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Abstract
Let G be a group. The power graph of G is a graph with vertex set G in which two

distinct elements x, y are adjacent if one of them is a power of the other. We

characterize all groups whose power graphs have finite independence number, show

that they have clique cover number equal to their independence number, and cal-

culate this number. The proper power graph is the induced subgraph of the power

graph on the set G � f1g. A group whose proper power graph is connected must be

either a torsion group or a torsion-free group; we give characterizations of some

groups whose proper power graphs are connected.

Keywords Power graph � Connectivity � Independence number � Cyclic
group

Mathematics Subject Classification 20D10 � 05C25

1 Introduction

There are a number of graphs associated with algebraic objects, including the

commuting graph and the generating graph of a group. Such graphs can give

information about the underlying algebraic structure; in addition, the use of

algebraic techniques can give new constructions and analysis of graphs with
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important properties. (For one example, the first explicit constructions of expander

graphs was as Cayley graphs of groups, see [13, 14].)

Our topic here is the power graph, introduced in the context of semigroup theory

by Kelarev and Quinn [10]. This can be defined for any magma A (set with binary

operation, if we define an to be the set of all n-th powers of a (all products of n

factors a, with arbitrary bracketing); the vertex set is A, and there is an edge from a

to b for all b 2 an and all n 2 N. It is perhaps most natural to consider it for power-

associative magmas, where all nth powers of an element a are equal, and in

particular in semigroups and groups (where the associative law holds in general).

We consider groups in this paper.

The power graph of a group G arises naturally as a directed graph (as defined

above); the undirected power graph is obtained by ignoring directions. It forms part

of a hierarchy of graphs, each one contained in the next: the power graph, the

enhanced power graph (two vertices a and b joined if both are powers of a common

element c), the commuting graph (two vertices a and b joined if ab ¼ ba), and, in

the case where G is a non-abelian group generated by two elements, the complement

of the generating graph. (In the generating graph, two elements a and b are joined if

ha; bi ¼ G.) The commuting and generating graphs have been much studied; to

mention just one striking property, the uniform random walk on the commuting

graph (including loops) has a limiting distribution which is uniform on conjugacy

classes (this is a special case of Mark Jerrum’s ‘‘Burnside process’’ [9]). There is a

growing body of literature on the power graph also; we refer to [2] for a survey, and

also [1, 4, 8, 10, 11].

In this paper we study the connectedness, independence number, and clique cover

number of power graphs of groups.

We begin with some standard definitions from graph theory and group theory.

Let G be a graph with vertex set V(G). An independent set is a set of vertices in a

graph, no two of which are adjacent; that is, a set whose induced subgraph is null.

The independence number of a graph G is the cardinality of the largest independent

set and is denoted by aðGÞ. The chromatic number of G is the minimum number of

parts in a partition of V(G) into independent sets. Dually, a clique is a set of vertices

with all pairs adjacent; the clique cover number is the minimum number of parts in a

partition of V(G) into cliques. Clearly we have

(a) the clique number and chromatic number of a graph are equal to the

independence number and clique cover number of the complementary graph;

(b) for any graph, the clique number is at most the chromatic number, and the

independence number is at most the clique cover number.

The cyclic group of order n is denoted by Cn. A group G is called periodic if every

element of G has finite order. For every element g 2 G, the order of g is denoted by

o(g). If there exists an integer n such that for all g 2 G, gn ¼ 1, where 1 is the

identity element of G, then G is said to be of bounded exponent and the exponent of

G is expðGÞ ¼ minfn j gn ¼ 1 for g 2 Gg.
A group G is said to be torsion-free if apart from the identity every element of

G has infinite order.
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Let p be a prime number. The p-quasicyclic group (known also as the Prüfer

group) is the p-primary component of Q=Z. It is denoted by Cp1 .

The center of a group G, denoted by Z(G), is the set of elements that commute

with every element of G. A group G is called locally finite if every finitely generated

subgroup of G is finite. Obviously any locally finite group is periodic. We say a

group G is locally center-by-finite if for any finite subset X of G, ½hXi : ZðhXiÞ�\1.

A module M is an essential extension of a submodule N, if any nonzero

submodule of M has nonzero intersection with N. A module M is a maximal

essential extension of N if, whenever K is an arbitrary essential extension of N and

M � K, then K ¼ M.

Now we give definitions of the graphs to be considered in this paper.

