there is at most
one set Sj, i 6= j, that is not uniform to Si. The partition P is near-uniform if every
set Si is near-uniform. Thus, a uniform partition is near-uniform. A k-near-uniform
partition of G is a partition of the vertices of G into k near-uniform sets. In such a
partition, the pair of sets Si, Sj such that each set is not uniform to the other is call
a uniform-pair. The following is proved in Fraser et al [10].

Theorem 2.6 [10] Let G be a graph admitting a k-near-uniform partition1 such that
the uniform pairs are C4-free. Then we have cwd(G) ≤ 2k. ✷

We will establish the following theorem.

Theorem 2.7 Let G be (4K1, C4, C6)-free graph that contains a C7. Then G − C7

admits a k-uniform partition, for some constant k.

By the above discussion, Theorem 2.7 implies Theorem 2.4. We will prove Theo-
rem 2.7 in the next section.

3 When the graphs contain a C7

Assume that the graph G is (4K1, C4, C6)-free and contains a C7. In this section, we
examine the structure of the neighborhood of the C7. Then we will prove Theorem 2.7.

We will need first to establish a number of preliminary results. Given a hole, H ,
and a vertex x not in H , we say x is a k-vertex (for H) if x has exactly k neighbours
in H .

For all the claims below, we shall now assume that G contains an induced C7 with
vertices (1, 2, 3, 4, 5, 6, 7). The vertex numbers of the C7 are taken modulo 7.

Let

• Xi denote the set of 3-vertices adjacent to (i, i+ 1, i+ 2) in the C7,

• Yi denote the set of 3-vertices on (i, i+ 1, i+ 4) in the C7,

• Zi denote the set of 5-vertices on (i, i+ 1, i+ 2, i+ 3, i+ 4) in the C7, and

• W denote the set of 7-vertices in the C7.

We will show that the sets Xi, Yi, Zi,W form a partition of V (G)− C7.

1We note that the definition of near-uniform partition in [10] is incomplete. The sets Si’s must
be cliques for the theorem to hold.
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Observation 3.1 The C7 has no k-vertex in G for k = 0, 1, 2, 4, 6.

Proof. Suppose that there is a 0-vertex v for C7. This creates an induced 4K1 (v, i, i+
2, i+4), which is forbidden. Therefore, there is no 0-vertex. Now suppose that there
is a 1-vertex v that is adjacent to i. This creates an induced 4K1 (v, i+1, i+3, i+5),
which is forbidden. Therefore, there is no 1-vertex. Next, suppose that there is a 2
vertex v for C7. It is easy to see that v and some three vertices in the C7 form a
4K1, a contradiction. Consequently, there is no 2-vertex. Next, suppose that there
is a 4-vertex v for C7. Then G contains a C4 or C6, both of which are forbidden.
Therefore, there is no 4-vertex. Finally, suppose that there exists a 6-vertex v for C7.
Then, G contains an induced C4, which is forbidden. Therefore, there is no 6-vertex
for C7. ✷

It is a routine matter to verify the two observations below.

Observation 3.2 Let v be a 3-vertex for the C7. Then v ∈ Xi ∪ Yi for some i. ✷

Observation 3.3 Let v be a 5-vertex for the C7. Then v ∈ Zi for some i. ✷

The above three observations imply the following observation.

Observation 3.4 Let G′ be the graph obtained from G by removing the C7. Then
the sets Xi, Yi, Zi,W form a partition P of G′.

Our aim is to show that G′ has bounded clique width. In fact, we will show that
P is an uniform partition of G′.

We now examine the adjacencies between the sets of the partition P.

Observation 3.5 Each of the sets Xi, Yi, Zi,W of the partition P is a clique.

Proof. It is easy to see that if a set of P is not a clique then there is a C4. ✷

The next sequence of observations will imply that Xi is near-uniform in P.

Observation 3.6 Xi 1 Xi+1 ∪Xi+6

Proof. Suppose there are vertices x1 ∈ Xi and x2 ∈ Xi+1 such that x1x2 /∈ E. Then
there exists a 4K1 (x1, x2, i + 4, i + 6), which is forbidden. Therefore, Xi 1 Xi+1.

