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Degree lists and connectedness are 3-reconstructible for

graphs with at least seven vertices
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Abstract

The k-deck of a graph is the multiset of its subgraphs induced by k vertices. A

graph or graph property is l-reconstructible if it is determined by the deck of subgraphs

obtained by deleting l vertices. We show that the degree list of an n-vertex graph is

3-reconstructible when n ≥ 7, and the threshold on n is sharp. Using this result, we

show that when n ≥ 7 the (n − 3)-deck also determines whether an n-vertex graph is

connected; this is also sharp. These results extend the results of Chernyak and Manvel,

respectively, that the degree list and connectedness are 2-reconstructible when n ≥ 6,

which are also sharp.

MSC Codes: 05C60, 05C07
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1 Introduction

A card of a graph G is a subgraph of G obtained by deleting one vertex. Cards are unlabeled,

so only the isomorphism class of a card is given. The deck of G is the multiset of all cards

of G. A graph is reconstructible if it is uniquely determined by its deck. The famous

Reconstruction Conjecture was first posed in 1942.
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Conjecture 1.1 (The Reconstruction Conjecture; Kelly [8, 9], Ulam [20]). Every graph

having more than two vertices is reconstructible.

The two graphs with two vertices have the same deck. Graphs in many families are

known to be reconstructible; these include disconnected graphs, trees, regular graphs, and

perfect graphs. Surveys on graph reconstruction include [3, 4, 10, 11, 12].

Various parameters have been introduced to measure the difficulty of reconstructing a

graph. Harary and Plantholt [7] defined the reconstruction number of a graph to be the

minimum number of cards from its deck that suffice to determine it, meaning that no other

graph has the same multiset of cards in its deck (surveyed in [1, 16]). Kelly looked in

another direction, considering cards obtained by deleting more vertices. He conjectured a

more detailed version of the Reconstruction Conjecture.

Conjecture 1.2 (Kelly [9]). For l ∈ N, there is an integer Ml such that any graph with at

least Ml vertices is reconstructible from its deck of cards obtained by deleting l vertices.

The original Reconstruction Conjecture is the claim M1 = 3.

A k-card of a graph is an induced subgraph having k vertices. The k-deck of G, denoted

Dk(G), is the multiset of all k-cards. When discussing reconstruction from the k-deck, we

will refer to k-cards simply as cards.

Definition 1.3. A graph G is k-deck reconstructible if Dk(H) = Dk(G) implies H ∼= G. A

graph G (or a graph invariant) is l-reconstructible if it is determined by D|V (G)|−l(G) (agreeing

on all graphs having that deck). The reconstructibility of G, written ρ(G), is the maximum

l such that G is l-reconstructible.

For an n-vertex graph, “k-deck reconstructible” and “l-reconstructible” have the same

meaning when k + l = n. Kelly’s conjecture is that for any l ∈ N, all sufficiently large

graphs are l-reconstructible. Let K ′
1,3 and K ′′

1,3 be the graphs obtained from the claw K1,3

by subdividing one or two edges, respectively. The 5-vertex graphs C4 + K1 and K ′
1,3 are

not 2-reconstructible, since they have the same 3-deck. Having checked by computer that

every graph with at least six and at most nine vertices is 2-reconstructible, McMullen and

Radziszowski [14] asked whether M2 = 6. With computations up to nine vertices, Rivshin

and Radziszowski [17] conjectured Ml ≤ 3l.

Some results about reconstruction have been extended to the context of reconstruction

from the k-deck. For example, almost every graph is reconstructible from any set of three

cards in the deck of cards obtained by deleting one vertex (see [2, 6, 15]). Spinoza and

West [18] proved more generally that for l = (1 − o(1)) |V (G)| /2, almost all graphs are

l-reconstructible using only
(

l+2
2

)

cards that omit l vertices. Among other results, they also

determined ρ(G) exactly for every graph G with maximum degree at most 2.

Since each induced subgraph with k−1 vertices arises exactly n−k+1 times by deleting

one vertex from a member of Dk(G), we have the following.
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Observation 1.4. For any graph G, the k-deck Dk(G) determines the (k−1)-deck Dk−1(G).

By Observation 1.4, information that is k-deck reconstructible is also j-deck recon-

structible when j > k. This motivates the definition of reconstructibility; if G is l-recon-

structible, then G is also (l − 1)-reconstructible, so we seek the largest such l.