The directed power graph of G is the directed graph PðGÞ which takes G as its

vertex set with an edge from x to y if y 6¼ x and y is a positive power of x. The

(undirected) power graph of G, denoted P(G), takes G as its vertex set with an edge

between distinct elements if one is a positive power of the other. For example, if

G ¼ Cp1 , then P(G) is a countably infinite complete graph. The proper power graph

of G is P�ðGÞ ¼ PðGÞ � 1.

Directed power graphs were first define by Kelarev and Quinn [10] to study

semigroups, and undirected power graphs of groups were introduced by

Chakrabarty et al. [5]. The reference [2] surveys a number of results on power

graphs. In [1], Aalipour et al. provide some results on the finiteness of the

independence number of power graphs. They proved, if G is an infinite nilpotent

group, then aðPðGÞÞ ¼ aðP�ðGÞÞ\1 if and only if G ffi Cp1 � H, where H is a

finite group and p-jHj. They posed the question, does this hold without assuming

nilpotence?

In Sect. 2 of this paper we give an affirmative answer to this question, and

compute the independence number and clique cover number of the power graphs of

infinite groups of this form (they must be equal).

In Sect. 3, we consider the question of connectivity of proper power graphs of

infinite groups.

2 Independence Number

In this section we give a description of groups whose power graph has finite

independence number, and show that, for such groups, the independence number

and clique cover number of the power graph are equal.

We need the following theorems [1, Theorems 1 and 2].

Theorem 1 Let G be a group satisfying aðPðGÞÞ\1. Then

(a) ½G : ZðGÞ�\1.

(b) G is locally finite.

Theorem 2 Let G be an abelian group satisfying aðPðGÞÞ\1. Then either G is

finite or G ffi Cp1 � H, where H is a finite group and p-jHj.
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Now we settle an open problem of Aalipour et al. [1, Question 38].

Theorem 3 Let G be a group satisfying aðPðGÞÞ\1. Then either G is finite, or

G ffi Cp1 � H, where H is a finite group and p-jHj.
Conversely, these groups G do satisfy aðPðGÞÞ\1.

Proof First suppose that G ffi Cp1 � H, where H is a finite group and p-jHj.
Assume that S is a infinite independent set of P(G). Since H is finite, S has an

infinite subset S1 ¼ fða; hÞ j a 2 Kg for some infinite K � Cp1 and some h 2 H.

Let ða; hÞ; ðb; hÞ 2 S1 and hai � hbi. Since hða; hÞi ¼ hai � hhi then

hða; hÞi � hðb; hÞi. Thus all vertices in S1 are adjacent, a contradiction.

Conversely, suppose that aðPðGÞÞ\1 and G is infinite. Then by Theorem 1,

½G : ZðGÞ�\1 and so G ¼ ZðGÞH1, where H1 is a finitely generated subgroup of G.

Theorem 1 implies that H1 is finite. By Theorem 2, ZðGÞ ¼ AB, where A ffi Cp1 and

B is a finite group such that p-jBj. Consequently, G ¼ ABH1 ¼ AH2, where

H2 ¼ BH1. Since B is a central subgroup of G, then H2 is a subgroup of G.

Note that A is a normal subgroup of finite index in G . If p j jG=Aj, then G has an

element a of order p outside A. (For let A be generated by elements bi for i 2 N,

where b
p
1 ¼ 1 and b

p
iþ1 ¼ bi for i	 1. Suppose that ap ¼ bd

i ¼ b
pd
iþ1, where p-d. Since

A is central, ðab�d
iþ1Þ

p ¼ 1; we can use ab�d
iþ1 in place of a.) Then Ahai is an abelian

p-group; so Ahai ffi Cp1 � Cp, which contradicts Theorem 2.

Finally, the Sylow p-subgroup of G is central, so by Burnside’s transfer theorem,

G has a normal p-complement, which is the required H. h

As a corollary of this result, we show the following:

Corollary 1 Let G be a group whose power graph P(G) has finite independence

number. Then the independence number and clique cover number of P(G) are equal.

Remark 1 This theorem can be deduced using [1, Theorem 12], asserting that the

power graph of a group of finite exponent is perfect, together with the Weak Perfect

Graph Theorem of Lovász [12], asserting that the complement of a finite perfect

graph is perfect; this argument would also require a compactness argument to show

that the clique cover number of P(G) is equal to the maximum clique cover number

of its finite subgroups. However, given our Theorem 3, the argument below is

substantially more elementary.