By symmetry, we have Xi 1 Xi+6. ✷

Observation 3.7 Xi 0 Xi+2 ∪Xi+3 ∪Xi+4 ∪Xi+5.
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Proof. Consider a vertex x1 ∈ Xi. Suppose there is a vertex x2 ∈ Xi+2 such that
x1x2 ∈ E. This creates a C6 (x1, x2, i+4, i+5, i+6, i), which is forbidden. Therefore,

we have Xi 0 Xi+2, and by symmetry Xi 0 Xi+5. Now suppose that there is a
vertex x3 ∈ Xi+3 such that x1x3 ∈ E. This creates a C4 (x3, x1, i+ 2, i+ 3), which is

forbidden. Therefore, we have Xi 0 Xi+3, and by symmetry, Xi 0 Xi+4. ✷

Observation 3.8 Xi 1 Yi ∪ Yi+1 ∪ Yi+4.

Proof. Consider a vertex x ∈ Xi. Suppose there is a vertex y ∈ Yi such that xy /∈ E.
This creates a 4K1 (x, y, i+ 3, i+ 5), which is forbidden. Therefore, Xi 1 Yi. Now
suppose there is a vertex y ∈ Yi+1 with xy /∈ E. This creates a 4K1 (x, y, i+3, i+6),

which is forbidden. Therefore Xi 1 Yi+1. Finally, suppose there is a vertex y ∈ Yi+4

with xy /∈ E. This creates a 4K1 (x, y, i+ 3, i+ 6), which is forbidden. Therefore Xi

1 Yi+4. Consequently, Xi 1 Yi ∪ Yi+1 ∪ Yi+4. ✷

Observation 3.9 Xi 0 Yi+2 ∪ Yi+3 ∪ Yi+5 ∪ Yi+6

Proof. Consider a vertex x ∈ Xi. Suppose there is a vertex y ∈ Yi+2 with xy ∈ E.
This creates a C4 (x, y, i+ 6, i), which is forbidden. Therefore, we have Xi 0 Yi+2,

and by symmetry, Xi 0 Yi+6. Now suppose that there is a vertex y ∈ Yi+3 with

xy ∈ E. This creates a C4 (x, y, i + 3, i + 2), which is forbidden. Therefore, Xi 0

Yi+3, and by symmetry, Xi 0 Yi+5. ✷

Observation 3.10 Xi 1 Zi ∪ Zi+1 ∪ Zi+4 ∪ Zi+5 ∪ Zi+6

Proof. Consider a vertex x ∈ Xi. Suppose there is a vertex z ∈ Zi such that xz /∈ E.
This creates a C4 (x, i, z, i + 2), which is forbidden. Therefore, we have Xi 1 Zi,

and by symmetry, Xi 1 Zi+5. Now suppose there is a vertex z ∈ Zi+1 such that
xz /∈ E. This creates a C6 (i, i + 6, i + 5, z, i + 2, x), which is forbidden. Therefore,

we have Xi 1 Zi+1, and by symmetry, Xi 1 Zi+4. Finally, suppose that there is a
vertex z ∈ Zi+6 such that xz /∈ E. This creates a C4 (x, i, z, i+2), which is forbidden.

Therefore, we have Xi 1 Zi+6, and we are done. ✷

Observation 3.11 Xi 0 Zi+2 ∪ Zi+3

Proof. Consider a vertex x ∈ Xi. Suppose there is a vertex z ∈ Zi+2 such that
xz ∈ E. This creates a C4 (x, z, i+ 6, i), which is forbidden. Therefore, Xi 0 Zi+2.
Next, suppose that there is a vertex z ∈ Zi+3 such that xz ∈ E. This also creates a
C4 (x, z, i+ 3, i+ 2), which is forbidden. Therefore, Xi 0 Zi+3. ✷
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Observation 3.12 Xi 1 W

Proof. Suppose that there are vertices x ∈ Xi and w ∈ W such that xw /∈ E. This
creates a C4 (i, x, i+ 2, w), which is forbidden. Therefore we have Xi 1 W . ✷

Observations 3.6–3.12 together imply the following lemma.

Lemma 3.13 For every i, the set Xi is uniform in the partition P. ✷

Next, we examine the sets Yi.

Observation 3.14 At most two of the sets Y1, Y2, . . . , Y7 can be non-empty. In par-
ticular, if Yi 6= ∅, then Yi+1 = Yi+2 = Yi+5 = Yi+6 = ∅, and we have Yi+3 6= ∅ or
Yi+4 6= ∅, but not both.