Manvel [13] proved for n ≥ 6 that the (n − 2)-deck of an n-vertex graph determines

whether the graph satisfies the following properties: connected, acyclic, unicyclic, regular,

and bipartite. For the first three of these properties, sharpness of the threshold on n is shown

by the graphs C4+P1 and K ′
1,3 mentioned above. Spinoza and West [18] extended Manvel’s

result by showing that connectedness is 3-reconstructible when n ≥ 25. Using a somewhat

different approach, we extend their result.

Theorem 1.5. For n ≥ 7, connectedness is 3-reconstructible for n-vertex graphs, and the

threshold on n is sharp.

The threshold is sharp because C5+P1 and K ′′
1,3 have the same 3-deck. For general l, the

known upper and lower bounds on the threshold for n to guarantee that connectedness of

n-vertex graphs is l-reconstructible are quite far apart. Spinoza and West [18] proved that

connectedness is l-reconstructible when n > 2l(l+1)2 . As a lower bound, we know only that

n > 2l is needed, since Cl+1 +Pl−1 and P2l have the same l-deck [18]. Indeed, Pn is the only

n-vertex graph whose reconstructibility is known to be less than n/2.

One of the first easy results in ordinary reconstruction is that the degree list of a graph

with at least three vertices is 1-reconstructible. Manvel [13] showed that the degree list

is reconstructible from the k-deck when the maximum degree is at most k − 2. With no

restriction on the maximum degree, Taylor showed that the degree list is reconstructible

from the k-deck when the number of vertices is not too much larger than k, regardless of the

value of the maximum degree.

Theorem 1.6 (Taylor [19]). If l ≥ 3 and n ≥ g(l), then the degree list of any n-vertex graph

is determined by its (n− l)-deck, where

g(l) = (l + log l + 1)

(

e +
e log l + e + 1

(l − 1) log l − 1

)

+ 1

and e denotes the base of the natural logarithm. Thus the degree list is l-reconstructible when

n > el +O(log l).

For small l, one can obtain exact thresholds. Chernyak [5] proved that the degree list is

2-reconstructible when n ≥ 6; again the example of C5 + P1 and K ′
1,3 shows that this is

sharp. We extend this to 3-reconstructibility.

Theorem 1.7. For n ≥ 7, any two graphs of order n that have the same (n− 3)-deck have

the same degree list, and this threshold on n is sharp.
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Again the example of C5 + P1 and K ′′
1,3 proves sharpness. We use Theorem 1.7 as a tool

in the proof of Theorem 1.5. With Chernyak’s result being somewhat inaccessible, we also

obtain it and Manvel’s result on 2-reconstructibility of connectedness as corollaries of our

results.

2 3-reconstructibility of degree lists

We begin with a basic counting tool used also by Manvel [13] and by Taylor [19]. In a graph

G, we refer to a vertex of degree j as a j-vertex.

Lemma 2.1. Let φ(j) denote the total number of j-vertices over all cards in the k-deck Dk

of an n-vertex graph G. Letting ai denote the number of i-vertices in G (and l = n− k),

φ(j) =

j+l
∑

i=j

ai

(

i

j

)(

n− 1− i

k − 1− j

)

. (1)

Proof. In each card, each vertex counted by φ(j) has degree at least j in G. When that degree

is i, the vertex in the reconstructed graph contributes exactly
(

i
j

)(

n−1−i
k−1−j

)

to the computation

of φ(j). This contribution is 0 when k − 1 − j > n − 1 − i; the vertex then does not have

enough nonneighbors in the full graph to occur with degree exactly j in a card. Thus we

require i ≤ n− k + j = l + j. �

Corollary 2.2 (Manvel [13]). From the k-deck of a graph and the numbers of vertices with

degree i for all i at least k, the degree list of the graph is determined.

Proof. Since the k-deck determines the (k − 1)-deck, using induction it suffices to show

that knowing both Dk(G) and ai for i ≥ k determines ak−1. Simply solve for ak−1 in the

expression (1) for φ(k − 1) obtained by setting j = k − 1. �

With these tools, we prove Theorem 1.7, which we restate.

Theorem (1.7). For n ≥ 7, any two graphs of order n that have the same (n−3)-deck have

the same degree list, and this threshold on n is sharp.