Proof We know that G ¼ Cp1 � H, where H is a finite group and p a prime not

dividing |H|. We examine the structure of the power graph of such a group. Let PðHÞ
be the directed power graph of H; write h $ h0 if h ! h0 and h0 ! h in PðHÞ. Let Zi

be the set of elements of order pi in Cp1 .

Note that ðz0; h0Þ is a power of (z, h) if and only if z0 is a power of z and h0 a power
of h. One way round is trivial. In the other direction, suppose that z0 ¼ za and

h0 ¼ hb. By the Chinese remainder theorem, choose c such that

c 
 a mod oðzÞ; c 
 b mod expðHÞ:

Then ðz; hÞc ¼ ðza; hbÞ ¼ ðz0; h0Þ.
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It follows that two elements (z, h) and ðz0; h0Þ are adjacent in P(G) if and only if

one of the following happens:

(a) h $ h0 in PðGÞ;
(b) h ! h0 and h0 6! h in PðGÞ, and z 2 Zi, z0 2 Zj with i	 j;

(c) h 6! h0 and h0 ! h in PðGÞ, and z 2 Zi, z0 2 Zj with i� j.

Now the relation $ is an equivalence relation on H. If E is an equivalence class,

then Cp1 � E is a clique in P(G), so we have a clique cover of size equal to the

number of $ classes. We have to find an independent set of the same size.

To do this, we note that the $ classes are partially ordered by !. Extend this

partial order to a total order \, and number the classes E1; . . .;Er with

E1\E2\ � � �\Er. Now take hi 2 Ei and zj 2 Zj; the set

fðhi; zr�iÞ : 1� i� rg

is an independent set, since if i\j then hj 6! hi and r � i[ r � j. h

Remark 2 This argument also gives us a formula for the independence number of

PðCp1 � HÞ, where p-jHj. Since x $ y if and only if hxi ¼ hyi, we see that

aðPðCp1 � HÞÞ is equal to the number of cyclic subgroups of H.

Corollary 2 Let G be a group for which P(G) has finite independence number. Then

P(G) is a perfect graph.

Proof This is true if G is finite, by [1, Theorem 12], so suppose that G ¼ Cp1 � H,

where p-jHj. Any finite induced subgraph of G is contained in Cpn � H, for some n,

and so is perfect. This gives the result, since an infinite graph is defined to be perfect

if all its finite induced subgraphs are perfect. h

3 Connectivity

In a torsion-free group G, the identity is an isolated vertex of P(G), while in a

torsion group, it is joined to every vertex. So for questions of connectivity, we use

the proper power graph P�ðGÞ instead.
However, a group may have elements other than the identity which are joined to

all vertices in the power graph. Our first result explains when this can happen in a

finite group.

Then we provide some results on the connectivity of proper power graphs, and

extend the just-mentioned result to infinite groups.

3.1 Vertices Joined to Every Vertex

In this subsection we consider finite groups only. We classify those groups in which

some non-identity vertex is joined to all others, and decide whether the graphs

remain connected when all such vertices are deleted.
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Note that this is similar to the usual convention in studying the commuting graph

of a group, the graph in which group elements x and y are joined if and only if

xy ¼ yx. In this case, the set of vertices joined to all others is precisely the center of

the group, and in studying the connectedness of the commuting graph it is

customary to delete the center: see for example [6, 15]. (We remark that the power

graph of G is a spanning subgraph of its commuting graph.)

The generalized quaternion group Q2n is defined by

Q2n ¼ a; b j a2n�1 ¼ b2; bab�1 ¼ a�1; b4 ¼ 1
D E

:

Theorem 4 Let G be a finite group. Suppose that x 2 G has the property that for all

y 2 G, either x is a power of y or vice versa. Then one of the following holds:

(a) x ¼ 1;

(b) G is cyclic and x is a generator;

(c) G is a cyclic p-group for some prime p and x is arbitrary;

(d) G is a generalized quaternion group and x has order 2.

Proof We observe first that the converse is true; each of the four cases listed

implies that x satisfies the hypothesis.

Note that the condition is inductive; that is, if H is a subgroup of G with x 2 H,

then x satisfies the same hypothesis in H. If no such subgroup apart from G exists,

then G is cyclic and x is a generator. So we may inductively suppose that the

theorem is true for any group smaller than G. We may clearly assume that x 6¼ 1.