Proof. Suppose Yi 6= ∅. Let y be a vertex in Yi. Suppose the set Yi+1 contains a
vertex y1. If yy1 /∈ E, then there exists a 4K1 (y, y1, i+ 3, i+ 6), which is forbidden.
If yy1 ∈ E, then there is a C4 (y, y1, i + 5, i + 4), which is forbidden. So we have
Yi+1 = ∅, and by symmetry, Yi+6 = ∅. Now, suppose Yi+2 is non-empty and contains
a vertex y2. If yy2 ∈ E, then there is a C4 (y, i + 4, i + 3, y2), a contradiction. But
if yy2 /∈ E, then there exists a C6 (y, i+ 4, i+ 3, y2, i+ 6, i), a contradiction. So, we
have Yi+2 = ∅, and by symmetry, Yi+5 = ∅.

The first part of this proof shows that if Yi+3 6= ∅, then Yi+4 = ∅. So only one of
the two sets Yi+3, Yi+4 can be non-empty. ✷

Observation 3.15 Yi 1 Yi+3 ∪ Yi+4

Proof. Consider a vertex y ∈ Yi. Suppose there is a vertex y3 ∈ Yi+3 such that
yy3 /∈ E. There is a C4 (y, i, y3, i+ 4), a contradiction. So, we have Yi 1 Yi+3, and

by symmetry, Yi 1 Yi+4. ✷

Observation 3.16 If Yi 6= ∅, then Zi+5 = Zi+6 = ∅

Proof. Assume that Yi 6= ∅ and Zi+5 6= ∅. Consiser vertices y ∈ Yi and z ∈ Zi+5.
If yz ∈ E, then there exists a C4 (y, z, i + 5, i + 4), which is forbidden. However,
if yz /∈ E, then there exists a C6 (y, i, z, i + 2, i + 3, i + 4), which is also forbidden.
Therefore if Yi 6= ∅, then Zi+5 = ∅, and by symmetry, Zi+6 = ∅. ✷

Observation 3.17 Yi 1 W ∪ Zi ∪ Zi+1 ∪ Zi+3 ∪ Zi+4
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Proof. Consider a vertex y ∈ Yi. Let w ∈ W . If yw /∈ E, then there is a C4

(i, w, i+ 4, y), which is forbidden. Therefore, Yi 1 W .

Consider a vertex z ∈ Zi∪Zi+1∪Zi+3∪Zi+4. Then z(i+4) ∈ E, and z is adjacent
to a vertex i′ ∈ {i, i + 1}. If zy /∈ E, there there is a C4 (i′, y, i + 4, z), which is

forbidden. Therefore, Yi 1 Zi ∪ Zi+1 ∪ Zi+3 ∪ Zi+4. ✷

Observation 3.18 Yi 0 Zi+2

Proof.Consider vertices y ∈ Yi and z ∈ Zi+2 such that yz ∈ E. This creates a C4

(y, z, i+ 6, i), which is forbidden. Therefore Yi 0 Zi+2. ✷

Observations 3.14–3.18 together imply the following lemma.

Lemma 3.19 For every i, the set Yi is uniform in the partition P. ✷

Next, we examine the sets Zi.

Observation 3.20 If Zi 6= ∅, then Zi+2 = ∅ and Zi+5 = ∅.

Proof. Suppose that Zi 6= ∅. Also, suppose Zi+2 6= ∅. Consider vertices zi ∈ Zi and
zi+2 ∈ Zi+2. If zizi+2 ∈ E, then there is a C4 (zi, zi+2, i + 6, i), a contradiction. If
zizi+2 6∈ E, then there is a C4 (zi, i+4, zi+2, i+2), a contradiction. So Zi+2 is empty,
and by symmetry, Zi+5 is empty. ✷

Observation 3.21 There can exist at most 3 distinct sets of 5-vertices for C7.

Proof. Follows from Observation 3.20.

Observation 3.22 Zi 1 W ∪ Zi+1 ∪ Zi+3 ∪ Zi+4 ∪ Zi+6

Proof. Consider a vertex zi ∈ Zi and a vertex z ∈ V (G) − C7 with z 6= zi. If z
is adjacent to two non-adjacent vertices, say a and b, of the set {i, i + 1, i + 2, i +
3, i + 4}, then zzi ∈ E, for otherwise there is a C4 (z, a, zi, b). Observe that any
vertex in W ∪ Zi+1 ∪ Zi+3 ∪ Zi+4 ∪ Zi+6 is adjacent to two non-adjacent vertices of
{i, i+ 1, i+ 2, i+ 3, i+ 4}. The Observation follows. ✷

Observations 3.20–3.22 together imply the following lemma.

Lemma 3.23 For every i, the set Zi is uniform in the partition P. ✷
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We can now prove our main results.