Proof. For sharpness, the 3-decks of both C5 +K1 and K ′′
1,3 consist of five copies of P3, ten

copies of P2 + P1, and five copies of 3P1.

Given n ≥ 7, let D be the (n − 3)-deck of an n-vertex graph. We show that all recon-

structions from D have the same degree list.

Let G and H be reconstructions from D. Since D determines the 2-deck, we know the

common number of edges in G and H ; let it bem. We may assume m ≤ 1
2

(

n
2

)

, since otherwise

we can analyze the complements of G and H .
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We will use repeatedly the fact that any t vertices whose degrees sum to at least s are

together incident to at least s−
(

t
2

)

edges.

Let ai and bi be the numbers of i-vertices in G and H , respectively, and let ci = ai − bi.

The computation in (1) is valid using either G or H , producing the same value φ(j) from D.

Hence the difference of the two instances of (1) yields

0 =

j+3
∑

i=j

ci

(

i

j

)(

n− 1− i

n− 4− j

)

, (2)

since here k = n− 3. We will be interested in particular in the cases j = n− 4 (dominating

vertices on cards) and j = n− 5, which we write explicitly as

cn−4 + (n− 3)cn−3 +

(

n− 2

2

)

cn−2 +

(

n− 1

3

)

cn−1 = 0 (3)

and

4cn−5 + 3(n− 4)cn−4 + 2

(

n− 3

2

)

cn−3 +

(

n− 2

3

)

cn−2 = 0. (4)

The observation of Manvel (Corollary 2.2) implies that if G and H have different degree

lists, then ci 6= 0 for some i with i ≥ n− 3. Let h be the largest such index. By symmetry,

we may assume ch < 0. We consider cases depending on the value of h.

Case 1: h = n−3. In this case cn−1 = cn−2 = 0 and cn−3 < 0. By (3), cn−4+(n−3)cn−3 =

0. Since 2(n − 3) > n when n ≥ 7, we have cn−3 = −1 and cn−4 = n − 3. Now (4)

implies cn−5 = −(n − 3)(n − 4)/2. Thus H has at least 1 + (n − 3)(n − 4)/2 vertices, but

n ≥ 1 + (n − 3)(n − 4)/2 requires n ≤ 7. Hence n = 7 and H has degree list exactly

(4, 2, 2, 2, 2, 2, 2), and G has no vertices of degree 2 or at least 4. Furthermore cn−4 = n− 3,

so G has exactly four vertices with degree 3 and cannot reach the same degree-sum as H .

Case 2: h = n − 2. Now cn−1 = 0 and cn−2 < 0. Let cn−2 = −r. By (3), cn−4 +

(n− 3)cn−3 = r
(

n−2
2

)

, so cn−4

n−3
+ cn−3 = (n− 2) r

2
. With r ≥ 2 and n ≥ 7 and cn−4+ cn−3 ≤ n,

this can only be satisfied when r = 2, cn−3 = n − 2, and cn−4 = 0. Since m ≤ 1
2

(

n
2

)

, the

degree-sum is at most
(

n
2

)

; hence (n− 2)(n− 3) ≤ 1
2
n(n− 1), which requires n < 8. Since we

have obtained (c5, c4, c3) = (−2, 5, 0), (4) yields 4c2 =
(

5
3

)

· 2 − 2
(

4
2

)

· 5 = −40; this requires

c2 = −10, a contradiction when n = 7. Hence we conclude r = 1.

With r = 1, we have cn−4 + (n− 3)cn−3 =
(

n−2
2

)

. Hence

cn−3 =
n− 2

2
−

cn−4

n− 3
. (5)
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Substituting into (4) yields

4cn−5 =

(

n− 2

3

)

− 2

(

n− 3

2

)

cn−3 − 3(n− 4)cn−4

= −
(n− 2)(n− 3)(n− 4)

3
− 2(n− 4)cn−4 (6)

Since cn−3 must be an integer, by (5) there are not many possibilities for cn−4. Let t =
cn−4

n−3
.

Since |cn−4| ≤ n, we have t ∈ {1, 0,−1} when n is even, and t ∈ {1/2,−1/2} when n is odd.

Also (6) simplifies to −cn−5 =
(n−3)(n−4)

12
[n− 2 + 6t].