We observe that, since an element and any power commute, x belongs to the

center Z(G) of G. Moreover, if G is abelian, then it is cyclic. For if not, then for

some prime p, G contains elements of order p neither of which is a power of the

other; then they cannot be both powers of x.

Suppose first that the order of x is a power of a prime p. Let z be a power of x

which has order p. Then clearly hzi is the only subgroup of order p in G. If G is not a

p-group, it contains an element u of prime order q 6¼ p. Clearly neither x nor z is a

power of the other.

If G is a p-group, then a theorem of Burnside [7, Theorem 12.5.2] shows that G is

either cyclic or generalized quaternion; in the latter case, x has order 2.

So we may suppose that the order of x is not a prime power. If x 2 H and H\G,

then H must be cyclic generated by x. So hxi is a maximal subgroup of G. In

particular, the center of G is generated by x, but G itself is not cyclic. Now elements

outside hxi are not powers of x, and x cannot be a power of such an element (else G

would be cyclic). h

Now we consider the result of deleting all such vertices. The power graph of a

cyclic group of prime power order is complete, so nothing remains; but these groups

present no difficulty.

Suppose that G is cyclic of non-prime-power order. If the order of G is the

product of two primes p and q, then removing the identity and the generators leaves

a disconnected graph consisting of complete graphs of sizes p � 1 and q � 1 with no

edges between them. But in any other case, the graph is connected. For any element

123

900 Graphs and Combinatorics (2020) 36:895–904



of G has a power which has prime order, and if x and y are elements of distinct

prime orders p and q then x and y are both joined to xy.

Finally, if we remove the identity and the involution from the generalized

quaternion group of order 2n, we obtain a complete graph of cardinality 2n�1 � 2

together with 2n�2 disjoint edges.

In the remaining case, we delete the identity and obtain the proper power graph

P�ðGÞ. So from now on we consider only this case.

We extend Theorem 4 to infinite groups at the end of the next subsection.

3.2 Connectivity of the Proper Power Graph

Since an element of finite order is not adjacent to any element of infinite order, we

have the following elementary result.

Lemma 1 If P�ðGÞ is connected then G is torsion-free or periodic. h

For characterizing some torsion-free groups with connected proper power graphs

we need the following famous theorems.

Theorem 5 (Schur’s theorem) Let G be a group. If [G : Z(G)] is finite then G0 is

finite.

Theorem 6 The additive group Q of rational numbers is a (unique) maximal

essential extension of the group Z of integers, as a Z-module.

Now we can show the following:

Theorem 7 Let G be a locally center-by-finite group which is torsion-free. Then

P�ðGÞ is connected if and only if G is isomorphic to a subgroup of Q.

Proof Let P�ðGÞ be connected, and x; y 2 G nontrivial. There is a path x ¼
a1 � a2 � � � � � at ¼ y in P�ðGÞ. Then haii \ haiþ1i 6¼ f1g for 1� i� t � 1. This

implies that haii and haiþ1i are commensurable, that is, their index has finite

intersection in each. Since commensurability is an equivalence relation, hxi and hyi
are commensurable, so their intersection is not trivial.

Firstly we prove that G is abelian. Suppose to the contrary, we assume that x, y

are two elements with xy 6¼ yx. Set H ¼ hx; yi. By the hypothesis, [H : Z(H)] is

finite. Now by Theorem 5, H0 is a nontrivial finite group, which contradicts the

assumption that G is torsion-free. We deduce that G is abelian.

Let a be a nontrivial element of G and H ¼ hai. By assumption G is an essential

extension of H as Z-module. Let L be a maximal essential extension of G. By

Theorem 6, L ffi Q, which completes the proof.

For the converse, it is obvious that for any elements x ¼ m=n; y ¼ m1=n1 2 Q,

nm1x ¼ n1my, as desired. h

There are examples of non-abelian torsion-free groups in [3, 16], in which the

intersection of any two non-trivial subgroups is non-trivial. Thus their proper power

graphs are connected.
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For further investigation of the power graphs of torsion-free groups, we refer to

[4].

For periodic groups, it seems the following result is the best for connectivity.