Proof of Theorem 2.7. Let G be a (4K1, C4, C6)-free graph with a C7. Define the
sets Xi, Yi, Zi,W as above. Let G′ = G− C7. Observations 3.4 implies that the sets
Xi, Yi, Zi,W form a partition of G′. Lemmas 3.13, 3.19, and 3.23 show that each of
the sets Xi, Yi, Zi is uniform. Now the set W is also uniform because every other set
is uniform to W . Thus, the partition is uniform. ✷

Proof of Theorem 2.3. Let G be a (4K1, C4, C6)-free graph with a C7. The graph
G′ = G − C7 has bounded clique width by Theorem 2.7 and Theorem 2.6, G′ has
bounded clique width. Thus, G has bounded clique width by Observation 2.2. ✷

Proof of Theorem 2.4. Let G be a (4K1, even hole)-free graph with a C7. By Theo-
rem 2.3, G has bounded clique width. By Theorem 2.1, G can be optimally colored
in polynomial time. ✷

So, if our graphs contain a C7, we know how to color them. If they do not contain
a C7, then we know they must contain a C5, for otherwise they are perfect and we
would know how to color them. In the next section, we discuss the case of the C5.

4 When the graphs contains a C5

In this section, we assume G is (4K1, C4, C6)-free. For the all the claims below, we
will also assume that G contains an induced C5 with vertices (i, i+1, i+2, i+3, i+4).
Let R denote the set of 0-vertices for this C5, let Fi be the set of 1-vertices adjacent to
i, let Ti be the set of 2-vertices with neighbors (i, i+1), let Xi be the set of 3-vertices
with neighbors (i, i+ 1, i+ 2) and let W denote the set of 5-vertices.

The following observation is immediate.

Observation 4.1 The sets Fi, Ti, Xi, R,W form a partition of the vertex set of G−C5

✷

Observation 4.2 Each of Fi, Ti, Xi, R,W form a clique.

Proof. Consider two non-adjacent vertices x, y of G. If both x, y belong to Fi, then
x and y and some two non-adjacent vertices of the C5 form a 4K1, a contradiction.
Similarly, we can see that x, y cannot both belong to Ti, or to R. If x, y both belong
to Xi or to W , then x, y and some two non-adjacent vertices of C5 form a C4. ✷

Observation 4.3 R 1 Fi ∪ Ti.

Proof. Consider a vertex r ∈ R and a vertex s ∈ Fi ∪ Ti. If rs /∈ E, then r, s and
some two non-adjacent vertices in the C5 form a 4K1. ✷
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Observation 4.4 If Fi 6= ∅ then Fj = ∅ for all j 6= i.

Proof. Consider vertices fi ∈ Fi, fj ∈ Fj, with i 6= j. We must have fifj ∈ E, for
otherwise fi, fj and some two vertices in the C5 form a 4K1. If j = i+ 1, then there
is a C4 (fi, fj, j, i). So we have j 6= i + 1, and by symmetry, j 6= i − 1. If j = i + 2,
then there is a C6 (fi, fj , j, j + 1, j + 2, i). So we have j 6= i + 2, and by symmetry,
j 6= i− 2. ✷

Observation 4.5 Fi 1 Ti ∪ Ti+2 ∪ Ti+4.

Proof. Let f ∈ Fi, and let t ∈ Ti ∪ Ti+2. If fti /∈ E, then f, t and some two non-
adjacent vertices of the C5 form a 4K1. So Fi 1 Ti ∪ Ti+2. By symmetry (with the

case Ti), we have Fi 1 Ti+4. ✷

Observation 4.6 Fi 0 Ti+1 ∪ Ti+3.

Proof. Let f ∈ Fi, and let t ∈ Ti+1. If ft ∈ E, then there is a C4 (f, t, i+ 1, i). So we

have Fi 0 Ti+1, and by symmetry, Fi 0 Ti+3. ✷

Observation 4.7 Fi 0 Xi+1.

Proof. Let f ∈ Fi, and let x ∈ Xi+1. If fx ∈ E, then there is a C4 (f, t, i+ 1, i). So

we have Fi 0 Xi+1. ✷

We note that vertices of Fi may have neighbors and non-neighbors in Xi ∪Xi+3 ∪
Xi+4.

Observation 4.8 Ti 0 Tj for all j 6= i.