With cn−5 ≥ −n and n ≥ 7, the possibilities that remain for (n, t) are (7,−1/2), (8,−1),

and (10,−1). Note that cn−3 =
n−2
2

− t. In the even cases, cn−3 = n/2. When n = 10, five

7-vertices are together incident to at least 25 edges, which is more than 1
2

(

10
2

)

.

When n = 8, four 5-vertices in G are together incident to at least 14 edges, which is

the maximum allowed, so there can be no other edges or other 5-vertices, the four 5-vertices

induce K4, and eight edges join these vertices to the rest. Since cn−4 = −5, in H the vertices

of degree at least 4 already contribute 26 to the degree-sum, so H has no 3-vertex. With

cn−5 = 0, also G has no 3-vertex. Hence the degree list of G is (5, 5, 5, 5, 2, 2, 2, 2). With

(c5, c4, c3) = (4,−5, 0), applying (2) with j = 2 now yields c2 = 5, a contradiction.

When n = 7, we have t = −1/2, and (c2, c3, c4, c5, c6) = (−2,−2, 3,−1, 0). Hence
∑6

i=2 ici = −3, and having equal degree-sum requires c1 = 3. Now H has six vertices with

degrees (5, 3, 3, 2, 2, 0) and G has six vertices with degrees (4, 4, 4, 1, 1, 1), and they each have

one more vertex of the same odd degree. Since the degree list of G must be realizable, the

only choice is (4, 4, 4, 3, 1, 1, 1) for G and (5, 3, 3, 3, 2, 2, 0) for H . Now G is realized only by

adding three pendant edges to K4, so K4 is a card in D, which can be obtained from H

only on the four vertices of high degree. Thus H consists of copies of K4 and K3 sharing

one vertex, plus an isolated vertex. Being the union of three complete graphs, H has no

independent set of size 4, but G does have such a set, so their 4-decks cannot be equal.

Case 3: h = n− 1. If cn−2 ≥
n+1
3
, then m ≥ n+1

3
(n− 2)− 1

2
n+1
3

n−2
3

= 5
18
(n + 1)(n− 2).

Since this exceeds 1
2

(

n
2

)

when n ≥ 7, we conclude cn−2 ≤ n/3.

Let r = −cn−1. If r ≥ 2, then (3) and cn−2 ≤ n/3 together yield cn−4 + (n − 3)cn−3 ≥

2
(

n−1
3

)

− n
3

(

n−2
2

)

= (n−2)2(n−3)
6

. The contribution to degree-sum in G from vertices of degrees

n− 4 and n− 3 is now at least (n−2)2(n−3)
6

, which exceeds
(

n
2

)

when n ≥ 8. Hence n = 7, but

then having two 6-vertices in H requires at least 11 edges (more than 1
2

(

7
2

)

), a contradiction.

Thus we may assume r = 1.

With r = 1, (3) yields cn−4 + (n − 3)cn−3 +
(

n−2
2

)

cn−2 =
(

n−1
3

)

. If cn−2 ≤ 0, then

cn−4+(n−3)cn−3 ≥
(

n−1
3

)

. Dividing by n−3 and using cn−4+cn−3 ≤ n yields n ≥ (n−1)(n−2)
6

,

which requires n < 9. If n = 8, then c6 ≤ 0 simplifies (3) to c4 + 5c5 ≥ 35, but ai ≥ ci and

m ≤ 1
2

(

n
2

)

yield 28 ≥ 4a4 + 5a5 ≥ c4 + 5c5. If n = 7, then (3) simplifies to c3 + 4c4 ≥ 20,
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but m ≤ 10 yields 3a3 + 4a4 ≤ 20. Since ai ≥ ci, we conclude c3 ≤ 0 and c4 ≥ 5. With at

most 10 edges, G = K5 + 2K1. Now D has five cards that are K4. With only four edges not

incident to its dominating vertex, H cannot have five such cards. We conclude cn−2 ≥ 1.