Theorem 8 [8, Lemma 2.1] Let G be a periodic group. Then P�ðGÞ is connected if

and only if for any two elements x, y of prime orders where hxi 6¼ hyi, there exist

elements x ¼ x0; x1; . . .; xt ¼ y such that oðx2iÞ is prime, oðx2iþ1Þ ¼ oðx2iÞoðx2iþ2Þ
for i 2 f0; . . .; t=2g and, xi is adjacent to xiþ1 for i 2 f0; 1; . . .; t � 1g.

By the above theorem, it can seen that if jpðZðGÞÞj 	 2, then P�ðGÞ is connected,
where pðGÞ is the set of all prime numbers p such that G has an element of order p.

(For suppose that p; q 2 pðZðGÞÞ. For any prime r 2 pðGÞ, if r 6¼ p, there is a path

between any element of order r and any central element of order p; then it follows

that all elements of prime order are in a single component, so P�ðGÞ is connected.)
Also the proper power graph of a p-group G is connected if and only if G has

exactly one subgroup of order p. Moreover, if G is a finite p-group, then P�ðGÞ is
connected if and only if G is cyclic or a generalized quaternion group Q2n . (This

follows from the theorem of Burnside, that a p-group with a unique subgroup of

order p is cyclic or generalized quaternion: see [7, 12.5.2].)

We have the following result for the infinite case. The group Q21 is defined to be

Q21 ¼
[
i	 3

Q2i

where Q2i is a subgroup of index 2 in Q2iþ1 (containing the central involution).

Theorem 9 Let G be an infinite locally finite p-group. Then P�ðGÞ is connected if

and only if G ffi Cp1 for some prime number p, or G ffi Q21 .

Proof By Theorem 8, if P�ðGÞ is connected, then G has a unique subgroup of order

p, so by Burnside’s Theorem it is a union of cyclic or generalized quaternion groups.

If G is abelian then G ffi Cp1 . If G is non-abelian, it contains arbitrarily large finite

generalized quaternion groups, and so G ffi Q21 .

Conversely, for the groups G of these two types, P�ðGÞ is connected, since the

unique subgroup of order p contains a power of each non-identity element. h

Now we give a general class of examples.

Example 1 Let G ¼ hA; ti, where A is an abelian torsion group of exponent greater

than 2 and t is an element of order 2 inverting A. (This includes dihedral groups of

order greater than 4.) Then G contains non-central involutions, for example t; these

are isolated vertices in P�ðGÞ. We note that the center of G is a 2-group.

Finally we return to the question of vertices joined to everything in infinite

groups. Our result for locally finite groups is similar to the finite case.

Theorem 10 Let G be an infinite group, and suppose that x 2 G has the property

that for any y 2 G, either y is a power of x or vice versa. Assume that x 6¼ 1. Then

the following hold:

(a) If G is not a torsion group, then G is infinite cyclic, and x is a generator.

123

902 Graphs and Combinatorics (2020) 36:895–904



(b) If G is locally finite, then either G ¼ Cp1 for some prime p and x is arbitrary,

or G ¼ Q21 and x has order 2.

Proof The hypothesis implies that P�ðGÞ (obtained by deleting the identity from

P(G)) is connected; so by Lemma 1, G is either torsion-free or a torsion group.

Suppose that G is torsion-free; we claim that G ¼ hxi. If not, take y 62 hxi. Then y

is not a power of x, so x is a power of y. But the only elements in a cyclic group

which are joined to all elements are the identity and the generators; so hxi ¼ hyi, a
contradiction.

Now suppose that G is a locally finite group. By Theorem 9, G is either Cp1 , or

G ¼ Q21 . In the first case, P�ðGÞ is complete, so any element satisfies the

requirement for x; in the second case, it is clear that x is the central involution. h

Problem Do the conclusions of part (b) of Theorem 10 hold under the weaker

assumption that G is a torsion group?

Now we can, as before, decide whether deleting all vertices which are joined to

everything leaves a connected graph, at least under the assumptions of Theorem 10:

(a) If G ¼ hxi is infinite cyclic, then PðGÞ n f1; x�1g is connected with

diameter 2, since xm and xn are both joined to xmn.

(b) If G ¼ Cp1 , then P(G) is complete.

(c) If G ¼ Q21 and x has order 2, then PðGÞ n f1; xg consists of an infinite

complete graph and infinitely many disjoint edges.

4 A Problem

We mentioned earlier that the limiting distribution of the unform random walk on

the commuting graph of a finite group (including loops) is uniform on conjugacy

classes. What is the limiting distribution of the random walk on the power graph, or

the extended power graph, of a finite group?
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