Proof. Consider vertices ti ∈ Ti, ti+1 ∈ Ti+1. If titi+1 ∈ E, then there is a C6

(ti, ti+1, i + 2, i + 3, i + 4, i). So we have Ti 0 Ti+1, and by symmetry, Ti 0 Ti+4.
Now consider a vertex ti+2 ∈ Ti+2. If titi+2 ∈ E, then there is a C4 (ti, i+1, i+2, ti+2).

So we have Ti 0 Ti+2, and by symmetry, Ti 0 Ti+3. ✷

Observation 4.9 Ti 0 Xi+2.

Proof. Consider vertices ti ∈ Ti, xi+2 ∈ Xi+2. If tixi+2 ∈ E, then there is a C4

(ti, xi+2, i+ 2, i+ 1). ✷

Observation 4.10 Xi 0 Xi+2.

Proof. Consider vertices xi ∈ Xi, xi+2 ∈ Xi+2. If xixi+2 ∈ E, then there is a C4

(xi, xi+2, i+ 4, i). ✷

In the next section, we will use the results of this section to prove Theorem 2.5.
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5 Clique cutset decomposition

In this section, we present a proof of Theorem 2.5. We will need to introduce defini-
tions and background for the problem.

Consider a graph G. A clique cutset of G is a set of vertices S such that S is a
clique and G− S is disconnected. Consider the following procedure to decompose G.
If G has a clique cutset C, then G is decomposed into subgraphs G1 = G[V1] and
G2 = G[V2] where V = V1 ∪ V2 and C = V1 ∩ V2 (G[X ] denotes the subgraph of G
induced by X for a subset X of vertices of V (G)). Given optimal colourings of G1, G2,
we can obtain an optimal colouring of G by identifying the colouring of C in G1 with
that of C in G2. In particular, we have χ(G) = max(χ(G1), χ(G2)). If Gi (i ∈ {1, 2})
has a clique cutset, then we can recursively decompose Gi in the same way. This
decomposition can be represented by a binary tree T (G) whose root is G and the two
children of G are G1 and G2, which are in turn the roots of subtrees representing the
decompositions of G1 and G2. Each leaf of T (G) corresponds to an induced subgraph
of G that contains no clique cutset; we will call such graph an atom. Algorithmic
aspects of the clique cutset decomposition are studied in Tarjan [18] and Whiteside
[19]. In particular, the decomposition tree T (G) can be constructed in O(nm) time
such that the total number atoms is at most (n− 1) [18] (Here, as usual, n, resp., m,
denotes the number of vertices, resp., edges, of the graph G). This discussion can be
summarized by the theorem below.

Theorem 5.1 ([18], [19]) Let G be a graph. If every atom of G can be colored in
polynomial time, then G can be colored in polynomial time. ✷

We will need the following theorem that illustrates the structure of (4K1, C4, C6, C5-
twin)-free graphs.

Theorem 5.2 Let G be a (4K1, C4, C6, C5-twin)-free graph. If G contains a C5, then
one of the following holds:

(i) G contains a clique cutset.

(ii) G contains a C7.

(iii) G has bounded clique width.

(iv) G is the join of a (possibly empty) clique and a C5. In this case, (iii) is also
satisfied.

Proof of Theorem 5.2. Let G be a (4K1, C4, C6, C5− twin)-free graph and suppose G
contains a C5. Assume that G contains no clique cutset and no C7, for otherwise we
are done. Define the sets Fi, Ti, Xi,W,R as above. Note that Xi = ∅ for all i because
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G contains no C5-twin. By Observation 4.4, at most one set Fi can be non-empty.
We will assume that this one set, it it exists, is F1. Define T = T1 ∪ . . . ∪ T5.

We will show that

R = ∅. (1)

Suppose R 6= ∅. Note that W ∪T ∪F1 is a cutset, separating R from the C5. Let C be
a minimal (R,C5)-separator of G that is contained in W ∪T ∪F1. By assumption, C
is not a clique. Consider two non-adjacent vertices a, b in C. By the minimality of C,
there is a chordless path P with endpoints being a, b, and interior vertices belonging
to R. Since R is a clique, P has at most three edges.

Suppose first that P has three edges. Enumerate the vertices of P as x, r1, r2, y
with ri ∈ R. Since r2 is not adjacent to a, by Observation 4.3, we have a ∈ W .
Similarily, we have b ∈ W . But by Observation 4.2, ab is an edge, a contradiction.