With an−2 ≥ cn−2 ≥ 1, we now break into subcases by the value of cn−2. We have already

proved cn−2 ≤ n/3. Let x = n−1
3

− cn−2, so x ≥ −1/3 and (3) yields

cn−4 + (n− 3)cn−3 = x

(

n− 2

2

)

. (7)

Substituting (7) into (4) yields

cn−5 =
1

72
(n− 3)(n− 4)[36cn−3 − (n− 2)(24x+ n− 1)]. (8)

Subcase 3.1: x ≥ 1. If cn−3 ≥
n−2
2
, then with an−2 ≥ 1 the vertices of degrees n− 2 and

n− 3 in G are incident to at least n−2
2
(n− 3)+ (n− 2)−

(

n/2
2

)

edges. Hence m ≥ (n−2)(3n−4)
8

;

this exceeds 1
2

(

n
2

)

when n ≥ 7. If cn−3 ≤ n−3
2
, then cn−4 ≥

(

n−2
2

)

− (n − 3)n−3
2

= n−3
2
,

by (7). Also cn−3 ≥ 1, since otherwise (7) yields cn−4 ≥
(

n−2
2

)

≥ n. If an−3 = 1, then

cn−4 ≥
(

n−2
2

)

− (n− 3) = (n−3)(n−4)
2

, again too many vertices when n ≥ 7 (since an−2 ≥ 1).

Hence an−3 ≥ 2. Now m ≥ n+3
2
(n− 4) + 4 −

(

(n+3)/2
2

)

. This quantity exceeds 1
2

(

n
2

)

when

n ≥ 9. For n = 8, we have a4 ≥ 3, a5 ≥ 2, a6 ≥ 1, yielding degree-sum already 28, so G

has degree list (6, 5, 5, 4, 4, 4, 0, 0), but degree 6 forbids two isolated vertices. For n = 7, we

have an−4 ≥ 2, so even degree-sum at most 20 requires degree list (5, 4, 4, 3, 3, 1, 0). To avoid

higher degree-sum, ai = ci for i ∈ {5, 4, 3, 1}. Hence bi = 0 for these values. Now H having

one 6-vertex requires b2 = 7 to reach degree-sum 20, contradicting n = 7.

Subcase 3.2: x ∈ {2
3
, 1
3
}. If cn−3 ≤ 2, then cn−5 < −n when n ≥ 9 by (8), a contradiction.

If x = 2
3
, then cn−2 = n−3

3
∈ N, so n ≥ 9. If x = 1

3
, then cn−2 = n−2

3
∈ N, so n ≥ 8.

Setting n = 8 and x = 1
3
and cn−3 ≤ 1 in (8) yields cn−5 ≤ −15, so cn−3 = 2. Now (7) yields

cn−4 + 5 · 2 = 5, so c4 = −5. With c3 + 3c4 + 5c5 + 5c6 = 0 by (4), we have c3 = −5. Now H

has at least 10 vertices, a contradiction.

Hence cn−3 ≥ 3. Since also cn−2 ≥
n−3
3
, the number of edges in G incident to vertices of

degree at least n−3 is at least n+6
3
(n−2)−3−

(

(n+6)/3
2

)

, which simplifies to 5
18
(n+6)(n−3)−3

and is more than 1
2

(

n
2

)

when n ≥ 8.

Subcase 3.3: x = 0. Note that cn−2 = n−1
3

∈ Z. By (7), cn−4 = −(n − 3)cn−3, so

−1 ≤ cn−3 ≤ 1. By (8), cn−5 =
(n−3)(n−4)

72
[36cn−3− (n−1)(n−2)]. With cn−3 ≤ 1, this yields

cn−5 < −n when n ≥ 10, a contradiction. Since cn−2 ≡ 1 mod 3, only n = 7 remains.

With n = 7, the expressions above reduce to c5 = 2, c3 = −4c4, and c2 = 6c4 − 5, with

−1 ≤ c4 ≤ 1. If c4 = −1, then c2 = −11 < −7. If c4 = 1, then G has three vertices of

degrees 4 and 5 such that the number of edges incident to them is at least 3 · 4 + 2 −
(

3
2

)

,

which equals 11 and exceeds 1
2

(

7
2

)

.
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The remaining case is c4 = c3 = 0 and c2 = −5, also c5 = 2 and c6 = −1. Since

we know the 2-deck, G and H have the same degree-sum; that is,
∑6

i=0 ici = 0. We have
∑6

i=0 ici = c1 − 10 + 10− 6; hence c1 = 6. Now a5 ≥ 2 and a1 ≥ 6, which contradicts n = 7.