So P has two edges. Enumerate the vertices of P as x, r, y with r ∈ R. Note that
both a, b have neighbors in the C5. No vertex c ∈ C5 can be adjacent to both a, b, for
otherwise, there is a C4 (c, a, r, b). So we have a, b ∈ F1 ∪ T , in particular, a, b /∈ W .
Since ab is not an edge, by Observation 4.2, either a or b, or both, belongs to some
Ts. We may assume b ∈ Ts, that is, b is a 2-vertex.

Let i be a vertex in the C5 that is adjacent to a. Let j be a the vertex in C5

that is adjacent to b and is closest to i in the C5. Then P ′ = (a, i, i+ 1, . . . , j) is an
induced path. If P ′ has length at least four, the P ∪ P ′ induces a chordless cycle of
length at least six, a contradiction. So we know j = i + 1. Since b ∈ Ts and bi is
an edge, we know b(i + 3), b(i − 1) /∈ E. It follows that b(i + 2) ∈ E. The vertex a
may or may not be adjacent to i − 1. If a(i − 1) ∈ E, let P ′′ be the chordless path
b, i+ 2, i+ 3, i− 1, a; otherwise, let P ′′ be the chordless path b, i+ 2, i+ 3, i− 1, i, a.
Then P ′′ and r together induces a C6 or C7, a contradiction. We have establised (1).

Next, we claim that

F 6= ∅. (2)

Suppose F = ∅. If T = ∅, then G is the join of W and the C5, and we are done.
(Note that in this case G has clique width three). We may assume some Ti is not
empty. By Observation 4.8, the vertices in Ti have no neighbors in Tj with i 6= j. So
W ∪{i, i+1} is a clique cutset separating Ti from {i+2, i+3, i+4}, a contradiction.
We have established (2).

Now, we may assume F = F1 is not empty. Suppose T2 6= ∅. By Observations 4.8
and 4.6, T2’s neighbors belong to W ∪ {2, 3}. But then W ∪ {2, 3} is a clique cutset
of G, a contradiction. So we have T2 = ∅, and by symmetry, T4 = ∅.

Suppose that T3 6= ∅. If |T3| ≥ 2, then there is a C5-twin (f, 1, 2, 3, t, t′) for any
f ∈ F1 and t, t′ ∈ T3 (by Observation 4.5, f is adjacent to t, t′). So we have |T3| = 1.
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If T1 6= ∅, then there is a C5-twin (f, t3, 3, 2, t1, 1) for any f ∈ F1, t1 ∈ T1, and t3 ∈ T3.
So we have T1 = ∅, and by symmetry, T5 = ∅. Consider the graph G′ obtained from
G by removing the six vertices of C5 ∪ T3. The partition W,F1 is a near-uniform
partition of G′. By Theorem 2.6, G′ has bounded clique width. By Observation 2.2,
G has bounded clique width.

So, we may assume that T3 = ∅. If T1 = ∅, then {1, 5} ∪ W is a clique cutset
separation F1 ∪ T5 from {2, 3, 4}, a contradictionl. So we have T1 6= ∅, and by
symmetry, T5 6= ∅. Consider vertices t5 ∈ T5, f ∈ F1, t1 ∈ T1. By Observations 4.8
and 4.5, we have ft5, f t1 ∈ E, and t1t5 /∈ E. Now, there is a C7 (t5, f, t1, 2, 3, 4, 5)
and so (ii) holds. ✷

We are now in position to prove Theorem 2.5.

Proof of Thereom 2.5. Let G be a (4K1, C4, C6, C5-twin)-free graph. We may assume
that G is not perfect, for otherwise, we may use the algorithm of [12] to color G.
Since G is C4-free, G contains no anti-hole of length at least six. So G must contain a
C5 or C7. If G contains a C7, then we are done by Theorem 2.4. So, we may assume
that G contains a C5, but no C7. By Theorem 5.1, we only need to show that every
atom of G can be colored in polynomial time. Let A be an atom of G (an induced
subgraph with no clique cutset). By Theorem 5.2, A has bounded clique width, thus
it can be colored in poylynomial time by Theorem 2.1. ✷

6 Conclusions

In this paper, we studied the complexity of VERTEX COLORING for (4K1, C4, C6)-
free graphs. We showed the problem admits a polynomial time algorithm when the
graph in our class has a C7. We have not solved the problem when the graph contains
a C5. We leave this as an open problem. In addition, we designed a polynomial time
algorithm for VERTEX COLORING for (4K1, C4, C6, C5-twin)-free graphs. We note
that the more general problem to color a (4K1, C4)-free graph in polynomial time is
still open.
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