Subcase 3.4: x = −1
3
. Here cn−2 =

n
3
, so n ≥ 9. The number of edges incident to vertices

of degree at least n− 2 in G is at least n
3
(n − 2)− 1

2
n
3
n−3
3
, which exceeds 1

2

(

n
2

)

when n > 9

and equals it when n = 9. For n = 9 with x = −1
3
, (7) reduces to c5 + 6c6 = −7 and (8)

reduces to c4 = 15c6, which requires c6 = 0. Hence b5 ≥ −c5 = 7, which with b8 = 1 gives H

degree-sum at least 43, contradicting m = 18. �

Using Theorem 1.7, we present an alternative proof of the result by Chernyak on the

threshold for 2-reconstructibility of the degree list.

Corollary 2.3 (Chernyak [5]). The degree list of an n-vertex graph is 2-reconstructible when-

ever n ≥ 6, and this is sharp.

Proof. Since the (n−2)-deck determines the (n−3)-deck, it is immediate from Theorem 1.7

that the degree list is 2-reconstructible when n ≥ 7. By the example of C4 +K1 and K ′
1,3,

n ≥ 5 is not sufficient. It remains only to consider n = 6.

Let G and H be two 6-vertex graphs having the same 4-deck D but different degree lists.

Let m = |E(G)| = |E(H)| (we know the 2-deck). Since the k-deck determines the k-deck of

the complement and
(

6
2

)

= 15, we may assume m ≤ 7. Define ai, bi, ci, h as in Theorem 1.7.

That is, with k = 4, different degree lists in G and H require a largest h with h ≥ k such

that ah 6= bh, and by symmetry we have ch = ah − bh < 0. We use the equation for φ(3),

which counts dominating vertices in the cards of the 4-deck:

c3 + 4c4 + 10c5 = 0. (9)

Case 1: h = 5. We have −c5 = 1, because two 5-vertices in H already force m ≥ 9.

Thus 4c4 + c3 = 10, by (9). If c4 ≥ 3, then m ≥ 3 · 4 −
(

3
2

)

= 9. If c4 = 2, then also c3 = 2

and m ≥ 2 · 4 + 2 · 3−
(

4
2

)

= 8. However, m ≤ 7. If c4 < 2, then G has too many vertices.

Case 2: h = 4. Here c3 = −4c4. With n = 6, we have c4 = −1 and c3 = 4. With degree-

sum at most 14, the degree list of G is (3, 3, 3, 3, x, y) with (x, y) ∈ {(2, 0), (1, 1), (0, 0)}. Thus

also b4 = 1 and b3 = 0, so H has only one vertex with degree exceeding 2. If (x, y) = (0, 0),

then G = K4 + 2K1 and K4 is a card, but K4 is not contained in H .

Hence m = 7, and the degree list of H must be (4, 2, 2, 2, 2, 2). The only such graph

consists of a 4-cycle and a 3-cycle with one common vertex. Every card of H has at most

four edges. Whether (x, y) is (1, 1) or (2, 0), deleting from G the two vertices of smallest

degree eliminates at most two edges and leaves a card with five edges, a contradiction. �
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3 3-reconstructibility of connectedness

Using Theorem 1.7, we prove Theorem 1.5. Again the example of C5 + P1 and K ′′
1,3 shows

that the threshold on n ≥ 7 is sharp; they have the same 3-deck, but only one is connected.

Theorem (1.5). For n ≥ 7, connectedness is 3-reconstructible for n-vertex graphs, and the

threshold on n is sharp.

Proof. Suppose that n-vertex graphs G and H have the same (n − 3)-deck D, but that G

is connected and H is disconnected. Let m be the common number of edges in G and H .

Let C be the largest component in H . Since G is connected, it has a spanning tree T . Since

n ≥ 7, T has at least two connected cards. Thus D has at least two connected cards, so C

has at least n− 2 vertices.

By Theorem 1.7, G and H have the same degree list. Since G is connected, H cannot

have an isolated vertex, so H = C+K2. If C has a 1-vertex, then deleting it and the vertices

of the small component in H leaves a card in D with m − 2 edges. However, since G is

connected, it is not possible to delete three vertices in G and only remove two edges. Hence

C has no 1-vertex, which means that G and H each have exactly two 1-vertices. Let u and

v be the 1-vertices in G, and let Y be the set of 1-vertices in H .

Let x be the number of 2-vertices in both G and in H . If x = 0, then C has minimum

degree at least 3. Deleting Y and one vertex of C from H now yields n − 2 cards with

minimum degree at least 2. Such cards can arise from G only by deleting the two 1-vertices

and one other vertex. Hence G − {u, v} and C have the same (n − 3)-deck. They must

therefore have the same number of edges. However, C has m− 1 edges, while G−{u, v} has

m− 2 edges. Thus x > 0.

To eliminate only three edges from H when deleting three vertices, one must delete Y

and a 2-vertex of C. Thus x is also the number of cards in D with m − 3 edges. We show

the remaining possibilities for G in Figure 1.

•
•

•

x = 1

•

• •

x = 1

• • •

• • •

x = 4

•

•

•

•

x = 2

• •

• • •

x = 3

•

• ••

x = 2

Figure 1: Possibilities for G in Theorem 1.5.
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If u and v have the same neighbor, w, then G can have a card with m − 3 edges only if

w has degree 3 and the deleted set is {u, v, w}. Hence in this case x = 1.

If u and v have different neighbors, then each of u and v is the end of a maximal path

containing no vertices of degree larger than 2 in G; call these paths P (u) and P (v). We can

only obtain a card with m − 3 edges by deleting i vertices from P (u) and j vertices from

P (v), where i+j = 3. There are at most four choices for i, so x ≤ 4. In order to have exactly

x cards with m− 3 edges, there must be a total of x vertices of degree 2 on P (u)∪P (v) and

hence no 2-vertices elsewhere in G (See Figure 1).

Now consider the cards of G obtained by removing three vertices. When x ≥ 2, the

paths P (u) and P (v) together have at least four vertices of degree at most 2, so removing

any three vertices of G leaves a vertex of degree at most 1. Hence removing Y and a vertex

of C from H must also leave a vertex of degree at most 1. This means that every vertex of

C has a neighbor of degree 2. In the two possibilities when x = 1, the one card of G with

m − 3 edges may have no vertex of degree at most 1, but all other cards must have such a

vertex. In this case every vertex of C except possibly one has a neighbor of degree 2.

For x ∈ {3, 4}, label u and v so that |V (P (u))| ≥ |V (P (v))|. Consider a card D of G with

m − 3 edges that is obtained by deleting u, v and the neighbor of u, so D has two vertices

of degree 1 and x− 3 vertices of degree 2. Since all 2-vertices in G are in P (u) ∪ P (v), the

other vertices in D have degree at least 3. Note that D must be a vertex-deleted subgraph

of C, since cards with m− 3 edges are obtained from H only by deleting Y and a vertex of

C. Since C must have x vertices of degree 2 and none of degree 1, it must be formed from

D by adding one vertex z of degree 2 whose neighbors are the two 1-vertices in D. Adding

z to form C shows that the 2-vertices in C lie along a single path. This means that only

two vertices outside this path can have neighbors of degree 2. Since every vertex of C must

have a neighbor of degree 2, we conclude that C has at most two vertices outside the path,

but then those vertices cannot have degree greater than 2, a contradiction.

When x = 2, recall that every vertex in C has a neighbor of degree 2 (including the

vertices of degree 2). Each vertex of degree 2 is a neighbor of only two vertices. Hence

2 = x ≥ (n− 2)/2, so n ≤ 6. Similarly, when x = 1, all but one vertex of C has a neighbor

of degree 2, so 1 = x ≥ (n− 3)/2, yielding n ≤ 5.

We have obtained contradictions in all cases, so such G and H do not exist. �

Using Theorem 1.5, Manvel’s result on 2-reconstructibilty of connectedness follows quite

easily.

Corollary 3.1 (Manvel [13]). For n ≥ 6, connectedness of an n-vertex graph is 2-reconstructible.

Proof. Again C4 +K1 and K ′
1,3 give sharpness, and Theorem 1.5 handles n ≥ 7. Consider

connected and disconnected 6-vertex graphs G and H with the same 4-deck.

10



By Corollary 2.3, G and H have the same degree list, so neither has isolated vertices.

Since G has a connected 4-card, H has a 4-vertex component C, and H = C +K2. Thus H

has only one connected 4-card.

Now G must also have only one connected 4-card. Therefore every spanning tree of G is

a path, so G is a path, but then G has three connected 4-cards. �
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